Patents by Inventor Stefan Illek

Stefan Illek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9548433
    Abstract: A light-emitting diode chip includes at least two semiconductor bodies, each semiconductor body including at least one active area that generates radiation, a carrier having a top side and an underside facing away from the top side, and an electrically insulating connector arranged at the top side of the carrier, wherein the electrically insulating connector is arranged between the semiconductor bodies and the top side of the carrier, the electrically insulating connector imparts a mechanical contact between the semiconductor bodies and the carrier, and at least some of the semiconductor bodies electrically connect in series with one another.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: January 17, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Ulrich Steegmüller, Norwin von Malm
  • Patent number: 9543471
    Abstract: An optoelectronic device (10, 1010) having a semiconductor layer structure (100, 1100) comprising a first light-active layer (140) and a second light-active layer (240). A first tunnel junction (200) is formed between the first light-active layer (140) and the second light-active layer (240). A first Bragg reflector (160) is formed between the first light-active layer (140) and the first tunnel junction (200). A second Bragg reflector (260) is formed between the second light-active layer (240) and the first tunnel junction (200).
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 10, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Nagel, Stefan Illek, Martin Strassburg
  • Publication number: 20160351758
    Abstract: The invention relates to an optoelectronic semiconductor component (1) comprising:—an optoelectronic semiconductor chip (2), comprising—a growth substrate (21) having a growth surface (21a),—a layer sequence (22) with a semiconductor layer sequence (221, 222, 223) with an active zone (222) grown on the growth surface (21a),—contact points (29) for electrically contacting the semiconductor layer sequence (221, 222, 223) and—and insulation layer (26), which is formed in an electrically insulting manner—a connection carrier (4), which is mounted to the cover surface (2a) of the optoelectronic semiconductor chip facing away from the growth surface (21a), wherein—the semiconductor layer sequence (221, 222, 223) is connected to the connection carrier (4) in an electrically conducting manner and—a conversion layer (5) is applied to a bottom surface (21c) of the growth substrate (21) facing away from the growth surface (21a) and to all side surfaces (21b) of the growth substrate (21).
    Type: Application
    Filed: January 21, 2015
    Publication date: December 1, 2016
    Inventors: Siegfried Herrmann, Juergen Moosburger, Stefan Illek, Frank Singer, Norwin Von Malm
  • Publication number: 20160336307
    Abstract: A method of producing a semiconductor component includes providing a carrier with a first insulation layer, a mirror layer at least partially covered by the first insulation layer and a connection element, wherein the carrier includes an exposed planar mounting surface and the connection element extends through the first insulation layer to the mounting surface, providing a main body with a semiconductor body, a second insulation layer and a contact element to electrically contact the semiconductor body, wherein the main body has an exposed planar contact surface and the contact element extends through the second insulation layer to the contact surface, and connecting the main body to the carrier, wherein the planar contact surface and the planar mounting surface are brought together to form a connecting surface, and the contact element and the connection element electrically connect with one another.
    Type: Application
    Filed: January 16, 2015
    Publication date: November 17, 2016
    Inventors: Siegfried Herrmann, Stefan Illek, Frank Singer
  • Publication number: 20160323942
    Abstract: An optoelectronic component includes at least one first carrier with at least two light emitting diodes, wherein the diodes have electrical connections, the electrical connections are led to contact areas, and the contact areas are arranged on an underside of the first carrier; and a second carrier, wherein further contact areas are arranged on a top side of the second carrier, the first carrier bears by the underside on the top side of the second carrier and fixedly connects to the second carrier, and an electronic circuit for open-loop and/or closed-loop control of the power supply of the diodes is integrated in the second carrier.
    Type: Application
    Filed: July 14, 2016
    Publication date: November 3, 2016
    Inventors: Peter Nagel, Stefan Illek
  • Patent number: 9461218
    Abstract: In at least one embodiment, a surface light source includes one or a more optoelectronic semiconductor chips having a radiation main side for generating a primary radiation. A scattering body is disposed downstream of the radiation main side along a main emission direction of the semiconductor chips. The scatting body is designed for scattering the primary radiation. A main emission direction of the scattering body is oriented obliquely with respect to the main emission direction of the semiconductor chip.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 4, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Matthias Sabathil, Alexander Linkov, Thomas Bleicher, Norwin von Malm, Wolfgang Mönch
  • Publication number: 20160276556
    Abstract: An optoelectronic component includes an optoelectronic semiconductor chip having a radiation-emitting face; and an optical element arranged over the radiation-emitting face, wherein the optical element includes a material in which light-scattering particles are embedded, and a concentration of the embedded light-scattering particles has a gradient forming an angle not equal to 90° with the radiation emission face.
    Type: Application
    Filed: November 4, 2014
    Publication date: September 22, 2016
    Inventors: Thomas Schwarz, Frank Singer, Alexander Linkov, Stefan Illek, Wolfgang Moench
  • Publication number: 20160247990
    Abstract: A method of producing a contact element for an optoelectronic component includes providing an auxiliary carrier with a sacrificial layer arranged on a top side of the auxiliary carrier; providing a carrier structure having a top side and a rear side situated opposite the top side, wherein an insulation layer is arranged at the rear side of the carrier structure; connecting the sacrificial layer to the insulation layer by an electrically conductive connection layer; creating at least one blind hole extending from the top side of the carrier structure as far as the insulation layer; opening the insulation layer in a region of the at least one blind hole; arranging an electrically conductive material in the at least one blind hole; detaching the auxiliary carrier by separating the sacrificial layer; and patterning the electrically conductive connection layer.
    Type: Application
    Filed: October 27, 2014
    Publication date: August 25, 2016
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Dominik Scholz, Norwin von Malm, Stefan Illek
  • Patent number: 9418972
    Abstract: An optoelectronic component includes at least one first carrier with at least two light emitting diodes, wherein each diode has two electrical connections, each electrical connection is led to a contact area, the contact areas are arranged on an underside of the first carrier, and a second carrier, wherein at least two zener diodes are arranged in the second carrier, the zener diodes have further electrical connections, each further electrical connection is led to a further contact area, the further contact areas are arranged on a top side of the second carrier, the first carrier bears by the underside on the top side of the second carrier and is fixedly connected to the second carrier, and the zener diodes antiparallelly connect to the diodes.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 16, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Nagel, Stefan Illek
  • Publication number: 20160181491
    Abstract: An optoelectronic semiconductor component including an optoelectronic semiconductor chip having a first surface, wherein the first surface is a radiation emission surface of the optoelectronic semiconductor chip, the semiconductor chip is embedded in a mold body, the first surface is elevated with respect to a top side of the mold body, and a reflective layer is arranged on the top side of the mold body.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Matthias Sabathil, Stefan Illek, Thomas Schwarz
  • Patent number: 9373766
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a first surface. The semiconductor chip is embedded in a mold body. The first surface is elevated with respect to a top side of the mold body. A reflective layer is arranged on the top side of the mold body.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 21, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Stefan Illek, Thomas Schwarz
  • Patent number: 9356210
    Abstract: An optoelectronic module (202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234) comprises a carrier (102), at which and/or in which are arranged at least two semiconductor chips (104, 104a1, 104a2, 104b; 106, 106a1, 106a2, 106b, 106c) for emitting electromagnetic radiation (108a, 108b). An emission unit (110) for emitting electromagnetic radiation (109) from the optoelectronic module (202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234) is arranged on or in the carrier (102). At least one of the semiconductor chips (106, 106a1, 106a2, 106b, 106c) is spaced apart from the emission unit (110). A waveguide (112) guides the electromagnetic radiation (108a) of the at least one spaced-apart semiconductor chip (106, 106a1, 106a2, 106b, 106c) to the emission unit (110). The emission unit (110) has a coupling-out structure (114, 114a, 114b, 114c) for coupling out the electromagnetic radiation (108a) from the waveguide (112).
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: May 31, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Siegfried Herrmann, Stefan Illek
  • Publication number: 20160111594
    Abstract: An optoelectronic device (10, 1010) having a semiconductor layer structure (100, 1100) comprising a first light-active layer (140) and a second light-active layer (240). A first tunnel junction (200) is formed between the first light-active layer (140) and the second light-active layer (240). A first Bragg reflector (160) is formed between the first light-active layer (140) and the first tunnel junction (200). A second Bragg reflector (260) is formed between the second light-active layer (240) and the first tunnel junction (200).
    Type: Application
    Filed: May 12, 2014
    Publication date: April 21, 2016
    Inventors: Peter NAGEL, Stefan ILLEK, Martin STRASSBURG
  • Publication number: 20160087177
    Abstract: A radiation-emitting semiconductor device includes at least one semiconductor chip having a semiconductor layer sequence having an active region that produces radiation; a mounting surface on which at least one electrical contact for external contacting of the semiconductor chip is formed, wherein the mounting surface runs parallel to a main extension plane of the semiconductor layer sequence; a radiation exit surface running at an angle to or perpendicularly to the mounting surface; a radiation-guiding layer arranged in a beam path between the semiconductor chip and the radiation exit surface; and a reflector body adjacent to the radiation-guiding layer in regions and in a top view of the semiconductor device covers the semiconductor chip.
    Type: Application
    Filed: May 5, 2014
    Publication date: March 24, 2016
    Inventors: Thomas Schwarz, Frank Singer, Alexander Linkov, Stefan Illek, Wolfgang Mönch
  • Publication number: 20160076731
    Abstract: An optical arrangement includes a multiplicity of light-emitting chips on a carrier. In this case, first light-emitting chips respectively include pixels of a first group and second light-emitting chips respectively comprise pixels of a second group. Respectively one of the first and one of the second light-emitting chips are arranged in first unit cells in a planar fashion on the carrier. Furthermore, an optical element is provided, which is disposed downstream of the light-emitting chips in the emission direction. It is designed to guide light emitted by the pixels of the first and second groups in such a way that light from the pixels of the first group and light from the pixels of the second group are combined in second unit cells in a coupling-out plane, wherein the second unit cells each have an area that is smaller than the area of each of the first unit cells.
    Type: Application
    Filed: April 15, 2014
    Publication date: March 17, 2016
    Inventors: Wolfgang Mönch, Stefan Illek, Alexander Linkov
  • Publication number: 20160013380
    Abstract: The present application relates to a method of producing an optoelectronic component. An optoelectronic is produced by this method. An optoelectronic semiconductor chip has a first surface. A sacrificial layer is deposited on the first surface. The optoelectronic semiconductor chip is at least partially embedded in a mold body and the sacrificial layer is removed.
    Type: Application
    Filed: January 15, 2014
    Publication date: January 14, 2016
    Inventors: Jürgen Moosburger, Thomas Schwarz, Hans-Jürgen Lugauer, Tansen Varghese, Stefan Illek
  • Publication number: 20160005936
    Abstract: A method can be used for for producing an optoelectronic component. An optoelectronic semiconductor chip has a front face and a rear face. A sacrificial layer is applied to the rear face. A molded body is formed the optoelectronic semiconductor chip being at least partially embedded in the molded body. The sacrificial layer is removed.
    Type: Application
    Filed: January 15, 2014
    Publication date: January 7, 2016
    Inventors: Stefan Illek, Hans-Jürgen Lugauer, Jürgen Moosburger, Thomas Schwarz, Tansen Varghese
  • Publication number: 20160005722
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip with a first surface and a second surface. The component also includes a protective chip which has a protective diode, a first surface and a second surface. The semiconductor chip and the protective chip are embedded in a molded body. A first electrical contact and a second electrical contact are arranged on the first surface of the semiconductor chip. A third electrical contact and a fourth electrical contact are arranged on the first surface of the protective chip. The first electrical contact is electrically connected to the third electrical contact. In addition, the second electrical contact is electrically connected to the fourth electrical contact.
    Type: Application
    Filed: January 22, 2014
    Publication date: January 7, 2016
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Stefan Illek, Matthias Sabathil
  • Publication number: 20150380602
    Abstract: A method of producing an optoelectronic component includes providing a carrier having a carrier surface, a first lateral section of the carrier surface being raised relative to a second lateral section of the carrier surface; arranging an optoelectronic semiconductor chip having a first surface and a second surface on the carrier surface, wherein the first surface faces toward the carrier surface; and forming a molded body having an upper side facing toward the carrier surface and a lower side opposite the upper side, the semiconductor chip being at least partially embedded in the molded body.
    Type: Application
    Filed: February 6, 2014
    Publication date: December 31, 2015
    Applicant: OSRAM Opto Semiconductore GmbH
    Inventors: Thomas Schwarz, Hans-Jürgen Lugauer, Jürgen Moosburger, Stefan Illek, Tansen Varghese, Matthias Sabathil
  • Patent number: 9209372
    Abstract: An optoelectronic module has at least one semiconductor chip for emitting electromagnetic radiation. The semiconductor chip has a layer having a first conductivity, a layer having a second conductivity, a radiation surface and a contact surface which lies opposite the radiation surface. A contact is attached to the radiation surface. A frame made of a potting compound laterally encloses the semiconductor chip in at least some regions such that the radiation surface and the contact surface are substantially free of the potting compound. A first contact structure is arranged in at least some regions on the frame and in at least some regions on the contact surface. A second contact structure is arranged in at least some regions on the frame and in at least some regions on the contact of the radiation surface.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: December 8, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Stefan Illek