Patents by Inventor Li-Wen Hung

Li-Wen Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200312912
    Abstract: A stacked resistive random access memory (ReRAM) structure is provided. The stacked ReRAM structure includes a channel, a ReRAM cell sub-structure and a contact via sub-structure. The ReRAM cell structure includes ReRAM cell, drain, gate and source layers, which are insulated from one another and respectively disposed in operative contact with the channel. The contact via sub-structures includes first, second, third and fourth contact vias, which are separate from one another. The first contact via is disposed in exclusive operative contact with the ReRAM cell layer. The second contact via is disposed in exclusive operative contact with the drain layer. The third contact via is disposed in exclusive operative contact with the gate layer. The fourth contact via is disposed in exclusive operative contact with the source layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: REINALDO VEGA, TAKASHI ANDO, HARI MALLELA, Li-Wen Hung
  • Patent number: 10770512
    Abstract: A stacked resistive random access memory (ReRAM) structure is provided. The stacked ReRAM structure includes a channel, a ReRAM cell sub-structure and a contact via sub-structure. The ReRAM cell structure includes ReRAM cell, drain, gate and source layers, which are insulated from one another and respectively disposed in operative contact with the channel. The contact via sub-structures includes first, second, third and fourth contact vias, which are separate from one another. The first contact via is disposed in exclusive operative contact with the ReRAM cell layer. The second contact via is disposed in exclusive operative contact with the drain layer. The third contact via is disposed in exclusive operative contact with the gate layer. The fourth contact via is disposed in exclusive operative contact with the source layer.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: September 8, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Reinaldo Vega, Takashi Ando, Hari Mallela, Li-Wen Hung
  • Patent number: 10740667
    Abstract: Apparatus, systems, and methods for determining a temperature excursion are provided. In one example, a system can comprise a temperature switch component that experiences a temperature excursion associated with a metal alloy of the temperature switch component and one or more electrodes, wherein the temperature excursion is based on a temperature of the metal alloy exceeding a defined threshold value. Additionally, the system can comprise a radio frequency identification tag component that receives a signal, from an external reader device, utilized to determine that the temperature excursion has occurred based on a parameter change, associated with the temperature excursion, from a first parameter to a second parameter different than the first parameter.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Li-Wen Hung, Jae-Woong Nah
  • Patent number: 10679887
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Publication number: 20200176297
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 4, 2020
    Applicant: International Business Machines Corporation
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20200171593
    Abstract: Methods of fabricating a probe are described. In an example, a structure may be formed on a surface of a substrate. The structure may include the probe, a hinge, and an anchor arranged linearly, where an angle is formed between the probe and the hinge. The hinge may be positioned between the probe and the anchor, and the structure may be parallel to the substrate. An amount of solder may be deposited on an area of the structure that spans from a portion of the probe to a portion of the anchor, and across the hinge. The deposited solder may be reshaped by an execution of a solder reflow process. The reshape of the deposited solder may cause the probe to rotate about the hinge in order to reduce the angle between the probe and the hinge.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Inventors: Li-Wen Hung, Jui-Hsin Lai, Chia-Yu Chen, Ko-Tao Lee
  • Publication number: 20200168475
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Patent number: 10658182
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Publication number: 20200151556
    Abstract: A Static Random Access Memory (SRAM) device in a binary neural network is provided. The SRAM device includes an SRAM inference engine having an SRAM computation architecture with a forward path that include multiple SRAM cells. The multiple SRAM cells are configured to form a chain of SRAM cells such that an output of a given one of the multiple SRAM cells is an input to a following one of the multiple SRAM cells. The SRAM computation architecture is configured to compute a prediction from an input.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Inventors: Chia-Yu Chen, Jui-Hsin Lai, Ko-Tao Lee, Li-Wen Hung
  • Patent number: 10651036
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Grant
    Filed: August 25, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Patent number: 10651134
    Abstract: A method of manufacturing a multi-layer wafer is provided. At least one stress compensating polymer layer is applied to at least one of two heterogeneous wafers. The stress compensating polymer layer is low temperature bonded to the other of the two heterogeneous wafers to form a multi-layer wafer pair. Channels are created between die on at least one of the two heterogeneous wafers. The channels are back filled with one of oxide or polymer to create a channel oxide deposition.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Gelorme, Li-Wen Hung, John U. Knickerbocker
  • Publication number: 20200126951
    Abstract: A method of manufacturing a multi-layer wafer is provided. The method comprises creating under bump metallization (UMB) pads on each of the two heterogeneous wafers; applying a conductive means above the UMB pads on at least one of the two heterogeneous wafers; and low temperature bonding the two heterogeneous wafers to adhere the UMB pads together via the conductive means. At least one stress compensating polymer layer may be applied to at least one of two heterogeneous wafers. The multi-layer wafer comprises two heterogeneous wafers, each of the heterogeneous wafer having UMB pads and at least one of the heterogeneous wafers having a stress compensating polymer layer and a conductive means applied above the UMB pads on at least one of the two heterogeneous wafers. The two heterogeneous wafers low temperature bonded together to adhere the UMB pads together via the conductive means.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Bing DANG, Li-Wen HUNG, John U. KNICKERBOCKER, Jae-Woong NAH
  • Patent number: 10586726
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Patent number: 10579583
    Abstract: A random number signal generator used for performing dropout or weight initialization for a node in a neural network. The random number signal generator includes a transistor which generates a random noise signal. The transistor includes a substrate, source and drain regions formed in the substrate, a first insulating layer formed over a channel of the transistor, a first trapping layer formed over the first insulating layer, a second insulating layer formed over the first trapping layer, and a second trapping layer formed over the second insulating layer. One or more traps in the first and second trapping layers are configured to capture or release one or more carriers flowing through the channel region. The random noise signal is generated as a function of one or more carrier being captured or released by the one or more traps.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Pierce I-Jen Chuang, Li-Wen Hung, Jui-Hsin Lai
  • Patent number: 10573538
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Publication number: 20200058394
    Abstract: Methods and systems for activity monitoring include capturing an infrared image of an environment that comprises at least one patient being monitored and at least one infrared-emitting tag. A relationship between the patient being monitored and the at least one infrared-emitting tag is determined. An activity conducted by the patient being monitored is determined based on the relationship between the patient being monitored and the at least one infrared-emitting tag. A course of treatment for the patient being monitored is adjusted based on the determined activity.
    Type: Application
    Filed: October 23, 2019
    Publication date: February 20, 2020
    Inventors: Li-Wen Hung, Jui-Hsin Lai
  • Publication number: 20200051979
    Abstract: Multi-voltage threshold vertical transport transistors and methods of fabrication generally include forming the transistors with vertically oriented silicon fin channels for both the n-type doped field effect transistors (nFET) and the p-type doped field effect transistors (pFET). A silicon oxynitride interfacial layer is provided on sidewalls of the fins in the nFET and a silicon dioxide interfacial with aluminum is provided on sidewalls of the fins in the pFET to provide an aluminum induced dipole. A high k dielectric overlays the interfacial layers and a common work function metal overlays the high k dielectric layer to define a gate structure.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Inventors: Takashi Ando, Reinaldo Vega, Choonghyun Lee, Hari Mallela, Li-Wen Hung
  • Publication number: 20200051948
    Abstract: Techniques for high speed handling of ultra-small chips (e.g., micro-chips) by selective laser bonding and/or debonding are provided. In one aspect, a method includes: providing a first wafer including chips bonded to a surface thereof; contacting the first wafer with a second wafer, the second wafer including a substrate bonded to a surface thereof, wherein the contacting aligns individual chips with bonding sites on the substrate; and debonding the individual chips from the first wafer using a debonding laser having a small spot size of about 0.5 ?m to about 100 ?m, and ranges therebetween. A system is also provided that has digital cameras, a motorized XYZ-axis stage, and a computer control system configured to i) control a spot size of the at least one laser source and ii) adjust a positioning of the sample to align individual chips with a target area of the laser.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Qianwen Chen, Bing Dang, Russell Budd, Bo Wen, Li-Wen Hung, Jae-Woong Nah, John Knickerbocker
  • Patent number: 10546836
    Abstract: A multi-layer wafer and method of manufacturing such wafer are provided. The method includes creating under bump metallization (UMB) pads on each of the two heterogeneous wafers; applying a conductive means above the UMB pads on at least one of the two heterogeneous wafers; and low temperature bonding the two heterogeneous wafers to adhere the UMB pads together via the conductive means. At least one stress compensating polymer layer may be applied to at least one of two heterogeneous wafers. The multi-layer wafer comprises two heterogeneous wafers, each of the heterogeneous wafer having UMB pads and at least one of the heterogeneous wafers having a stress compensating polymer layer and a conductive means applied above the UMB pads on at least one of the two heterogeneous wafers. The two heterogeneous wafers low temperature bonded together to adhere the UMB pads together via the conductive means.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Li-Wen Hung, John U. Knickerbocker, Jae-Woong Nah
  • Patent number: 10522251
    Abstract: Methods and systems for activity monitoring include capturing an infrared image of an environment that comprises at least one patient being monitored and at least one infrared-emitting tag. A relationship between the patient being monitored and the at least one infrared-emitting tag is determined. An activity conducted by the patient being monitored is determined based on the relationship between the patient being monitored and the at least one infrared-emitting tag. A course of treatment for the patient being monitored is adjusted based on the determined activity.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: December 31, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Li-Wen Hung, Jui-Hsin Lai