Patents by Inventor Nai-Han Cheng

Nai-Han Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9218938
    Abstract: A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The plurality of Faraday of the 2D profiler are arranged in a pattern that is offset in a direction. The 1D profiler is coupled to a first end of the 2D profiler and extends beyond two adjacent outer edges of the 2D profiler. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in the direction.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Nai-Han Cheng
  • Publication number: 20150270103
    Abstract: A process control method is provided for ion implantation methods and apparatuses, to produce a high dosage area on a substrate such as may compensate for noted non-uniformities. In an ion implantation tool, separately controllable electrodes are provided as multiple sets of opposed electrodes disposed outside an ion beam. Beam blockers are positionable into the ion beam. Both the electrodes and beam blockers are controllable to reduce the area of the ion beam that is incident upon a substrate. The electrodes and beam blockers also change the position of the reduced-area ion beam incident upon the surface. The speed at which the substrate scans past the ion beam may be dynamically changed during the implantation process to produce various dosage concentrations in the substrate.
    Type: Application
    Filed: June 2, 2015
    Publication date: September 24, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hong HWANG, Chun-Lin CHANG, Nai-Han CHENG, Chi-Ming YANG, Chin-Hsiang LIN
  • Publication number: 20150221561
    Abstract: A method comprises placing a wafer and a ring-shaped beam profiler on a wafer holder, wherein the ring-shaped beam profiler is adjacent to the wafer, moving a first sensor and a second sensor simultaneously with the wafer holder, receiving a first sensed signal and a second sensed signal from the first sensor and the second sensor respectively and adjusting an ion beam generated by an ion beam generator based upon the first sensed signal and the second sensed signal.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Chun-Lin Chang, Chih-Hong Hwang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 9070534
    Abstract: A process control method is provided for ion implantation methods and apparatuses, to produce a high dosage area on a substrate such as may compensate for noted non-uniformities. In an ion implantation tool, separately controllable electrodes are provided as multiple sets of opposed electrodes disposed outside an ion beam. Beam blockers are positionable into the ion beam. Both the electrodes and beam blockers are controllable to reduce the area of the ion beam that is incident upon a substrate. The electrodes and beam blockers also change the position of the reduced-area ion beam incident upon the surface. The speed at which the substrate scans past the ion beam may be dynamically changed during the implantation process to produce various dosage concentrations in the substrate.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 30, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 9048069
    Abstract: An apparatus for monitoring beam currents of an implanter is provided. The apparatus includes a beam-sensing unit for sensing the beam currents; a position-determining unit for determining scan positions; and a computing unit. The computing unit is configured to perform the functions of receiving the beam currents from the beam-sensing unit; receiving the scan positions from the position-determining unit; and determining a drift status of the implanter from the beam currents, wherein the computing unit is configured to receive the beam currents and the scan position periodically between a starting time and an ending time of a scan process of the implanter.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Juan-Lin Chen, Yung-Fu Yeh, Yuk-Tong Lee, Nai-Han Cheng
  • Patent number: 9031684
    Abstract: A method and system for integrated circuit fabrication is disclosed. In an example, the method includes determining a first process parameter of a wafer and a second process parameter of the wafer, the first process parameter and the second process parameter corresponding to different wafer characteristics; determining a variation of a device parameter of the wafer based on the first process parameter and the second process parameter; constructing a model for the device parameter as a function of the first process parameter and the second process parameter based on the determined variation of the device parameter of the wafer; and performing a fabrication process based on the model.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chin-Hsiang Lin, Chi-Ming Yang, Chun-Lin Chang, Chih-Hong Hwang
  • Publication number: 20150104949
    Abstract: In some embodiments of the present disclosure, an apparatus includes an ionizer. The ionizer is configured to dispatch a reactive ion on a surface. The apparatus also has an implanter and the implanter has an outlet releasing an accelerated charged particle on the surface.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 16, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: NAI-HAN CHENG, CHI-MING YANG
  • Patent number: 9006676
    Abstract: An apparatus for monitoring an ion distribution of a wafer comprises a first sensor and a sensor. The first sensor, the second sensor and the wafer are placed in an effective range of a uniform ion implantation current profile. A controller determines the ion dose of each region of the wafer based upon the detected signal from the first sensor and the second sensor. In addition, the controller adjusts the scanning frequency of an ion beam or the movement speed of the wafer to achieve a uniform ion distribution on the wafer.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Lin Chang, Chih-Hong Hwang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20150069913
    Abstract: The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 8922122
    Abstract: The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufaturing Company, Ltd.
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20140306119
    Abstract: A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The plurality of Faraday of the 2D profiler are arranged in a pattern that is offset in a direction. The 1D profiler is coupled to a first end of the 2D profiler and extends beyond two adjacent outer edges of the 2D profiler. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in the direction.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20140273420
    Abstract: One or more techniques or systems for ion implantation are provided herein. A pressure control module is configured to maintain a substantially constant pressure within an ion implantation or process chamber. Pressure is maintained based on an attribute of an implant layer, pressure data, feedback, photo resist (PR) outgassing, a PR coating rate, a space charge effect associated with the implant layer, etc. By maintaining pressure within the process chamber, effects associated with PR outgassing are mitigated, thereby mitigating neutralization of ions. By maintaining charged ions, better control over implantation of the ions is achieved, thus allowing ions to be implanted at a desired depth.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Nai-Han Cheng, Chi-Ming Yang
  • Publication number: 20140235071
    Abstract: A method and apparatus for rapid thermal heat treatment of semiconductor and other substrates is provided. A number of heat lamps arranged in an array or other configuration produce light and heat radiation. The light and heat radiation is directed through a heat slot that forms a radiation beam of high intensity light and heat. The radiation beam is directed to a platen that includes multiple substrates. The apparatus and method include a controller that controls rotational and translational motion of the platen relative to the heat slot and also controls the power individually and collectively supplied to the heat lamps. A program is executed which maneuvers the platen such that all portions of all substrates receive the desired thermal treatment, i.e. attain a desired temperature for a desired time period.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Nai-Han CHENG, Chi-Ming YANG
  • Publication number: 20140202383
    Abstract: A wafer processing system includes at least one metrology chamber, a process chamber, and a controller. The at least one metrology chamber is configured to measure a thickness of a first layer on a back side of a wafer. The process chamber is configured to perform a treatment on a front side of the wafer. The front side is opposite the back side. The process chamber includes therein a multi-zone chuck. The multi-zone chuck is configured to support the back side of the wafer. The multi-zone chuck has a plurality of zones with controllable clamping forces for securing the wafer to the multi-zone chuck. The controller is coupled to the metrology chamber and the multi-zone chuck. The controller is configured to control the clamping forces in the corresponding zones in accordance with measured values of the thickness of the first layer in the corresponding zones.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Nai-Han CHENG, Chi-Ming YANG, You-Hua CHOU, Kuo-Sheng CHUANG, Chin-Hsiang LIN
  • Patent number: 8766207
    Abstract: A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in a longitudinal direction and to facilitate rotation of the beam monitoring device about an axis.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 8709528
    Abstract: In a wafer processing method and a wafer processing system, a first property on a back side of a wafer is measured. The back side of the wafer is supported on a multi-zone chuck having a plurality of zones with controllable clamping forces. The wafer is secured to the multi-zone chuck by controlling the clamping forces in the corresponding zones in accordance with measured values of the first property in the zones.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chi-Ming Yang, You-Hua Chou, Kuo-Sheng Chuang, Chin-Hsiang Lin
  • Patent number: 8592785
    Abstract: An multi-ion beam implantation apparatus and method are disclosed. An exemplary apparatus includes an ion beam source that emits at least two ion beams; an ion beam analyzer; and a multi-ion beam angle incidence control system. The ion beam analyzer and the multi-ion beam angle incidence control system are configured to direct the emitted at least two ion beams to a wafer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chin-Hsiang Lin, Chi-Ming Yang, Chun-Lin Chang, Chih-Hong Hwang
  • Patent number: 8581204
    Abstract: An apparatus for monitoring an ion distribution of a wafer comprises a first sensor and a sensor. The first sensor, the second sensor and the wafer are placed in an effective range of a uniform ion implantation current profile. A controller determines the ion dose of each region of the wafer based upon the detected signal from the first sensor and the second sensor. In addition, the controller adjusts the scanning frequency of an ion beam or the movement speed of the wafer to achieve a uniform ion distribution on the wafer.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Lin Chang, Chih-Hong Hwang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20130295753
    Abstract: A process control method is provided for ion implantation methods and apparatuses, to produce a high dosage area on a substrate such as may compensate for noted non-uniformities. In an ion implantation tool, separately controllable electrodes are provided as multiple sets of opposed electrodes disposed outside an ion beam. Beam blockers are positionable into the ion beam. Both the electrodes and beam blockers are controllable to reduce the area of the ion beam that is incident upon a substrate. The electrodes and beam blockers also change the position of the reduced-area ion beam incident upon the surface. The speed at which the substrate scans past the ion beam may be dynamically changed during the implantation process to produce various dosage concentrations in the substrate.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hong HWANG, Chun-Lin CHANG, Nai-Han CHENG, Chi-Ming YANG, Chin-Hsiang LIN
  • Publication number: 20130280823
    Abstract: An apparatus for monitoring an ion distribution of a wafer comprises a first sensor and a sensor. The first sensor, the second senor and the wafer are placed in an effective range of a uniform ion implantation current profile. A controller determines the ion dose of each region of the wafer based upon the detected signal from the first sensor and the second senor. In addition, the controller adjusts the scanning frequency of an ion beam or the movement speed of the wafer to achieve a uniform ion distribution on the wafer.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Chun-Lin Chang, Chih-Hong Hwang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin