Patents by Inventor Robert Chau

Robert Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140175509
    Abstract: An embodiment concerns forming an EPI film on a substrate where the EPI film has a different lattice constant from the substrate. The EPI film and substrate may include different materials to collectively form a hetero-epitaxial device having, for example, a Si and/or SiGe substrate and a III-V or IV film. The EPI film may be one of multiple EPI layers or films and the films may include different materials from one another and may directly contact one another. Further, the multiple EPI layers may be doped differently from another in terms of doping concentration and/or doping polarity. One embodiment includes creating a horizontally oriented hetero-epitaxial structure. Another embodiment includes a vertically oriented hetero-epitaxial structure. The hetero-epitaxial structures may include, for example, a bipolar junction transistor, heterojunction bipolar transistor, thyristor, and tunneling field effect transistor among others. Other embodiments are described herein.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: BENJAMIN CHU-KUNG, VAN LE, ROBERT CHAU, SANSAPTAK DASGUPTA, GILBERT DEWEY, NITI GOEL, JACK KAVALIEROS, MATTHEW METZ, NILOY MUKHERJEE, RAVI PILLARISETTY, WILLY RACHMADY, MARKO RADOSAVLJEVIC, HAN WUI THEN, NANCY ZELICK
  • Patent number: 8748869
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 10, 2014
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Publication number: 20130313520
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Inventors: Ravi Pillarisetty, Mantu Hudait, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Publication number: 20130307513
    Abstract: Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 21, 2013
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 8575653
    Abstract: Techniques are disclosed for forming a non-planar quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), and a quantum well layer. A fin structure is formed in the quantum well structure, and an interfacial layer provided over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 5, 2013
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Le, Robert Chau
  • Publication number: 20130277683
    Abstract: Transistors for high voltage and high frequency operation. A non-planar, polar crystalline semiconductor body having a top surface disposed between first and second opposite sidewalls includes a channel region with a first crystalline semiconductor layer disposed over the first and second sidewalls. The first crystalline semiconductor layer is to provide a two dimensional electron gas (2DEG) within the channel region. A gate structure is disposed over the first crystalline semiconductor layer along at least the second sidewall to modulate the 2DEG. First and second sidewalls of the non-planar polar crystalline semiconductor body may have differing polarity, with the channel proximate to a first of the sidewalls. The gate structure may be along a second of the sidewalls to gate a back barrier. The polar crystalline semiconductor body may be a group III-nitride formed on a silicon substrate with the (10 10) plane on a (110) plane of the silicon.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 24, 2013
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Publication number: 20130279145
    Abstract: A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 24, 2013
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Publication number: 20130271208
    Abstract: System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) that is capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits. In embodiments, the III-N transistor architecture is amenable to scaling to sustain a trajectory of performance improvements over many successive device generations. In embodiments, the III-N transistor architecture is amenable to monolithic integration with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. Planar and non-planar HEMT embodiments having one or more of recessed gates, symmetrical source and drain, regrown source/drains are formed with a replacement gate technique permitting enhancement mode operation and good gate passivation.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 17, 2013
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Valluri Rao, Niloy Mukherjee, Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Jack Kavalieros
  • Publication number: 20130270512
    Abstract: Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 17, 2013
    Inventors: Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Niloy Mukherjee, Jack Kavalieros, Willy Rachmady, Van Le, Benjamin Chu-Kung, Matthew Metz, Robert Chau
  • Patent number: 8525151
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: September 3, 2013
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu Hudait, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Publication number: 20130153965
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 20, 2013
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Patent number: 8388854
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a first block on a nanodot material, forming a first spacer on the first block, removing the first block to form a free standing spacer, removing exposed portions of the nanodot material and then the free standing spacer to form nanowires, forming a second block at an angle to a length of the nanowires, forming a second spacer on the second block, forming a second free standing spacer on the nanowires by removing the second block, and removing exposed portions of the nanowires and then the second free standing spacer to form an ordered array of nanodots.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 5, 2013
    Assignee: Intel Corporation
    Inventors: Brian Doyle, Been-Yih Jin, Jack Kavalieros, Robert Chau
  • Patent number: 8373154
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 12, 2013
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Publication number: 20120326123
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: July 10, 2012
    Publication date: December 27, 2012
    Inventors: RAVI PILLARISETTY, Mantu Hudait, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Patent number: 8242001
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: August 14, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu Hudait, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Patent number: 8237234
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 7, 2012
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 8173495
    Abstract: A method and apparatus for producing a relatively thin, relatively uniform semiconductor layer which has improved carrier mobility. In an embodiment, a lattice-matched insulator layer is formed on a semiconductor substrate, and a lattice-matched semiconductor layer is formed on the insulator layer to form a relatively thin, relatively uniform semiconductor on insulator apparatus. In embodiments of the method and apparatus, energy band characteristics may be used to facilitate the extraction of the well-region minority carriers.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 8, 2012
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Reza Arghavani, Robert Chau
  • Publication number: 20120074386
    Abstract: Techniques are disclosed for forming a non-planar quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), and a quantum well layer. A fin structure is formed in the quantum well structure, and an interfacial layer provided over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Le, Robert Chau
  • Publication number: 20120032146
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Inventors: Ravi Pillarisetty, Mantu Hudait, Been-Yin Jin, Benjamin Chu-Kung, Robert Chau
  • Patent number: 8080820
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: December 20, 2011
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu Hudalt, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau