Patents by Inventor Tadaomi Daibou

Tadaomi Daibou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8803267
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic film having a variable magnetization direction, a second magnetic film having an invariable magnetization direction, and a magnesium oxide film provided between the first magnetic film and the second magnetic film and being in contact with both the first magnetic film and the second magnetic film, and doped with at least one element selected from a first group consisting of copper, silver, and gold.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: August 12, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Tadaomi Daibou, Yushi Kato
  • Publication number: 20140159177
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization In a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicants: WPI-AIMR, Tohoku University, Kabushiki Kaisha Toshiba
    Inventors: Tadaomi DAIBOU, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Patent number: 8750030
    Abstract: According to one embodiment, a magnetoresistive element includes an electrode layer, a first magnetic layer, a second magnetic layer and a nonmagnetic layer. The electrode layer includes a metal layer including at least one of Mo, Nb, and W. The first magnetic layer is disposed on the metal layer to be in contact with the metal layer and has a magnetization easy axis in a direction perpendicular to a film plane and is variable in magnetization direction. The second magnetic layer is disposed on the first magnetic layer and has a magnetization easy axis in the direction perpendicular to the film plane and is invariable in magnetization direction. The nonmagnetic layer is provided between the first and second magnetic layers. The magnetization direction of the first magnetic layer is varied by a current that runs through the first magnetic layer, the nonmagnetic layer, and the second magnetic layer.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 10, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Ueda, Tadashi Kai, Toshihiko Nagase, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Hiroaki Yoda
  • Patent number: 8750029
    Abstract: According to one embodiment, a magnetoresistive effect element includes a recording layer including ferromagnetic material with perpendicular magnetic anisotropy to a film surface and a variable orientation of magnetization, a reference layer including ferromagnetic material with perpendicular magnetic anisotropy to a film surface and an invariable orientation of magnetization, a nonmagnetic layer between the recording layer and the reference layer, a first underlayer on a side of the recoding layer opposite to a side on which the nonmagnetic layer is provided, and a second underlayer between the recording layer and the first underlayer. The second underlayer is a Pd film including a concentration of 3×1015 atms/cm2.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: June 10, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Tadaomi Daibou, Tadashi Kai, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda
  • Publication number: 20140145279
    Abstract: The present invention relates to a magnetoresistive element including a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a third magnetic layer. The first magnetic layer includes a magnetic film of MnxGey (77 atm %?x?82 atm %, 18 atm %?y?23 atm %, x+y=100 atm %). The first nonmagnetic layer is provided between the first magnetic layer and the second magnetic layer. The third magnetic layer is provided between the first magnetic layer and the first nonmagnetic layer or between the second magnetic layer and the first nonmagnetic layer, or is provided between the first magnetic layer and the first nonmagnetic layer and between the second magnetic layer and the first nonmagnetic layer. The third magnetic layer includes a Heusler alloy.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicants: Tohoku University, Kabushiki Kaisha Toshiba
    Inventors: Yushi KATO, Tadaomi Daibou, Eiji Kitagawa, Takao Ochiai, Takahide Kubota, Shigemi Mizukami, Terunobu Miyazaki
  • Publication number: 20140131649
    Abstract: According to one embodiment, a magnetoresistance element includes a first magnetic layer having first and second surfaces, a second magnetic layer, an intermediate layer provided between the first surface and the second magnetic layer, a first layer provided on the second surface, containing B and at least one element selected from Hf, Al, Mg, and Ti and having third and fourth surfaces, a second layer provided on the fourth surface and containing B and at least one element selected from Hf, Al, and Mg, and an insulating layer provided on a sidewall of the intermediate layer and containing at least one element selected from the Hf, Al, and Mg contained in the second layer.
    Type: Application
    Filed: September 11, 2013
    Publication date: May 15, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Eiji KITAGAWA, Chikayoshi KAMATA, Saori KASHIWADA, Yushi KATO, Megumi YAKABE
  • Patent number: 8705269
    Abstract: A magnetoresistive element according to an embodiment includes: a first and second magnetic layers having an easy axis of magnetization in a direction perpendicular to a film plane; and a first nonmagnetic layer interposed between the first and second magnetic layers, at least one of the first and second magnetic layers including a structure formed by stacking a first and second magnetic films, the second magnetic film being located closer to the first nonmagnetic layer, the second magnetic film including a structure formed by repeating stacking of a magnetic material layer and a nonmagnetic material layer at least twice, the nonmagnetic material layers of the second magnetic film containing at least one element selected from the group consisting of Ta, W, Hf, Zr, Nb, Mo, Ti, V, and Cr, one of the first and second magnetic layers having a magnetization direction that is changed by applying a current.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Tadashi Kai, Makoto Nagamine, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8686521
    Abstract: A magnetoresistive element includes a stabilization layer, a nonmagnetic layer, a spin-polarization layer provided between the stabilization layer and the nonmagnetic layer, the spin-polarization layer having magnetic anisotropy in a perpendicular direction, and a magnetic layer provided on a side of the nonmagnetic layer opposite to a side on which the spin-polarization layer is provided. The stabilization layer has a lattice constant smaller than that of the spin-polarization layer in an in-plane direction. The spin-polarization layer contains at least one element selected from a group consisting of cobalt (Co) and iron (Fe), has a body-centered tetragonal (BCT) structure, and has a lattice constant ratio c/a of 1.10 (inclusive) to 1.35 (inclusive) when a perpendicular direction is a c-axis and an in-plane direction is an a-axis.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 1, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadaomi Daibou, Toshihiko Nagase, Eiji Kitagawa, Masatoshi Yoshikawa, Katsuya Nishiyama, Makoto Nagamine, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 8680633
    Abstract: A magnetoresistive element according to an embodiment includes a first magnetic layer, a second magnetic layer, and a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, the first magnetic layer including a magnetic film of MnxGey (77 atm %?x?82 atm %, 18 atm %?y?23 atm %, x+y=100 atm %).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 25, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Yushi Kato, Tadaomi Daibou, Eiji Kitagawa, Takao Ochiai, Takahide Kubota, Shigemi Mizukami, Terunobu Miyazaki
  • Patent number: 8680632
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 25, 2014
    Assignees: Kabushiki Kaisha Toshiba, WPI-AIMR, Tohoku University
    Inventors: Tadaomi Daibou, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Patent number: 8665639
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a perpendicular and variable magnetization, a second magnetic layer with a perpendicular and invariable magnetization, and a first nonmagnetic layer between the first and second magnetic layer. The first magnetic layer has a laminated structure of first and second ferromagnetic materials. A magnetization direction of the first magnetic layer is changed by a current which pass through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer. A perpendicular magnetic anisotropy of the second ferromagnetic material is smaller than that of the first ferromagnetic material. A film thickness of the first ferromagnetic material is thinner than that of the second ferromagnetic material.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Tadashi Kai, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Masahiko Nakayama, Makoto Nagamine, Shigeto Fukatsu, Masatoshi Yoshikawa, Hiroaki Yoda
  • Publication number: 20130307099
    Abstract: According to one embodiment, a magnetic memory element includes a first magnetic layer having a first surface and a second surface being opposite to the first surface, a second magnetic layer, an intermediate layer which is provided between the first surface of the first magnetic layer and the second magnetic layer, a layer which is provided on the second surface of the first magnetic layer, the layer containing B and at least one element selected from Hf, Al, and Mg, and an insulating layer which is provided on a sidewall of the intermediate layer, the insulating layer containing at least one element selected from the Hf, Al, and Mg contained in the layer.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 21, 2013
    Inventors: Eiji KITAGAWA, Chikayoshi Kamata, Saori Kashiwada, Yushi Kato, Tadaomi Daibou
  • Patent number: 8576616
    Abstract: According to one embodiment, a magnetic element includes first and second conductive layers, an intermediate interconnection, and first and second stacked units. The intermediate interconnection is provided between the conductive layers. The first stacked unit is provided between the first conductive layer and the interconnection, and includes first and second ferromagnetic layer and a first nonmagnetic layer provided between the first and second ferromagnetic layers. The second stacked unit is provided between the second conductive layer and the interconnection, and includes third and fourth ferromagnetic layers and a second nonmagnetic layer provided between the third and fourth ferromagnetic layers. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a magnetic field to act on the second ferromagnetic layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Saida, Minoru Amano, Junichi Ito, Yuichi Ohsawa, Saori Kashiwada, Chikayoshi Kamata, Tadaomi Daibou
  • Publication number: 20130288397
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first magnetic layer including perpendicular anisotropy to a film surface and an invariable magnetization direction, the first magnetic layer having a magnetic film including an element selected from a first group including Tb, Gd, and Dy and an element selected from a second group including Co and Fe, a second magnetic layer including perpendicular magnetic anisotropy to the film surface and a variable magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. The magnetic film includes amorphous phases and crystals whose particle sizes are 0.5 nm or more.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Eiji Kitagawa, Tadaomi Daibou, Yutaka Hashimoto, Masaru Tokou, Tadashi Kai, Makato Nagamine, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8547737
    Abstract: A magnetoresistive element according to an embodiment includes: a first ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a second ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a nonmagnetic layer placed between the first ferromagnetic layer and the second ferromagnetic layer; a first interfacial magnetic layer placed between the first ferromagnetic layer and the nonmagnetic layer; and a second interfacial magnetic layer placed between the second ferromagnetic layer and the nonmagnetic layer. The first interfacial magnetic layer includes a first interfacial magnetic film, a second interfacial magnetic film placed between the first interfacial magnetic film and the nonmagnetic layer and having a different composition from that of the first interfacial magnetic film, and a first nonmagnetic film placed between the first interfacial magnetic film and the second interfacial magnetic film.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadaomi Daibou, Eiji Kitagawa, Yutaka Hashimoto, Masaru Tokou, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Makoto Nagamine, Tadashi Kai, Hiroaki Yoda
  • Publication number: 20130249026
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic film having a variable magnetization direction, a second magnetic film having an invariable magnetization direction, and a magnesium oxide film provided between the first magnetic film and the second magnetic film and being in contact with both the first magnetic film and the second magnetic film, and doped with at least one element selected from a first group consisting of copper, silver, and gold.
    Type: Application
    Filed: September 18, 2012
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Eiji KITAGAWA, Tadaomi DAIBOU, Yushi KATO
  • Publication number: 20130249028
    Abstract: A method of fabricating a magnetic memory according to an embodiment includes: forming a separation layer on a first substrate; sequentially forming a first ferromagnetic layer, a first nonmagnetic layer, and a second ferromagnetic layer on the separation layer, at least one of the first and the second ferromagnetic layers having a single crystal structure; forming a first conductive bonding layer on the second ferromagnetic layer; forming a second conductive bonding layer on a second substrate, on which a transistor and a wiring are formed, the second conductive bonding layer electrically connecting to the transistor; arranging the first and second substrate so that the first conductive bonding layer and the second conductive bonding layer are opposed to each other, and bonding the first and the second conductive bonding layers to each other; and separating the first substrate from the first ferromagnetic layer by using the separation layer.
    Type: Application
    Filed: September 20, 2012
    Publication date: September 26, 2013
    Inventors: Chikayoshi KAMATA, Minoru Amano, Tadaomi Daibou, Junichi Ito
  • Patent number: 8530887
    Abstract: A magnetoresistive element according to an embodiment includes: a first magnetic layer; a tunnel barrier layer on the first magnetic layer; a second magnetic layer placed on the tunnel barrier layer and containing CoFe; and a nonmagnetic layer placed on the second magnetic layer, and containing nitrogen and at least one element selected from the group consisting of B, Ta, Zr, Al, and Ce.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Tadashi Kai, Tadaomi Daibou, Yutaka Hashimoto, Hiroaki Yoda
  • Patent number: 8520433
    Abstract: A magnetoresistive element according to an embodiment includes a first magnetic layer, a second magnetic layer, and a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, at least one of the first magnetic layer and the second magnetic layer including a magnetic film of MnxAlyGez (10 atm %?x?44 atm %, 10 atm %?y?65 atm %, 10 atm %?z?80 atm %, x+y+z=100 atm %).
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: August 27, 2013
    Assignees: Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Yushi Kato, Tadaomi Daibou, Eiji Kitagawa, Takahide Kubota, Shigemi Mizukami, Terunobu Miyazaki
  • Patent number: 8508979
    Abstract: According to one embodiment, a magnetic recording element includes a stacked body. The stacked body includes a first and a second stacked unit. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit is stacked with the first stacked unit and includes third and fourth ferromagnetic layers and a second nonmagnetic layer. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers. An outer edge of the fourth ferromagnetic layer includes a portion outside an outer edge of the first stacked unit in a plane. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a rotating magnetic field to act on the second ferromagnetic layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Saida, Minoru Amano, Junichi Ito, Yuichi Ohsawa, Saori Kashiwada, Chikayoshi Kamata, Tadaomi Daibou