Patents by Inventor Robert Chau

Robert Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110186912
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 4, 2011
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 7968957
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 28, 2011
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 7960794
    Abstract: A non-planar tri-gate p-MOS transistor structure with a strained channel region and a non-planar tri-gate integrated strained complimentary metal-oxide-semiconductor (CMOS) structure are described. A relaxed Si1-x Gex layer is formed on the silicon-on-isolator (SOI) substrate. The relaxed Si1-x Gex layer is patterned and subsequently etched to form a fin on the oxide. The compressively stressed Si1-y Gey layer, having the Ge content y higher than the Ge content x in the relaxed Si1-x Gex layer, is epitaxially grown on the fin. The Si1-y Gey layer covers the top and two sidewalls of the fin. The compressive stress in the Si1-y Gey layer substantially increases the hole mobility in a channel of the non-planar tri-gate p-MOS transistor structure.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 14, 2011
    Assignee: Intel Corporation
    Inventors: Brian S Doyle, Suman Datta, Been-Yih Jin, Nancy M Zelick, Robert Chau
  • Patent number: 7936025
    Abstract: Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: May 3, 2011
    Assignee: Intel Corporation
    Inventors: Robert Chau, Mark Doczy, Brian Doyle, Jack Kavalieros
  • Publication number: 20110039377
    Abstract: A method and apparatus for producing a relatively thin, relatively uniform semiconductor layer which has improved carrier mobility. In an embodiment, a lattice-matched insulator layer is formed on a semiconductor substrate, and a lattice-matched semiconductor layer is formed on the insulator layer to form a relatively thin, relatively uniform semiconductor on insulator apparatus. In embodiments of the method and apparatus, energy band characteristics may be used to facilitate the extraction of the well-region minority carriers.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Inventors: Been-Yih Jin, Reza Arghavani, Robert Chau
  • Publication number: 20110018031
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 27, 2011
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 7875932
    Abstract: A method and apparatus for producing a relatively thin, relatively uniform semiconductor layer which has improved carrier mobility. In an embodiment, a lattice-matched insulator layer is formed on a semiconductor substrate, and a lattice-matched semiconductor layer is formed on the insulator layer to form a relatively thin, relatively uniform semiconductor on insulator apparatus. In embodiments of the method and apparatus, energy band characteristics may be used to facilitate the extraction of the well-region minority carriers.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Reza Arghavani, Robert Chau
  • Patent number: 7871916
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 18, 2011
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 7851790
    Abstract: The present invention describes a method of and an apparatus for providing a wafer, the wafer including Silicon; etching trenches in the wafer to form Silicon fins; filling Silicon Oxide in the trenches; planarizing the Silicon Oxide; recessing the Silicon Oxide to a first thickness to form exposed Silicon pedestals from the Silicon fins; depositing SiGe over the exposed Silicon pedestal; recessing the Silicon Oxide to a second thickness; undercutting the exposed Silicon pedestals to form necked-in Silicon pedestals; oxidizing thermally and annealing the SiGe; and forming Germanium nanowires.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Been-Yih Jin, Ravi Pillarisetty, Robert Chau
  • Publication number: 20100285279
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a first block on a nanodot material, forming a first spacer on the first block, removing the first block to form a free standing spacer, removing exposed portions of the nanodot material and then the free standing spacer to form nanowires, forming a second block at an angle to a length of the nanowires, forming a second spacer on the second block, forming a second free standing spacer on the nanowires by removing the second block, and removing exposed portions of the nanowires and then the second free standing spacer to form an ordered array of nanodots.
    Type: Application
    Filed: December 31, 2007
    Publication date: November 11, 2010
    Inventors: Brian Doyle, Been-Yih Jin, Jack Kavalieros, Robert Chau
  • Publication number: 20100230658
    Abstract: Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 16, 2010
    Inventors: Ravi Pillarisetty, Mantu Hudalt, Been-Yih Jin, Benjamin Chu-Kung, Robert Chau
  • Publication number: 20100164102
    Abstract: The present invention describes a method of and an apparatus for providing a wafer, the wafer including Silicon; etching trenches in the wafer to form Silicon fins; filling Silicon Oxide in the trenches; planarizing the Silicon Oxide; recessing the Silicon Oxide to a first thickness to form exposed Silicon pedestals from the Silicon fins; depositing SiGe over the exposed Silicon pedestal; recessing the Silicon Oxide to a second thickness; undercutting the exposed Silicon pedestals to form necked-in Silicon pedestals; oxidizing thermally and annealing the SiGe; and forming Germanium nanowires.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Willy Rachmady, Been-Yin Jin, Ravi Pillarisetty, Robert Chau
  • Patent number: 7671414
    Abstract: A method and apparatus for producing a relatively thin, relatively uniform semiconductor layer which has improved carrier mobility. In an embodiment, a lattice-matched insulator layer is formed on a semiconductor substrate, and a lattice-matched semiconductor layer is formed on the insulator layer to form a relatively thin, relatively uniform semiconductor on insulator apparatus. In embodiments of the method and apparatus, energy band characteristics may be used to facilitate the extraction of the well-region minority carriers.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: March 2, 2010
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Reza Arghavani, Robert Chau
  • Publication number: 20100044754
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Application
    Filed: October 30, 2009
    Publication date: February 25, 2010
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Publication number: 20100038717
    Abstract: A method and apparatus for producing a relatively thin, relatively uniform semiconductor layer which has improved carrier mobility. In an embodiment, a lattice-matched insulator layer is formed on a semiconductor substrate, and a lattice-matched semiconductor layer is formed on the insulator layer to form a relatively thin, relatively uniform semiconductor on insulator apparatus. In embodiments of the method and apparatus, energy band characteristics may be used to facilitate the extraction of the well-region minority carriers.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 18, 2010
    Inventors: Been-Yih Jin, Reza Arghavani, Robert Chau
  • Patent number: 7662689
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: February 16, 2010
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Patent number: 7642610
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 5, 2010
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Publication number: 20090315076
    Abstract: Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
    Type: Application
    Filed: September 2, 2009
    Publication date: December 24, 2009
    Inventors: Anand Murthy, Boyan Boyanov, Suman Datta, Brian S. Doyle, Been-Yih Jin, Shaofeng Yu, Robert Chau
  • Patent number: 7608883
    Abstract: A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 27, 2009
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Amlan Majumdar, Suman Datta, Justin Brask, Brian Doyle, Robert Chau
  • Patent number: 7566898
    Abstract: In one embodiment, the present invention includes an apparatus for forming a transistor that includes a silicon (Si) substrate, a dislocation filtering buffer formed over the Si substrate having a first buffer layer including gallium arsenide (GaAs) nucleation and buffer layers and a second buffer layer including a graded indium aluminium arsenide (InAlAs) buffer layer, a lower barrier layer formed on the second buffer layer formed of InAlAs, and a strained quantum well (QW) layer formed on the lower barrier layer of indium gallium arsenide (InGaAs). Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 28, 2009
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Dmitri Loubychev, Suman Datta, Robert Chau, Joel M. Fastenau, Amy W. K. Liu