Patents by Inventor Tadahiro Ishizaka

Tadahiro Ishizaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180012844
    Abstract: There is provided a ruthenium wiring, including: a TiON film formed as a base film in a recess formed in a predetermined film on a surface of a substrate; and a ruthenium film formed on the TiON film so as to fill the recess.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 11, 2018
    Inventors: Tadahiro ISHIZAKA, Toshiaki FUJISATO, Cheonsoo HAN
  • Publication number: 20170317022
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 9779950
    Abstract: A ruthenium film forming method includes a deposition process of introducing a mixed gas of a ruthenium carbonyl gas and a CO gas into a processing vessel 1 by supplying the CO gas as a carrier gas from a CO gas container 43 configured to contain the CO gas into a film forming source container 41 configured to contain ruthenium carbonyl in a solid state as a film forming source material, and forming ruthenium film by decomposing the ruthenium carbonyl on a wafer W; and a CO gas introduction process of bringing the CO gas into contact with a surface of the wafer W by introducing the CO gas directly into the processing vessel 1 from the CO gas container 43 after stopping the introducing of the mixed gas into the processing vessel 1. The deposition process and the CO gas introduction process are repeated multiple times.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: October 3, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Tadahiro Ishizaka
  • Publication number: 20170241014
    Abstract: A method for material deposition is described in several embodiments. According to one embodiment, the method includes providing a substrate defining features to receive a deposition of material, initiating a flow of a Ru carbonyl precursor to the substrate, the Ru carbonyl precursor decomposing within the defined features such that a Ru metal film is deposited on surfaces of the defined features and CO gas is released, and stopping the flow of the Ru carbonyl precursor to the substrate. The method further includes flowing additional CO gas to the substrate after stopping the flow of the Ru carbonyl precursor to the substrate, and repeatedly cycling between process steps of flowing the Ru carbonyl precursor to the substrate and flowing the additional CO gas to the substrate. In one embodiment, the Ru carbonyl precursor contains Ru3(CO)12.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 24, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 9711449
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 18, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20170179219
    Abstract: A lower electrode is made of a TiN-based material and provided at a base of a dielectric film in a DRAM capacitor. The lower electrode includes first TiON films provided at opposite outer sides, the first TiON films having a relatively low oxygen concentration, and a second TiON film provided between the first TiON films, the second TiON film having a relatively high oxygen concentration.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 22, 2017
    Inventors: Tadahiro ISHIZAKA, Masaki KOIZUMI, Masaki SANO, Seokhyoung HONG
  • Publication number: 20170092489
    Abstract: A TiON film forming method is provided. A cycle of forming a unit TiN film at a predetermined processing temperature by alternately supplying a Ti-containing gas and a nitriding gas into the processing chamber accommodating a target substrate and oxidizing the unit TiN film by supplying an oxidizing agent into the processing chamber is repeated multiple times. In an initial stage of the film formation, a cycle of repeating the alternate supply of the Ti-containing gas and the nitriding gas X1 times and supplying the oxidizing agent is repeated Y1 times. In a later stage of the film formation, a cycle of repeating the alternate supply of the Ti-containing gas and the nitriding gas X2 times and supplying the oxidizing agent is repeated Y2 times until a desired film thickness is obtained. The number of repetition X1 is set to be greater than the number of repetition X2.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 30, 2017
    Inventors: Tadahiro ISHIZAKA, Masaki KOIZUMI, Masaki SANO, Seokhyoung HONG
  • Patent number: 9607888
    Abstract: Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 28, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Toshio Hasegawa, Tadahiro Ishizaka, Manabu Oie, Fumitaka Amano, Steven Consiglio, Cory Wajda, Kaoru Maekawa, Gert J. Leusink
  • Patent number: 9576850
    Abstract: When a recess is formed in a SiCOH film, C is removed from the film to form a damage layer. If the damage layer is removed by hydrofluoric acid or the like, the surface becomes hydrophobic. By supplying a boron compound gas, a silicon compound gas or a gas containing trimethyl aluminum to the SiCOH film, B, Si or Al is adsorbed on the SiCOH film. These atoms bond with Ru and a Ru film is easily formed on the SiCOH film. The Ru film is formed using, for example, Ru3(CO)12 gas and CO gas. Copper is filled in the recess and an upper side wiring structure is formed by carrying out CMP processing.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: February 21, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Atsushi Gomi, Kenji Suzuki, Tatsuo Hatano, Yasushi Mizusawa
  • Patent number: 9540733
    Abstract: A film forming method in which in a state in which a target substrate is loaded on a loading table body of a loading table installed in a processing container and an interior of the processing container is evacuated, a film forming material gas is supplied into the processing container while heating the target substrate with a heater installed in the loading table body, to be thermally decomposed or reacted on a surface of the target substrate to form a predetermined film on the target substrate, includes introducing a heat transfer gas containing an H2 gas or an He gas into the processing container to transfer heat of the loading table body to a radially outer side of the loading table body, before the film forming material gas is supplied.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: January 10, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Tadahiro Ishizaka
  • Publication number: 20160358815
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20160343817
    Abstract: A metal nanodot formation method includes: loading a target substrate inside a processing container of a processing apparatus; depositing a plurality of metal nanodots on a surface of the target substrate by a sequence of: supplying a CO gas from a CO gas container which stores the CO gas into a raw material container which stores a metal carbonyl compound; generating gas of the metal carbonyl compound; introducing the generated gas of the metal carbonyl compound as a mixture gas containing the CO gas into the processing container; and decomposing the metal carbonyl compound on the target substrate, and directly introducing the CO gas from the CO gas container into the processing container, in a state where the introduction of the mixture gas into the processing container is stopped, such that the CO gas is brought into contact with the metal nanodots on the surface of the target substrate.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventor: Tadahiro ISHIZAKA
  • Publication number: 20160276218
    Abstract: In a Cu wiring manufacturing method, a MnOx film which becomes a self-formed barrier film by reaction with an interlayer insulating film of a substrate is formed on a surface of a recess formed in the interlayer insulating film by ALD. A hydrogen radical process is performed on a surface of the MnOx film to reduce the surface of the MnOx film. A Ru film is formed by CVD on the surface of the MnOx film which has been reduced by the hydrogen radical process. A Cu-based film is formed on the Ru film by PVD to be filled in the recess. When the Ru film is formed, a film-formation condition of the MnOx film and a condition of the hydrogen radical process are set such that nucleus formation is facilitated and the Ru film is formed in a state where a surface smoothness is high.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 22, 2016
    Inventors: Kenji MATSUMOTO, Tadahiro ISHIZAKA, Peng CHANG, Osamu YOKOYAMA, Takashi SAKUMA, Hiroyuki NAGAI
  • Patent number: 9425093
    Abstract: A Cu wiring forming method of forming Cu wiring that is to be arranged in contact with tungsten wiring, by filling Cu into a recess formed in a substrate, includes: removing a tungsten oxide formed on a surface of the tungsten wiring; forming a nitriding preventing film at least on the surface of the tungsten wiring in the recess; forming a barrier film that prevents diffusion of Cu, on a surface in the recess from above the nitriding preventing film; forming a liner film on the barrier film; and filling a Cu film on the liner film.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 23, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Takashi Sakuma, Osamu Yokoyama, Kai-Hung Yu
  • Publication number: 20160240433
    Abstract: A ruthenium film forming method includes a deposition process of introducing a mixed gas of a ruthenium carbonyl gas and a CO gas into a processing vessel 1 by supplying the CO gas as a carrier gas from a CO gas container 43 configured to contain the CO gas into a film forming source container 41 configured to contain ruthenium carbonyl in a solid state as a film forming source material, and forming ruthenium film by decomposing the ruthenium carbonyl on a wafer W; and a CO gas introduction process of bringing the CO gas into contact with a surface of the wafer W by introducing the CO gas directly into the processing vessel 1 from the CO gas container 43 after stopping the introducing of the mixed gas into the processing vessel 1. The deposition process and the CO gas introduction process are repeated multiple times.
    Type: Application
    Filed: February 15, 2016
    Publication date: August 18, 2016
    Inventor: Tadahiro Ishizaka
  • Patent number: 9406558
    Abstract: Cu wiring fabrication method for fabricating Cu wiring with respect to substrate having interlayer dielectric film having trench formed thereon, includes: forming barrier film on surface of the trench; forming Ru film on surface of the barrier film by CVD; burying the trench by forming Cu film or Cu alloy film on the Ru film; forming Cu film or Cu alloy film at corners of bottom of the trench while re-sputtering the formed Cu film or Cu alloy film in a condition where first formed Cu film or Cu alloy film re-sputtered by an ion action of the plasma generation gas; and subsequently burying the Cu film or the Cu alloy film in the trench in condition where the Cu film or the Cu alloy film is formed on field portion of the substrate, and reflows in the trench by an ion action of the plasma generation gas.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: August 2, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Tatsuo Hirasawa, Takashi Sakuma, Osamu Yokoyama
  • Patent number: 9406557
    Abstract: Provided is a method of forming a copper (Cu) wiring in a recess formed to have a predetermined pattern in an insulating film formed on a surface of a substrate. The method includes: forming a barrier film at least on a surface of the recess, the barrier film serving as a barrier for blocking diffusion of Cu; forming a Ru film on the barrier film by Chemical Mechanical Deposition (CVD); forming a Cu alloy film on the Ru film by Physical Vapor Deposition (PVD) to bury the recess; forming a Cu wiring using the Cu alloy film buried in the recess; and forming a dielectric film on the Cu wiring.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: August 2, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Osamu Yokoyama, Cheonsoo Han, Takashi Sakuma, Chiaki Yasumuro, Tatsuo Hirasawa, Tadahiro Ishizaka, Kenji Suzuki
  • Patent number: 9368418
    Abstract: In a Cu wiring structure forming method, a barrier film serving as a Cu diffusion barrier is formed at least on a surface of a recess in a first insulating film formed on a substrate, and the recess is filled with an Al-containing Cu film. A Cu wiring is formed from the Al-containing Cu film, and a cap layer including a Ru film is formed on the Cu wiring. Further, an interface layer containing a Ru—Al alloy is formed at an interface between the Cu wiring and the cap layer by heat generated in forming the cap layer or by a heat treatment performed after forming the cap layer. A second insulating film is formed on the cap layer.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 14, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Kenji Suzuki
  • Publication number: 20160163591
    Abstract: A Cu wiring forming method of forming Cu wiring that is to be arranged in contact with tungsten wiring, by filling Cu into a recess formed in a substrate, includes: removing a tungsten oxide formed on a surface of the tungsten wiring; forming a nitriding preventing film at least on the surface of the tungsten wiring in the recess; forming a barrier film that prevents diffusion of Cu, on a surface in the recess from above the nitriding preventing film; forming a liner film on the barrier film; and filling a Cu film on the liner film.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Tadahiro ISHIZAKA, Takashi SAKUMA, Osamu YOKOYAMA, Kai-Hung YU
  • Patent number: 9362166
    Abstract: A method of forming a copper wiring buried in a recess portion of a predetermined pattern formed in an interlayer insulation layer of a substrate is disclosed. The method includes: forming a manganese oxide film at least on a surface of the recess portion, the manganese oxide film serving as a self-aligned barrier film through reaction with the interlayer insulation layer; performing hydrogen radical treatment with respect to a surface of the manganese oxide film; placing a metal more active than ruthenium on the surface of the manganese oxide film after the hydrogen radical treatment; forming a ruthenium film on the surface where the metal more active than ruthenium is present; and forming a copper film on the ruthenium film by physical vapor deposition (PVD) to bury the copper film in the recess portion.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: June 7, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Takashi Sakuma, Osamu Yokoyama, Kenji Matsumoto, Peng Chang, Hiroyuki Nagai