Patents by Inventor Nicholas F. Borrelli

Nicholas F. Borrelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6654168
    Abstract: A reflective polarzier for visible light wavelengths formed of a plurality of polarizer units. Each polarizer unit having a transparent, inorganic substrate with first and second opposing surfaces. The first surface is coated with a single layer of a dielectric material, and the second surface is coated with a layer of a highly reflective metal film or a dielectric material. The polarizer is configured to produce a “quasi-straight path,” such that a light ray exiting the substrate is substantially parallel with a corresponding, incident light ray entering the substrate. The polarizer exhibits polarization over the entire visible spectrum.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: November 25, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, David Dawson-Elli, David G. Grossman, Nicholas J. Visovsky
  • Publication number: 20030215199
    Abstract: A microstructured optical waveguide that supports the propagation of an optical signal of a desired wavelength is described. The optical waveguide includes a core region formed from an optically nonlinear material having a &ggr; of at least about 2.5×10−19 m2/W at 1260 nm. The optical waveguide also includes a cladding region surrounding the core region, the cladding region including a bulk material and a lattice of columns located in the bulk material, the lattice of columns having a pitch, and each column having a cross-sectional area. The pitch of the lattice and the areas of the columns are selected such that the dispersion of the optical signal at the desired wavelength is within the range of about −70 ps/nm-km to about 70 ps/nm-km.
    Type: Application
    Filed: May 14, 2002
    Publication date: November 20, 2003
    Inventors: Bruce G. Aitken, Douglas C. Allan, Nicholas F. Borrelli, Karl W. Koch, James A. West
  • Patent number: 6649326
    Abstract: The invention provides a UV below 200 nm lithography method. The invention includes providing a below 200 nm radiation source for producing <200-nm light, providing a plurality of mixed cubic fluoride crystal optical elements, with the fluoride crystals comprised of a combination of alkaline earth cations having different optical polarizabilities such as to produce an overall isotropic polarizability which minimizes the fluoride crystal spatial dispersion below 200 nm, transmitting <200-nm light through the cubic fluoride crystal optical elements, forming a lithography pattern with the light, reducing the lithography pattern and projecting the lithography pattern with the cubic fluoride crystal optical elements onto a UV radiation sensitive lithography printing medium to form a printed lithographic pattern. The invention includes making the mixed fluoride crystals and forming optical element therefrom.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: November 18, 2003
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, Nicholas F. Borrelli, Charlene M. Smith, Robert W. Sparrow
  • Publication number: 20030202245
    Abstract: Polarizing glass articles and methods of manufacturing polarizing glass articles are disclosed. Optical isolators using the polarizing glass articles have reduced coupling and surface losses when compared with conventional optical isolators.
    Type: Application
    Filed: March 27, 2003
    Publication date: October 30, 2003
    Inventors: Nicholas F. Borrelli, Donald M. Trotter
  • Publication number: 20030174406
    Abstract: A lens array and a method for fabricating a lens array that is relatively flat and has useful lenses with relatively uniform sag heights are described herein. In one embodiment, the lens array includes a one-dimensional array of useful lens and two sacrificial lens each of which is formed next to an end of a row of the useful lenses to help maintain relatively uniform sag heights across the useful lenses. In another embodiment, the lens array includes a two-dimensional array of useful lens and a plurality of perimeter lens each of which is formed next to an end of a row or a column of the useful lenses to help maintain relatively uniform sag heights across the useful lenses. In yet another embodiment, the lens array includes an array of useful lenses and a glass region (including possibly a glass matrix) located within a opal border and outside a opal region that surrounds the useful lenses to help minimize warpage of the lens array.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 18, 2003
    Inventors: Nicholas F. Borrelli, Robert Sabia, Dennis W. Smith
  • Patent number: 6619073
    Abstract: The invention relates to optical glass having improved initial transmittance, formed by subjecting the glass to a hydrogen and/or deuterium treatment at a temperature, and for a duration of time sufficient to diffuse the hydrogen and/or deuterium into the glass.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: September 16, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Daniel R. Sempolinski, Thomas P. Seward, Charlene M. Smith
  • Publication number: 20030167798
    Abstract: Optical members, methods of manufacturing optical members and predicting the performance of optical members in optical systems using excimer lasers are disclosed. The methods can be used in designing optical systems using excimer lasers. The methods include measuring the wavefront change of samples of glass at the operating wavelength of the optical system.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 11, 2003
    Applicant: CORNING INCORPORATED
    Inventors: Nicholas F. Borrelli, Michael R. Heslin, Michael W. Linder, Johannes Moll, Charlene M. Smith
  • Publication number: 20030136152
    Abstract: Polarizing glass articles and methods of manufacturing polarizing glass articles are disclosed. The method involves forming a polarizing layer on the surface of the glass article by ion-exchanging silver or copper into the surface.
    Type: Application
    Filed: January 24, 2002
    Publication date: July 24, 2003
    Inventors: Nicholas F. Borrelli, Donald M. Trotter
  • Patent number: 6596237
    Abstract: Methods and apparatus for depositing a high density biological or chemical array onto a solid support. Specifically, the apparatus is made up of a plurality of open ended channels collectively forming a matrix. The matrix has been redrawn and cut such that the pitch of the channels on the loading end is larger than the pitch of the channels on the liquid delivery end. The upper portion of each channel serves as a reservoir, while the opposing end, which has been formed by the redrawing process, is diametrically sized such that liquid in the reservoir is retained by capillary pressure at the delivery end. At any point along the height of the capillary reservoir device, all cross-sectional dimensions and areas are uniformly reduced. In other words, the on-center orientation of any two channels, also referred to as the pitch between 2 channels, measured as a function of the diameter of any cross section, is constant throughout the structure.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: July 22, 2003
    Inventors: Nicholas F. Borrelli, Alain R. E. Carre, Thierry L. A. Dannoux, Bernard Eid, David Root, Raja Rao Wusirika
  • Patent number: 6596201
    Abstract: A method for patterning an optical property on a optical element that includes selectively applying an energy source to an optical element to pattern an optical property thereon. A method is disclosed where the optical element includes metal halide particles dispersed in the optical element. A method is also disclosed where localized heating includes pre-heating the optical element and heating a small region of the optical element with sufficient energy for metal halide particles to relax in shape. An additional method is disclosed for patterning an optical property on an optical element that includes fusing pieces of optical element containing the optical property with pieces of optical element without the optical property by heat treatment.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 22, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Donald M. Trotter, Jr., Ljerka Ukrainczyk
  • Publication number: 20030104318
    Abstract: The invention provides a UV below 200 nm lithography method utilizing mixed calcium strontium fluoride crystals. The invention includes providing a below 200 nm radiation source for producing <200-nm light, providing a plurality of mixed calcium strontium cubic fluoride crystal optical elements, with the fluoride crystals comprised of a combination of calcium strontium cations having different optical polarizabilities such as to produce an overall isotropic polarizability which minimizes the fluoride crystal spatial dispersion below 200 nm, transmitting <200-nm light through the cubic fluoride crystal optical elements, forming a lithography pattern with the light, reducing the lithography pattern and projecting the lithography pattern with the fluoride crystal optical elements onto a UV radiation sensitive lithography printing medium to form a printed lithographic pattern. The invention includes making the mixed fluoride crystals, optical element blanks thereof and optical lithography elements.
    Type: Application
    Filed: September 13, 2002
    Publication date: June 5, 2003
    Inventors: Douglas C. Allan, Nicholas F. Borrelli, Charlene M. Smith, Robert W. Sparrow
  • Patent number: 6573026
    Abstract: A method of writing a pattern, such as a waveguide, in a bulk glass substrate. The bulk glass substrate can be formed from, for example, borosilicate or sulfide or lead glass. A pulsed laser beam is focused within the substrate while the focus is translated relative to the substrate along a scan path at a scan speed effective to induce an increase in the refractive index of the material along the scan path. Substantially no laser induced physical damage of the material is incurred along the scan path. Various optical devices can be made using this method.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: June 3, 2003
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Nicholas F. Borrelli, David L. Morse, Alexander Streltsov
  • Publication number: 20030099452
    Abstract: Waveguides produced in bulk glass using femtosecond pulsed lasers have diameters and refractive index profiles that are manipulated by additional motions or beams. For example, spot focuses of the femtosecond pulsed lasers trace overlapping or widened tracks by superimposing additional relative motions between the spot focuses and the bulk glass. Additional femtosecond pulsed beams can also be used to produced widened waveguides.
    Type: Application
    Filed: November 28, 2001
    Publication date: May 29, 2003
    Inventors: Nicholas F. Borrelli, Joseph F. Schroeder, Alexander Streltsov
  • Publication number: 20030091934
    Abstract: The invention provides a UV below 200 mm lithography method. The invention includes providing a below 200 mm radiation source for producing <200-nm light, providing a plurality of mixed cubic flouride crystal optical elements, with the fluoride crystals comprised of a combination of alkaline earth cations having different optical polarizabilities such as to produce an overall isotropic polarizability which minimizes the fluoride crystal spatial dispersion below 200 nm, transmitting <200-nm light through the cubic fluoride crystal optical elements, forming a lithography pattern with the light, reducing the litographic patter and projecting the lithography pattern with the cubic fluoride crystal optical elements onto a UV radiation sensitive lithography printing medium to form a printed lithographic pattern. The invention includes making the mixed fluoride crystals and forming optical element thereform.
    Type: Application
    Filed: June 21, 2002
    Publication date: May 15, 2003
    Inventors: Douglas C. Allan, Nicholas F. Borrelli, Charlene M. Smith, Robert W. Sparrow
  • Patent number: 6563639
    Abstract: Polarized glass articles and method of manufacturing polarizing glass articles are disclosed. Optical isolators using the polarizing glass articles have reduced coupling and surface losses when compared with conventional optical isolators.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: May 13, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Donald M. Trotter, Jr.
  • Publication number: 20030067679
    Abstract: The invention provides a method of making a <194 nm wavelength calcium fluoride crystal optical lithography element for transmitting wavelengths less than about 194 nm along an optical axis with minimal birefringence by providing an optical element optical calcium fluoride crystal with an input face {100} crystal plane and forming the input face {100} crystal plane into an optical lithography element surface of an optical lithography element having an optical axis, with the optical axis aligned with a <100> crystal direction of the optical calcium fluoride crystal. In a preferred embodiment, the below 194 nm transmitting optical element is a <100>oriented calcium fluoride lens. In a preferred embodiment, the below 194 nm transmitting optical element is a <100> oriented calcium fluoride beam splitter.
    Type: Application
    Filed: May 15, 2002
    Publication date: April 10, 2003
    Inventors: Douglas C. Allan, Nicholas F. Borrelli, Charlene M. Smith, Bryan D. Stone
  • Publication number: 20030068129
    Abstract: The present invention provides photonic devices utilized in optical telecommunications. The photonic devices include photosensitive bulk glass bodies which contain Bragg gratings, particularly with the ultraviolet photosensitive bulk glass bodies directing optical telecommunications wavelength range bands. Preferably the ultraviolet photosensitive bulk glass bodies are batch meltable alkali boro-alumino-silicate bulk glass bodies.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Inventors: Venkata A. Bhagavatula, Nicholas F. Borrelli, Monica K. Davis, Edward F. Murphy
  • Patent number: 6543254
    Abstract: The invention relates to fused silica having low compaction under high energy irradiation, particularly adaptable for use in photolithography applications.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: April 8, 2003
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, Nicholas F. Borrelli, William R. Powell, Thomas P. Seward, III, Charlene M. Smith
  • Publication number: 20030063892
    Abstract: A broadband source, including associated devices that may incorporate the broadband source, which makes use of at least one, preferably two or more broad fluorescence spectra in combination from one or more species of transition metal ions doped in one or more material bodies. The bodies are selected from crystalline, glass-ceramic, glass, or polymer-organic materials. The broadband source or devices can generate a very broad fluorescence spectrum. The combined spectrum preferably spans a wavelength range of about 500 nm to 600 nm to 700 nm, and having an intensity that does not deviate from an average intensity by more than about 10 dB, over a range or portion of the near infrared region.
    Type: Application
    Filed: May 3, 2002
    Publication date: April 3, 2003
    Inventors: George H. Beall, Nicholas F. Borrelli, Karen E. Downey, Linda R.. Pinckney, Bryce N. Samson
  • Patent number: 6524773
    Abstract: Polarizing glass having localized regions or patterns of non-polarizing glass is disclosed. The glass is formed by use of reducing gas-blocking material, by local thermal heating of the glass, or by an etching technique.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: February 25, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Chad B. Moore, Paul A. Sachenik