Patents by Inventor Pawan Kapur

Pawan Kapur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150068592
    Abstract: An interdigitated back contact solar cell is provided. The solar cell comprises a solar cell substrate having a light receiving frontside and a backside comprising base and emitter regions. A first level metal (M1) layer is positioned on the substrate backside contacting the base and emitter regions. A second level metal (M2) layer is connected to the first level metal (M1) layer and comprises a base busbar and an emitter busbar. The first level metal comprises substantially orthogonal interdigitated metallization and substantially parallel interdigitated metallization positioned under and corresponding to the base and emitter busbars on the second level metal (M2). The substantially parallel interdigitated metallization of M1 collects carriers of opposite polarity of the corresponding busbar.
    Type: Application
    Filed: April 23, 2014
    Publication date: March 12, 2015
    Applicant: Solexel, Inc.
    Inventors: Swaroop Kommera, Pawan Kapur, Yen-Sheng Su, Vivek Saraswat, Anand Deshpande, Mehrdad M. Moslehi
  • Publication number: 20150056742
    Abstract: Annealing solutions providing damage-free laser patterning utilizing auxiliary heating to anneal laser damaged ablation regions are provided herein. Ablation spots on an underlying semiconductor substrate are annealed during or after pulsed laser ablation patterning of overlying transparent passivation layers.
    Type: Application
    Filed: April 29, 2014
    Publication date: February 26, 2015
    Applicant: Solexel, Inc.
    Inventors: Virendra V. Rana, Mehrdad M. Moslehi, Pawan Kapur, Benjamin Rattle, Heather Deshazer, Solene Coutant
  • Patent number: 8962380
    Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: February 24, 2015
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean Seutter, Virenda V Rana, Anthony Calcaterra, Emmanuel Van Kerschaver
  • Publication number: 20150020877
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 22, 2015
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Patent number: 8937243
    Abstract: The present disclosure enables high-volume cost effective production of three-dimensional thin film solar cell (3-D TFSC) substrates. First, the present disclosure discloses pyramid-like unit cell structure 16 and 50 which enable epitaxial growth through their open pyramidal structure. The present disclosure than gives four 3-D TFSC embodiments 70, 82, 100, and 110 which may combined as necessary. A basic 3-D TFSC having a substrate, emitter, oxidation on the emitter, front and back metal contacts allows simple processing. Other embodiments disclose a selective emitter, selective backside metal contact, and front-side SiN ARC layers. Several processing methods including process flows 150, 200, 250, 300, and 350 enable production of these 3-D TFSC. Further, the present disclosure enables higher throughput through the use of dual sided template 400. By processing the substrate in the template, the present disclosure increases yield and reduces processing steps.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 20, 2015
    Assignee: Solexel, Inc.
    Inventors: Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20140370650
    Abstract: According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell using bulk wafers is provided. Emitter and base contact regions are formed on a backside of a semiconductor wafer having a light receiving frontside and a backside opposite said frontside. A first level contact metallization is formed on the wafer backside and an electrically insulating backplane is attached to the semiconductor wafer backside. Isolation trenches are formed in the semiconductor wafer patterning the semiconductor wafer into a plurality of electrically isolated isles and the semiconductor wafer is thinned. A metallization structure is formed on the electrically insulating backplane electrically connecting the plurality of isles.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 18, 2014
    Applicant: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Michael Wingert
  • Patent number: 8828517
    Abstract: A three-dimensional thin film solar cell (3-D TFSC) substrate having enhanced mechanical strength, light trapping, and metal modulation coverage properties. The substrate includes a plurality of unit cells, which may or may not be different. Unit cells are defined as a small self-contained geometrical pattern which may be repeated. Each unit cell structure includes a wall enclosing a trench. Further, the unit cell includes an aperture having an aperture diameter. A pre-determined variation in wall thickness, wall height, and aperture diameter among unit cells across the substrate produces specific advantages.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 9, 2014
    Assignee: Solexel, Inc.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi, Pawan Kapur, Suketu Parikh
  • Patent number: 8828784
    Abstract: Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 9, 2014
    Assignee: Solexel, Inc.
    Inventors: Swaroop Kommera, Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20140158193
    Abstract: Fabrication methods and structures relating to back contact solar cells having patterned emitter and non-nested base regions are provided.
    Type: Application
    Filed: May 29, 2013
    Publication date: June 12, 2014
    Inventors: Anande Desphande, Pawan Kapur, Heather Deshazer, Mehrdad M. Moslehi, Virendra V. Rana, Sean M. Seutter, Pranav Anbalagan, Benjamin E. Rattle, Solene Coutant, Swaroop Kommera
  • Publication number: 20140147944
    Abstract: Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.
    Type: Application
    Filed: April 23, 2013
    Publication date: May 29, 2014
    Applicant: Solexel, Inc.
    Inventors: Swaroop Kommera, Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20130330872
    Abstract: A front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In one embodiment, front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, base regions, and a back surface field are formed through ion implantation processes.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 12, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Virendra V. Rana, Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20130241038
    Abstract: A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 19, 2013
    Applicant: Solexel, Inc.
    Inventors: Suketu Parikh, David Dutton, Pawan Kapur, Somnath Nag, Mehrdad M. Moslehi, Karl-Josef Kramer, Nevran Ozguven, Burcu Ucok
  • Publication number: 20130233378
    Abstract: A back contact back junction solar cell using semiconductor wafers and methods for manufacturing are provided. The back contact back junction solar cell comprises a semiconductor wafer having a doped base region, a light capturing frontside surface, and a doped backside emitter region. A frontside and backside dielectric layer and passivation layer provide enhance light trapping and internal reflection. Backside base and emitter contacts are connected to metal interconnects forming a metallization pattern of interdigitated fingers and busbars on the backside of the solar cell.
    Type: Application
    Filed: December 9, 2010
    Publication date: September 12, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean Seutter, Virenda V Rana, Anthony Calcaterra, Emmanuel Van Kerschaver, Duncan Harwood, Majid Mansoori, Michael Wingert
  • Publication number: 20130228221
    Abstract: Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming back contact solar cells are provided.
    Type: Application
    Filed: April 24, 2013
    Publication date: September 5, 2013
    Applicant: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer
  • Publication number: 20130167915
    Abstract: Back contact back junction three dimensional solar cell and methods for manufacturing are provided. The back contact back contact back junction three dimensional solar cell comprises a three-dimensional substrate. The substrate comprises a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer is positioned on the doped backside emitter region. Backside emitter contacts and backside base contacts connected to metal interconnects and selectively formed on three-dimensional features of the backside of three-dimensional solar cell.
    Type: Application
    Filed: December 9, 2010
    Publication date: July 4, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean M. Seutter, Virenda V. Rana
  • Publication number: 20130171808
    Abstract: This disclosure presents manufacturing methods and apparatus designs for making TFSSs from both sides of a re-usable semiconductor template, thus effectively increasing the substrate manufacturing throughput and reducing the substrate manufacturing cost. This approach also reduces the amortized starting template cost per manufactured substrate (TFSS) by about a factor of 2 for a given number of template reuse cycles.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 4, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Karl-Josef Kramer, David Xuan-Qi Wang, Pawan Kapur, Somnath Nag, George D. Kamian, Jay Ashjaee, Takao Yonehara
  • Publication number: 20130130430
    Abstract: Various laser processing schemes are disclosed for producing various types of hetero-junction emitter and homo-junction emitter solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 23, 2013
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Virendra V. Rana, Pranav Anbalagan, Heather Deshazer, Vivek Saraswat, Pawan Kapur
  • Patent number: 8445314
    Abstract: A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Solexel, Inc.
    Inventors: Suketu Parikh, David Dutton, Pawan Kapur, Somnath Nag, Mehrdad Moslehi, Joe Kramer, Nevran Ozguven, Asli Buccu Ucok
  • Patent number: 8420435
    Abstract: A front contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In yet another embodiment, a back contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, base regions, and a front surface field are formed through ion implantation processes.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: April 16, 2013
    Assignee: Solexel, Inc.
    Inventors: Virendra V. Rana, Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20120305063
    Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
    Type: Application
    Filed: December 9, 2010
    Publication date: December 6, 2012
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, David Xuan-Qi Wang, Sean M. Seutter, Virenda V. Rana, Anthony Calcaterra, Emmanuel Van Kerschaver