Patents by Inventor Suresh Venkatesan

Suresh Venkatesan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8581348
    Abstract: A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors includes a source, a drain, and a gate. A CA layer is electrically connected to at least one of the source or the drain of the first transistor. A CB layer is electrically connected to at least one of the gates of the transistors and the CA layer.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 12, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Mahbub Rashed, Steven Soss, Jongwook Kye, Irene Y. Lin, James Benjamin Gullette, Chinh Nguyen, Jeff Kim, Marc Tarabbia, Yuansheng Ma, Yunfei Deng, Rod Augur, Seung-Hyun Rhee, Scott Johnson, Subramani Kengeri, Suresh Venkatesan
  • Publication number: 20130290513
    Abstract: A management system for processing message-based communications comprising a plurality of servers configured to implement a plurality of sessions that process a plurality of messages, a plurality of message queues coupled to the servers and configured to exchange the messages with the servers, and a workload manager coupled to the servers and the message queues and configured to reallocate the sessions to the different servers and the corresponding message queues to achieve load balance between the servers and the message queues in a recurring manner during processing of the messages by the servers based on a depth of each of the message queues, a quantity of sessions for each of the servers, and a workload manager configuration.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: XEROX BUSINESS SERVICES, LLC
    Inventors: Faiyaz Shikari, Madhav Matta, Suresh Venkatesan
  • Publication number: 20130275935
    Abstract: An approach for providing timing-closed FinFET designs from planar designs is disclosed. Embodiments include: receiving one or more planar cells associated with a planar design; generating an initial FinFET design corresponding to the planar design based on the planar cells and a FinFET model; and processing the initial FinFET design to provide a timing-closed FinFET design. Other embodiments include: determining a race condition associated with a path of the initial FinFET design based on a timing analysis of the initial FinFET design; and increasing delay associated with the path to resolve hold violations associated with the race condition, wherein the processing of the initial FinFET design is based on the delay increase.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Mahbub Rashed, David Doman, Dinesh Somasekhar, Yan Wang, Yunfei Deng, Navneet Jain, Jongwook Kye, Ali Keshavarzi, Subramani Kengeri, Suresh Venkatesan
  • Publication number: 20130181289
    Abstract: A semiconductor device includes a semiconductor substrate having a diffusion region. A transistor is formed within the diffusion region. A power rail is disposed outside the diffusion region. A contact layer is disposed above the substrate and below the power rail. A via is disposed between the contact layer and the power rail to electrically connect the contact layer to the power rail. The contact layer includes a first length disposed outside the diffusion region and a second length extending from the first length into the diffusion region and electrically connected to the transistor.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Marc Tarabbia, James B. Gullette, Mahbub Rashed, David S. Doman, Irene Y. Lin, Ingolf Lorenz, Larry Ho, Chinh Nguyen, Jeff Kim, Jongwook Kye, Yuansheng Ma, Yunfei Deng, Rod Augur, Seung-Hyun Rhee, Jason E. Stephens, Scott Johnson, Subramani Kengeri, Suresh Venkatesan
  • Publication number: 20130146986
    Abstract: A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors comprises a source, a drain, and a gate. A trench silicide layer electrically connects one of the source or the drain of the first transistor to one of the source or the drain of the second transistor.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Inventors: Mahbub Rashed, Irene Y. Lin, Steven Soss, Jeff Kim, Chinh Nguyen, Marc Tarabbia, Scott Johnson, Subramani Kengeri, Suresh Venkatesan
  • Publication number: 20130146982
    Abstract: A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors includes a source, a drain, and a gate. A CA layer is electrically connected to at least one of the source or the drain of the first transistor. A CB layer is electrically connected to at least one of the gates of the transistors and the CA layer.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Mahbub Rashed, Steven Soss, Jongwook Kye, Irene Y. Lin, James Benjamin Gullette, Chinh Nguyen, Jeff Kim, Marc Tarabbia, Yuansheng Ma, Yunfei Deng, Rod Augur, Seung-Hyun Rhee, Scott Johnson, Subramani Kengeri, Suresh Venkatesan
  • Publication number: 20120267724
    Abstract: An MOS device having a selectively formed channel region and methods for its fabrication are provided. One such method includes forming a mask defining a gate region overlying a surface of a semiconductor substrate. Source and drain regions are formed in the semiconductor substrate in alignment with the gate region and an enhanced doping sub-surface impurity region is formed in the semiconductor substrate using the mask as a doping mask. A gate electrode is then formed overlying the semiconductor substrate in alignment with the gate region by using the mask as a gate alignment mask.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Suresh VENKATESAN
  • Patent number: 8039339
    Abstract: A semiconductor device is formed. A first gate dielectric layer is formed over the semiconductor layer. A first conductive layer is formed over the first gate dielectric. A first separation layer is formed over the first conductive layer. A trench is formed in the semiconductor layer to separate the first mesa and the second mesa. The trench is filled with an isolation material to a height above a top surface of the first conductive layer. The first conductive layer is removed from the second mesa. A second conductive layer is formed over the first separation layer of the first mesa and over the second mesa. A planarizing etch removes the second conductive layer from over the first mesa. A first transistor of a first type is formed in the first mesa, and a second transistor of a second type is formed in the second mesa.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John M. Grant, Srikanth B. Samavedam, Suresh Venkatesan
  • Patent number: 7872311
    Abstract: A method and apparatus is presented that provides mobility enhancement in the channel region of a transistor. In one embodiment, a channel region (18) is formed over a substrate that is bi-axially stressed. Source (30) and drain (32) regions are formed over the substrate. The source and drain regions provide an additional uni-axial stress to the bi-axially stressed channel region. The uni-axial stress and the bi-axially stress are both compressive for P-channel transistors and tensile for N-channel transistors. Both transistor types can be included on the same integrated circuit.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Suresh Venkatesan
  • Patent number: 7687370
    Abstract: A method for forming a semiconductor isolation trench includes forming a pad oxide layer over a substrate and forming a barrier layer over the substrate. A masking layer is formed over the barrier layer and is patterned to form at least one opening in the masking layer. At least a part of the barrier layer and at least a part of the pad oxide layer are etched through the at least one opening resulting in a trench pad oxide layer. Etching of the trench pad oxide layer stops substantially at a top surface of the substrate within the isolation trench. An oxide layer is grown by diffusion on at least the top surface of the substrate corresponding to the at least one isolation trench. The method further includes etching the oxide layer and at least a portion of the substrate to form at least one isolation trench opening.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Toni D. Van Gompel, John J. Hackenberg, Rode R. Mora, Suresh Venkatesan
  • Patent number: 7678665
    Abstract: A method for imparting stress to the channel region of a transistor is provided. In accordance with the method, a semiconductor layer (307) is provided which has a dielectric layer (305) disposed beneath it. A trench (319) is created which extends through the semiconductor layer and into the dielectric layer, and the trench is backfilled with a stressor material (320), thereby forming a trench isolation structure. A channel region (326) is defined in the semiconductor layer adjacent to the trench isolation structure.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael D. Turner, Suresh Venkatesan, Kurt H. Junker
  • Patent number: 7456055
    Abstract: An electronic device can include a base layer, a semiconductor layer, and a first semiconductor fin spaced apart from and overlying a semiconductor layer. In a particular embodiment, a second semiconductor fin can include a portion of the semiconductor layer. In another aspect, a process of forming an electronic device can include providing a workpiece that includes a base layer, a first semiconductor layer that overlies and is spaced apart from a base layer, a second semiconductor layer that overlies, and an insulating layer lying between the first semiconductor layer and the second semiconductor layer. The process can also include removing a portion of the second semiconductor layer to form a first semiconductor fin, and forming a conductive member overlying the first semiconductor fin.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: November 25, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Suresh Venkatesan
  • Publication number: 20080261374
    Abstract: A semiconductor device is formed. A first gate dielectric layer is formed over the semiconductor layer. A first conductive layer is formed over the first gate dielectric. A first separation layer is formed over the first conductive layer. A trench is formed in the semiconductor layer to separate the first mesa and the second mesa. The trench is filled with an isolation material to a height above a top surface of the first conductive layer. The first conductive layer is removed from the second mesa. A second conductive layer is formed over the first separation layer of the first mesa and over the second mesa. A planarizing etch removes the second conductive layer from over the first mesa. A first transistor of a first type is formed in the first mesa, and a second transistor of a second type is formed in the second mesa.
    Type: Application
    Filed: April 23, 2007
    Publication date: October 23, 2008
    Inventors: John M. Grant, Srikanth B. Samavedam, Suresh Venkatesan
  • Publication number: 20080220617
    Abstract: A method for imparting stress to the channel region of a transistor is provided. In accordance with the method, a semiconductor layer (307) is provided which has a dielectric layer (305) disposed beneath it. A trench (319) is created which extends through the semiconductor layer and into the dielectric layer, and the trench is backfilled with a stressor material (320), thereby forming a trench isolation structure. A channel region (326) is defined in the semiconductor layer adjacent to the trench isolation structure.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 11, 2008
    Inventors: Michael D. Turner, Suresh Venkatesan, Kurt H. Junker
  • Publication number: 20080006880
    Abstract: A method and apparatus is presented that provides mobility enhancement in the channel region of a transistor. In one embodiment, a channel region (18) is formed over a substrate that is bi-axially stressed. Source (30) and drain (32) regions are formed over the substrate. The source and drain regions provide an additional uni-axial stress to the bi-axially stressed channel region. The uni-axial stress and the bi-axially stress are both compressive for P-channel transistors and tensile for N-channel transistors. Both transistor types can be included on the same integrated circuit.
    Type: Application
    Filed: September 18, 2007
    Publication date: January 10, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Suresh Venkatesan
  • Patent number: 7288448
    Abstract: A method and apparatus is presented that provides mobility enhancement in the channel region of a transistor. In one embodiment, a channel region (18) is formed over a substrate that is bi-axially stressed. Source (30) and drain (32) regions are formed over the substrate. The source and drain regions provide an additional uni-axial stress to the bi-axially stressed channel region. The uni-axial stress and the bi-axial stress are both compressive for P-channel transistors and both tensile for N-channel transistors. The result is that carrier mobility is enhanced for both short channel and long channel transistors. Both transistor types can be included on the same integrated circuit.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: October 30, 2007
    Inventors: Marius K. Orlowski, Suresh Venkatesan
  • Publication number: 20070218628
    Abstract: An electronic device can include a base layer, a semiconductor layer, and a first semiconductor fin spaced apart from and overlying a semiconductor layer. In a particular embodiment, a second semiconductor fin can include a portion of the semiconductor layer. In another aspect, a process of forming an electronic device can include providing a workpiece that includes a base layer, a first semiconductor layer that overlies and is spaced apart from a base layer, a second semiconductor layer that overlies, and an insulating layer lying between the first semiconductor layer and the second semiconductor layer. The process can also include removing a portion of the second semiconductor layer to form a first semiconductor fin, and forming a conductive member overlying the first semiconductor fin.
    Type: Application
    Filed: March 15, 2006
    Publication date: September 20, 2007
    Inventors: Marius Orlowski, Suresh Venkatesan
  • Publication number: 20070178661
    Abstract: A method for forming a semiconductor isolation trench includes forming a pad oxide layer over a substrate and forming a barrier layer over the substrate. A masking layer is formed over the barrier layer and is patterned to form at least one opening in the masking layer. At least a part of the barrier layer and at least a part of the pad oxide layer are etched through the at least one opening resulting in a trench pad oxide layer. Etching of the trench pad oxide layer stops substantially at a top surface of the substrate within the isolation trench. An oxide layer is grown by diffusion on at least the top surface of the substrate corresponding to the at least one isolation trench. The method further includes etching the oxide layer and at least a portion of the substrate to form at least one isolation trench opening.
    Type: Application
    Filed: January 27, 2006
    Publication date: August 2, 2007
    Inventors: Toni Gompel, John Hackenberg, Rode Mora, Suresh Venkatesan
  • Publication number: 20060194384
    Abstract: A semiconductor device structure uses two semiconductor layers to separately optimize N and P channel transistor carrier mobility. The conduction characteristic for determining this is a combination of material type of the semiconductor, crystal plane, orientation, and strain. Hole mobility is improved in P channel transistors when the conduction characteristic is characterized by the semiconductor material being silicon germanium, the strain being compressive, the crystal plane being (100), and the orientation being <100>. In the alternative, the crystal plane can be (111) and the orientation in such case is unimportant. The preferred substrate for N-type conduction is different from the preferred (or optimum) substrate for P-type conduction. The N channel transistors preferably have tensile strain, silicon semiconductor material, and a (100) plane. With the separate semiconductor layers, both the N and P channel transistors can be optimized for carrier mobility.
    Type: Application
    Filed: May 9, 2006
    Publication date: August 31, 2006
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Suresh Venkatesan, Mark Foisy, Michael Mendicino, Marius Orlowski
  • Patent number: 7078297
    Abstract: A memory cell includes devices having associated isolation recesses of differing magnitudes. The effective channel width of a corresponding transistor is substantially equal to a channel top surface width plus twice a sidewall width formed by the isolation recesses. In an SRAM cell, a latch transistor has a larger effective channel width than an associated pass transistor by forming larger recesses, and therefore larger sidewalls in isolation layers surrounding the latch transistor and limiting such recesses for pass transistors. During manufacture of the memory cell, a mask is used to mask an area of the pass transistor while exposing an area of the latch transistor. Accordingly, recesses in an isolation layer around the latch transistor are formed without affecting a corresponding area around the pass transistor.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: July 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James D. Burnett, Suresh Venkatesan