Patents by Inventor Oleg Drapkin

Oleg Drapkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190012760
    Abstract: Methods and apparatus for providing multiple graphics processing capacity, while utilizing unused integrated graphics processing circuitry on a bridge circuit along with an external or discrete graphics processing unit is disclosed. In particular, a bridge circuit includes an integrated graphics processing circuit configured to process graphics jobs. The bridge circuit also includes an interface operable according to interface with a discrete graphics processing circuit. A controller is included with the bridge circuit and responsive whenever the discrete graphics processing circuit is coupled to the interface to cause the integrated graphics processing circuit to process a task of the graphics job in conjunction with operation of the discrete graphics processing circuit that is operable to process another task of the graphics job. Corresponding methods are also disclosed.
    Type: Application
    Filed: January 8, 2018
    Publication date: January 10, 2019
    Inventors: Grigori Temkine, Gordon Caruk, Oleg Drapkin
  • Patent number: 9865030
    Abstract: Methods and apparatus for providing multiple graphics processing capacity, while utilizing unused integrated graphics processing circuitry on a bridge circuit along with an external or discrete graphics processing unit is disclosed. In particular, a bridge circuit includes an integrated graphics processing circuit configured to process graphics jobs. The bridge circuit also includes an interface operable according to interface with a discrete graphics processing circuit. A controller is included with the bridge circuit and responsive whenever the discrete graphics processing circuit is coupled to the interface to cause the integrated graphics processing circuit to process a task of the graphics job in conjunction with operation of the discrete graphics processing circuit that is operable to process another task of the graphics job. Corresponding methods are also disclosed.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 9, 2018
    Assignee: ATI Technologies ULC
    Inventors: Grigori Temkine, Gordon Caruk, Oleg Drapkin
  • Publication number: 20160364834
    Abstract: Methods and apparatus for providing multiple graphics processing capacity, while utilizing unused integrated graphics processing circuitry on a bridge circuit along with an external or discrete graphics processing unit is disclosed. In particular, a bridge circuit includes an integrated graphics processing circuit configured to process graphics jobs. The bridge circuit also includes an interface operable according to interface with a discrete graphics processing circuit. A controller is included with the bridge circuit and responsive whenever the discrete graphics processing circuit is coupled to the interface to cause the integrated graphics processing circuit to process a task of the graphics job in conjunction with operation of the discrete graphics processing circuit that is operable to process another task of the graphics job. Corresponding methods are also disclosed.
    Type: Application
    Filed: August 5, 2016
    Publication date: December 15, 2016
    Inventors: Grigori Temkine, Gordon Caruk, Oleg Drapkin
  • Patent number: 9424622
    Abstract: Methods and apparatus for providing multiple graphics processing capacity, while utilizing unused integrated graphics processing circuitry on a bridge circuit along with an external or discrete graphics processing unit is disclosed. In particular, a bridge circuit includes an integrated graphics processing circuit configured to process graphics jobs. The bridge circuit also includes an interface operable according to interface with a discrete graphics processing circuit. A controller is included with the bridge circuit and responsive whenever the discrete graphics processing circuit is coupled to the interface to cause the integrated graphics processing circuit to process a task of the graphics job in conjunction with operation of the discrete graphics processing circuit that is operable to process another task of the graphics job. Corresponding methods are also disclosed.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: August 23, 2016
    Assignee: ATI Technologies ULC
    Inventors: Grigori Temkine, Gordon Caruk, Oleg Drapkin
  • Patent number: 9347836
    Abstract: A system and method for measuring integrated circuit (IC) temperature. An integrated circuit (IC) includes a thermal sensor and data processing circuitry. The thermal sensor utilizes switched currents provided to a reference diode and a thermal diode. The ratios of the currents provided to each of these diodes may be chosen to provide a given delta value between the resulting sampled diode voltages. At a later time, a different ratio of currents may be provided to each of these diodes to provide a second given delta value between the resulting sampled diode voltages. A differential amplifier within the data processing circuitry may receive the analog sampled voltages and determine the delta values. Other components within the data processing circuitry may at least digitize and store one or both of the delta values. A difference between the digitized delta values may calculated and used to determine an IC temperature digitized code.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 24, 2016
    Assignee: ATI Technologies ULC
    Inventors: Grigori Temkine, Filipp Chekmazov, Paul Edelshteyn, Oleg Drapkin, Kristina Au
  • Patent number: 9323274
    Abstract: A reference voltage generator is provided. In an example, the reference voltage generator includes a temperature-dependent device, a processing module configured to process a digital representations of first and second voltages derived from the temperature-dependent device and a reference voltage to determine a value, and a digital to analog converter (DAC) configured to generate a reference voltage based on the value. The first voltage is proportional to absolute temperature (PTAT) and the second voltage is complementary to absolute temperature (CTAT) and the reference voltage is substantially independent of absolute temperature in an operating temperature range of the reference voltage generator.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: April 26, 2016
    Assignee: ATI Technologies ULC
    Inventors: Grigori Temkine, Filipp Chekmazov, Oleg Drapkin
  • Patent number: 8854120
    Abstract: A method and circuitry for determining a temperature-independent bandgap reference voltage are disclosed. The method includes determining a quantity proportional to an internal series resistance of a p-n junction diode and determining the temperature-independent bandgap reference voltage using the quantity proportional to an internal series resistance.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 7, 2014
    Assignee: ATI Technologies ULC
    Inventors: Grigori Temkine, Filipp Chekmazov, Oleg Drapkin
  • Publication number: 20140145701
    Abstract: A reference voltage generator is provided. In an example, the reference voltage generator includes a temperature-dependent device, a processing module configured to process a digital representations of first and second voltages derived from the temperature-dependent device and a reference voltage to determine a value, and a digital to analog converter (DAC) configured to generate a reference voltage based on the value. The first voltage is proportional to absolute temperature (PTAT) and the second voltage is complementary to absolute temperature (CTAT) and the reference voltage is substantially independent of absolute temperature in an operating temperature range of the reference voltage generator.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: ATI Technologies ULC
    Inventors: Grigori Temkine, Filipp Chekmazov, Oleg Drapkin
  • Patent number: 8618836
    Abstract: The present invention provides embodiments of an apparatus that includes a pad configurable for connection to a voltage source that provides a first voltage and a buffer connected to the pad. The buffer includes a plurality of transistors that have nominal breakdown voltages that are less than the first voltage. The buffer is configured to maintain voltage differentials on the plurality of transistors that are less than the break-down voltage of the plurality of transistors during pull-down of a pad voltage from the first voltage to a selected low voltage level or during pull-up of the pad voltage from the selected low voltage level to the first voltage.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 31, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Oleg Drapkin, Grigori Temkine
  • Publication number: 20130342269
    Abstract: The present invention provides embodiments of an apparatus that includes a pad configurable for connection to a voltage source that provides a first voltage and a buffer connected to the pad. The buffer includes a plurality of transistors that have nominal breakdown voltages that are less than the first voltage. The buffer is configured to maintain voltage differentials on the plurality of transistors that are less than the break-down voltage of the plurality of transistors during pull-down of a pad voltage from the first voltage to a selected low voltage level or during pull-up of the pad voltage from the selected low voltage level to the first voltage.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Inventors: Oleg Drapkin, Grigori Temkine
  • Patent number: 8570067
    Abstract: An integrated circuit is capable of controlling a communication signal by using power ramp controlled communication buffer logic to generate an outgoing communication signal based on a detected voltage on a voltage source. The voltage source is necessary to supply power for power ramp controlled communication buffer logic. The voltage on the voltage source may be detected using power ramp sensor logic. The outgoing communication signal is based on a core logic output signal if the detected voltage is greater than or equal to a predetermined voltage level. If, the detected voltage is less than the predetermined voltage level, the outgoing communication signal is predetermined to be one of: a tristate outgoing communication signal, a logic one outgoing communication signal and a logic zero outgoing communication signal. Power ramp controlled communication buffer logic may also generate a core logic input signal based on an incoming communication signal in response to the detected voltage.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: October 29, 2013
    Assignees: ATI Technologies ULC, Advanced Micro Devices, Inc.
    Inventors: Oleg Drapkin, Grigori Temkine, Marcus Ng, Kevin Yikai Liang, Arvind Bomdica, Siji Menokki Kandiyil, Ming So, Samu Suryanarayana
  • Publication number: 20130162341
    Abstract: A method and circuitry for determining a temperature-independent bandgap reference voltage are disclosed. The method includes determining a quantity proportional to an internal series resistance of a p-n junction diode and determining the temperature-independent bandgap reference voltage using the quantity proportional to an internal series resistance.
    Type: Application
    Filed: March 30, 2012
    Publication date: June 27, 2013
    Applicant: ATI TECHNOLOGIES ULC
    Inventors: Grigori Temkine, Filipp Chekmazov, Oleg Drapkin
  • Publication number: 20130144549
    Abstract: A system and method for calibrating integrated circuit (IC) temperature measurement circuits. An integrated circuit (IC) includes a thermal sensor and data processing circuitry. The IC may have a temperature measurement mode of operation and a calibration mode of operation. During the calibration mode, one or more stable reference voltages, rather than sensed voltages from a thermal sensor, are selected as input voltages to the data processing circuitry. Electronic components within the data processing circuitry receive the stable reference voltages and generate a temperature digital code. The generated temperature digital code may be compared to an expected temperature digital code based on theoretical ideal gains for each of the components within the data processing circuitry. The comparison leads to an updated value for a scaling factor to be stored and used in subsequent temperature measurements.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Inventors: Grigori Temkine, Filipp Chekmazov, Paul Edelshteyn, Oleg Drapkin, Kristina Au
  • Publication number: 20130120930
    Abstract: A system and method for measuring integrated circuit (IC) temperature. An integrated circuit (IC) includes a thermal sensor and data processing circuitry. The thermal sensor utilizes switched currents provided to a reference diode and a thermal diode. The ratios of the currents provided to each of these diodes may be chosen to provide a given delta value between the resulting sampled diode voltages. At a later time, a different ratio of currents may be provided to each of these diodes to provide a second given delta value between the resulting sampled diode voltages. A differential amplifier within the data processing circuitry may receive the analog sampled voltages and determine the delta values. Other components within the data processing circuitry may at least digitize and store one or both of the delta values. A difference between the digitized delta values may calculated and used to determine an IC temperature digitized code.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Inventors: Grigori Temkine, Filipp Chekmazov, Paul Edelshteyn, Oleg Drapkin, Kristina Au
  • Patent number: 8344760
    Abstract: A circuit includes an input/output buffer circuit. The input/output buffer circuit includes an output buffer circuit and a bias control circuit. The output buffer circuit provides an output voltage in response to output information. The bias control circuit provides an output buffer bias voltage based on the output voltage.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 1, 2013
    Assignee: ATI Technologies ULC
    Inventors: Yamin Du, Oleg Drapkin, Grigori Temkine
  • Patent number: 8290728
    Abstract: A method includes generating a first, second and third voltage output from a temperature sensing element of an integrated circuit using a respective, corresponding first, second and third, switched current source, for sequentially switching a respective first, second and third excitation current through the temperature sensing element. The third switched current source generates the corresponding third voltage output as a reference voltage between the first voltage and the second voltage. An error corrected difference is calculated between the first voltage and the second voltage using the reference voltage. In the method, the second excitation current is proportional to the first excitation current by a value n, and the third excitation current is proportional to the first excitation current by the square root of n.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 16, 2012
    Assignee: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkine, Kristina Au, Filipp Chekmazov, Paul Edelshteyn
  • Patent number: 8238067
    Abstract: A method and integrated circuit renders a shunt structure non-conductive during a power up event or noise event for and in addition, during an electrostatic discharge event, keeps the shunt structure conductive for a period of time to discharge electrostatic energy through the shunt structure. In one example, a shunt structure, such as a transistor, is interposed between a power node and a ground node. Circuitry is operative during a power up event or noise event, to render the shunt structure non-conductive for a period of time during the power up event or during the noise event (when power is applied). Second circuit is operative, during an electrostatic discharge event, to keep the shunt structure conductive for a period of time to discharge electrostatic energy through the shunt structure. In one example, a plurality of resistor/capacitors (RC) circuits are utilized wherein the RC circuits have different time constants.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 7, 2012
    Assignee: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkin, Peter Bade
  • Patent number: 8014125
    Abstract: Various capacitors for use with integrated circuits and other devices and fabrication methods are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first capacitor plate that has at least two non-linear strips and forming a second capacitor plate that has a non-linear strip positioned between the at least two non-linear strips of the first capacitor plate. A dielectric is provided between the non-linear strip of the second capacitor plate and the at least two non-linear strips of the first capacitor plate.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: September 6, 2011
    Assignee: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkine, Kristina Au
  • Patent number: 7932785
    Abstract: A circuit includes a phase lock loop circuit and a continuous phase lock loop calibration circuit. The continuous phase lock loop calibration circuit is operatively coupled to the PLL circuit and produces a continuous calibration signal based on a reference voltage from a reference voltage circuit to calibrate the PLL circuit on a continuous basis.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: April 26, 2011
    Assignee: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkine, Mikhail Rodionov, Michael Foxcroft
  • Publication number: 20100176848
    Abstract: A circuit includes an input/output buffer circuit. The input/output buffer circuit includes an output buffer circuit and a bias control circuit. The output buffer circuit provides an output voltage in response to output information. The bias control circuit provides an output buffer bias voltage based on the output voltage.
    Type: Application
    Filed: July 17, 2009
    Publication date: July 15, 2010
    Applicant: ATI Technologies ULC
    Inventors: Yamin Du, Oleg Drapkin, Grigori Temkine