Patents by Inventor Li-Wen Hung

Li-Wen Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10282646
    Abstract: A data readout device is provided and includes a reflective base, reflective sidewalls disposed about the reflective base and an actuation system. The actuation system is configured to modify relative positioning of one of the reflective base and the reflective sidewalls to either reflect incoming radiation back toward an origin thereof or to reflect the incoming radiation away from the origin thereof.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: May 7, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Evan G. Colgan, Fuad E. Doany, Li-Wen Hung, Reinaldo A. Vega, Bucknell C. Webb
  • Patent number: 10276439
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Publication number: 20190115243
    Abstract: A bonded structure contains a substrate containing at least one feature, the substrate having a top surface; a first release layer overlying the top surface of the substrate, the first release layer being absorptive of light having a first wavelength for being decomposed by the light; an adhesive layer overlying the first release layer, and a second release layer overlying the adhesive layer. The second release layer is absorptive of light having a second wavelength for being decomposed by the light having the second wavelength. The bonded structure further contains a handle substrate that overlies the second release layer, where the handle substrate is substantially transparent to the light having the first wavelength and the second wavelength. Also disclosed is a debonding method to process the bonded structure to remove and reclaim the adhesive layer for re-use. In another embodiment a multi-step method optically cuts and debonds a bonded structure.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 18, 2019
    Inventors: Paul S. Andry, Russell A. Budd, Bing Dang, Li-Wen Hung, John U. Knickerbocker, Cornelia Kang-I Tsang
  • Patent number: 10251057
    Abstract: Wireless communication is established between electronic devices by an initiating device transmitting a wireless communication request to a peripheral device; the initiating device detecting a visible electromagnetic pattern displayed on the peripheral device in response to the wireless communication request; the initiating device decoding the visible electromagnetic pattern to generate a passcode; and the initiating device echoing the passcode to the peripheral device to authenticate the wireless communication request without user intervention.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Li-Wen Hung, Jui-Hsin Lai, Ko-Tao Lee
  • Patent number: 10250963
    Abstract: A wearable monitoring system includes a microelectromechanical (MEMS) microphone to receive acoustic signal data through skin of a user. An integrated circuit chip is bonded to and electrically connected to the MEMS microphone. A portable power source is connected to at least the integrated circuit chip. A flexible substrate is configured to encapsulate and affix the MEMS microphone and the integrated circuit chip to the skin of the user.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Li-Wen Hung, John U. Knickerbocker
  • Publication number: 20190088481
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Application
    Filed: December 31, 2017
    Publication date: March 21, 2019
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Publication number: 20190088480
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Patent number: 10224219
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Bing Dang, Jeffrey Donald Gelorme, Li-Wen Hung, John U. Knickerbocker, Cornelia Tsang Yang
  • Patent number: 10224229
    Abstract: A bonded structure contains a substrate containing at least one feature, the substrate having a top surface; a first release layer overlying the top surface of the substrate, the first release layer being absorptive of light having a first wavelength for being decomposed by the light; an adhesive layer overlying the first release layer, and a second release layer overlying the adhesive layer. The second release layer is absorptive of light having a second wavelength for being decomposed by the light having the second wavelength. The bonded structure further contains a handle substrate that overlies the second release layer, where the handle substrate is substantially transparent to the light having the first wavelength and the second wavelength. Also disclosed is a debonding method to process the bonded structure to remove and reclaim the adhesive layer for re-use. In another embodiment a multi-step method optically cuts and debonds a bonded structure.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Russell A. Budd, Bing Dang, Li-Wen Hung, John U. Knickerbocker, Cornelia Kang-I Tsang
  • Patent number: 10217637
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Patent number: 10174229
    Abstract: An adhesive bonding method that includes bonding a handling wafer to a front side surface of a device wafer with an adhesive comprising N-substituted maleimide copolymers. The device wafer may then be thinned from the backside surface of the device wafer while the device wafer is adhesively engaged to the handling wafer. The adhesive can then be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert D. Allen, Jeffrey Gelorme, Li-Wen Hung, Ratnam Sooriyakumaran, Linda K. Sundberg
  • Patent number: 10168427
    Abstract: A system and method are provided. The system includes a data reader having a processor for performing a signal frequency analysis, an ultrasound transmitter for transmitting ultrasound signals, and an ultrasound receiver for receiving reflected ultrasound signals. The system further includes a movable reflector for receiving the ultrasound signals and reflecting the ultrasounds signals back to the ultrasound receiver (a) as the reflected ultrasound signals without modulation when the movable reflector is stationary and (b) as the reflected ultrasound signals with modulation when the movable reflector is mobile. The system also includes a chip for storing a specification of motion states for the movable reflector.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Li-Wen Hung, Reinaldo Vega
  • Publication number: 20180375067
    Abstract: A pre-cut glass body is employed as a separator between an anode current collector and a cathode current collector of a micro-battery. The use of a pre-cut glass body in micro-battery applications provides excellent insulation for the micro-battery and can also result in enhanced battery reliability and lifetime.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 27, 2018
    Inventors: Bing Dang, Qianwen Chen, Yang Liu, Li-Wen Hung
  • Patent number: 10160635
    Abstract: MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 25, 2018
    Assignee: INVENSENSE, INC.
    Inventors: Michael J. Daneman, Martin Lim, Xiang Li, Li-Wen Hung
  • Publication number: 20180350677
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 6, 2018
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Publication number: 20180312394
    Abstract: MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
    Type: Application
    Filed: April 3, 2017
    Publication date: November 1, 2018
    Inventors: Michael J. DANEMAN, Martin LIM, Xiang LI, Li-Wen HUNG
  • Publication number: 20180239016
    Abstract: A system and method are provided. The system includes a data reader having a processor for performing a signal frequency analysis, an ultrasound transmitter for transmitting ultrasound signals, and an ultrasound receiver for receiving reflected ultrasound signals. The system further includes a movable reflector for receiving the ultrasound signals and reflecting the ultrasounds signals back to the ultrasound receiver (a) as the reflected ultrasound signals without modulation when the movable reflector is stationary and (b) as the reflected ultrasound signals with modulation when the movable reflector is mobile. The system also includes a chip for storing a specification of motion states for the movable reflector.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 23, 2018
    Inventors: Li-Wen Hung, Reinaldo Vega
  • Patent number: 10050167
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 14, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Publication number: 20180218934
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20180204100
    Abstract: A data readout device is provided and includes a reflective base, reflective sidewalls disposed about the reflective base and an actuation system. The actuation system is configured to modify relative positioning of one of the reflective base and the reflective sidewalls to either reflect incoming radiation back toward an origin thereof or to reflect the incoming radiation away from the origin thereof.
    Type: Application
    Filed: November 13, 2017
    Publication date: July 19, 2018
    Inventors: EVAN G. COLGAN, FUAD E. DOANY, LI-WEN HUNG, REINALDO A. VEGA, BUCKNELL C. WEBB