Patents by Inventor Todd A. Randazzo

Todd A. Randazzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8912818
    Abstract: A calibration circuit includes an amplifier, a current steering digital-to-analog converter (DAC), a comparator, a slew calibration network, and an on-die termination (ODT) network. The amplifier generally has a first input, a second input, and an output. The first input generally receives a reference signal. The current steering digital-to-analog converter (DAC) generally has a first input coupled to the output of the amplifier, a first output coupled to the second input of the amplifier, and a second output coupled to a circuit node. The comparator generally has a first input receiving the reference signal, a second input coupled to the circuit node, and an output at which an output of the calibration circuit may be presented. The slew calibration network is generally coupled to the circuit node and configured to adjust a slew rate of the calibration circuit. The on-die termination (ODT) network is generally coupled to the circuit node.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: December 16, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Dharmesh Bhakta, Hong-Him Lim, Cheng-Gang Kong, Todd Randazzo
  • Patent number: 8399845
    Abstract: Neutron detection cells and corresponding methods of detecting charged particles that make efficient use of silicon area are set forth. Three types of circuit cells/arrays are described: state latching circuits, glitch generating cells, and charge loss circuits. An array of these cells, used in conjunction with a neutron conversion film, increases the area that is sensitive to a strike by a charged particle over that of an array of SRAM cells. The result is a neutron detection cell that uses less power, costs less, and is more suitable for mass production.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: Paul S. Fechner, David O. Erstad, Todd A. Randazzo, Bradley J. Larsen
  • Patent number: 8324927
    Abstract: An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 4, 2012
    Assignee: LSI Corporation
    Inventors: Dharmesh Bhakta, Hong-Him Lim, Cheng-Gang Kong, Todd Randazzo
  • Patent number: 8315588
    Abstract: A receiver circuit is provided on an integrated circuit. The receiver circuit includes first and second power supply terminals, a ground supply terminal, a resistive element coupled between the first and second power supply terminals, and a receiver biased between the second power supply terminal and the ground supply terminal. The receiver draws a bias current through the resistive element, which varies as a positive function with a voltage on the second power supply terminal. The voltage on the second power supply terminal varies as an inverse function of the bias current.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 20, 2012
    Assignee: LSI Corporation
    Inventor: Todd A. Randazzo
  • Patent number: 8310021
    Abstract: A method of manufacturing a neutron detector comprises forming a first wafer by at least forming an oxide layer on a substrate, forming an active semiconductor layer on the oxide layer, and forming an interconnect layer on the active semiconductor layer, forming at least one electrically conductive pathway extending from the interconnect layer through the active semiconductor layer and the oxide layer, forming a circuit transfer bond between the interconnect layer and a second wafer, removing the substrate of the first wafer after forming the circuit transfer bond, depositing a bond pad on the oxide layer after removing the substrate of the first wafer, wherein the bond pad is electrically connected to the electrically conductive pathway, depositing a barrier layer on the oxide layer after removing the substrate of the first wafer, and depositing a neutron conversion layer on the barrier layer after depositing the barrier layer.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: November 13, 2012
    Assignee: Honeywell International Inc.
    Inventors: Bradley J. Larsen, Todd A. Randazzo
  • Publication number: 20120228513
    Abstract: Neutron detection cells and corresponding methods of detecting charged particles that make efficient use of silicon area are set forth. Three types of circuit cells/arrays are described: state latching circuits, glitch generating cells, and charge loss circuits. An array of these cells, used in conjunction with a neutron conversion film, increases the area that is sensitive to a strike by a charged particle over that of an array of SRAM cells. The result is a neutron detection cell that uses less power, costs less, and is more suitable for mass production.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Paul S. Fechner, David O. Erstad, Todd A. Randazzo, Bradley J. Larsen
  • Publication number: 20120012957
    Abstract: A method of manufacturing a neutron detector comprises forming a first wafer by at least forming an oxide layer on a substrate, forming an active semiconductor layer on the oxide layer, and forming an interconnect layer on the active semiconductor layer, forming at least one electrically conductive pathway extending from the interconnect layer through the active semiconductor layer and the oxide layer, forming a circuit transfer bond between the interconnect layer and a second wafer, removing the substrate of the first wafer after forming the circuit transfer bond, depositing a bond pad on the oxide layer after removing the substrate of the first wafer, wherein the bond pad is electrically connected to the electrically conductive pathway, depositing a barrier layer on the oxide layer after removing the substrate of the first wafer, and depositing a neutron conversion layer on the barrier layer after depositing the barrier layer.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Bradley J. Larsen, Todd A. Randazzo
  • Patent number: 7948275
    Abstract: A fault tolerant driver circuit includes a data output driver that receives an enable input and that includes a transistor formed on an isolation well. A well bias circuit provides a first well bias to the isolation well. The well bias circuit includes voltage-controlled impedances that are controlled by a voltage of the data output line, the enable input and a supply voltage. The voltage-controlled impedances connect the first well bias alternatively to: a common conductor through a first impedance when the supply voltage is ON and the enable input is ON; and a second impedance when the supply voltage is on and enable is OFF.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: May 24, 2011
    Assignee: LSI Corporation
    Inventor: Todd Randazzo
  • Publication number: 20110084725
    Abstract: An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 14, 2011
    Inventors: Dharmesh Bhakta, Hong-Him Lim, Cheng-Gang Kong, Todd Randazzo
  • Patent number: 7876123
    Abstract: An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: January 25, 2011
    Assignee: LSI Corporation
    Inventors: Dharmesh Bhakta, Hong-Him Lim, Cheng-Gang Kong, Todd Randazzo
  • Publication number: 20100200918
    Abstract: A CMOS memory element comprising silicon-on-insulator MOSFET transistors is disclosed wherein at least one of the MOSFET transistors is configured such that the body of the transistor is not connected to a voltage source and is instead permitted to electrically float. Implementations of the disclosed memory element with increased immunity to errors caused by heavy ion radiation are also disclosed.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 12, 2010
    Applicant: Honeywell International Inc.
    Inventors: Bradley J. Larsen, Todd A. Randazzo, Cheisan Yue
  • Publication number: 20100006912
    Abstract: A complementary metal-oxide-semiconductor (CMOS) static random-access-memory (SRAM) element comprising a planar metal-insulator-metal (MIM) capacitor is disclosed, and the planar MIM capacitor is electrically connected to the transistors in the CMOS memory element to reduce the effects of charged particle radiation on the CMOS memory element. Methods for immunizing a CMOS SRAM element to the effects of charged particle radiation are also disclosed, along with methods for manufacturing CMOS SRAM including planar MIM capacitors as integrated circuits.
    Type: Application
    Filed: February 10, 2009
    Publication date: January 14, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Bradley J. Larsen, Todd A. Randazzo, Cheisan Yue
  • Publication number: 20090091349
    Abstract: An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
    Type: Application
    Filed: April 25, 2008
    Publication date: April 9, 2009
    Inventors: Dharmesh Bhakta, Hong-Him Lin, Cheng-Gang Kong, Todd Randazzo
  • Patent number: 7457090
    Abstract: A method and apparatus are provided for protecting elements of a receiver from overvoltages in a pseudo-differential signal having a true signal and a reference voltage. The method and apparatus limit the true signal to a protection voltage, which is correlated to the reference voltage, to produce a protected true signal. The protected true signal and the reference voltage are applied to inputs of the receiver.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 25, 2008
    Assignee: LSI Corporation
    Inventor: Todd A. Randazzo
  • Publication number: 20080170607
    Abstract: A fault tolerant driver circuit includes a data output driver that receives an enable input and that includes a transistor formed on an isolation well. A well bias circuit provides a first well bias to the isolation well. The well bias circuit includes voltage-controlled impedances that are controlled by a voltage of the data output line, the enable input and a supply voltage. The voltage-controlled impedances connect the first well bias alternatively to: a common conductor through a first impedance when the supply voltage is ON and the enable input is ON; and a second impedance when the supply voltage is on and enable is OFF.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 17, 2008
    Applicant: LSI Corporation
    Inventor: Todd Randazzo
  • Patent number: 7180360
    Abstract: A method and apparatus are provided for summing DC voltages, which employ at least one native transistor device to add a first DC input voltage to a second DC input voltage to produce a sum output.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 20, 2007
    Assignee: LSI Logic Corporation
    Inventor: Todd A. Randazzo
  • Patent number: 7176082
    Abstract: A process for forming a capacitive structure that includes an upper layer having a first capacitor electrode section therein. A capacitor dielectric layer is formed adjacent the upper layer. The capacitor dielectric layer covers the first capacitor electrode section. A second capacitor electrode layer is formed adjacent the capacitor dielectric layer. The second capacitor electrode layer includes a second capacitor electrode section that at least partially covers the first capacitor electrode section, and which has an edge portion that extends beyond the underlying first capacitor electrode section. The capacitor dielectric layer being disposed between the first capacitor electrode section and the second capacitor electrode section. An upper dielectric layer is formed adjacent the second capacitor electrode section.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: February 13, 2007
    Assignee: LSI Logic Corporation
    Inventors: Todd A. Randazzo, Kenneth P. Fuchs, John de Q. Walker
  • Publication number: 20060103999
    Abstract: A method and apparatus are provided for protecting elements of a receiver from overvoltages in a pseudo-differential signal having a true signal and a reference voltage. The method and apparatus limit the true signal to a protection voltage, which is correlated to the reference voltage, to produce a protected true signal. The protected true signal and the reference voltage are applied to inputs of the receiver.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Applicant: LSI Logic Corporation
    Inventor: Todd Randazzo
  • Publication number: 20060103447
    Abstract: A method and apparatus are provided for summing DC voltages, which employ at least one native transistor device to add a first DC input voltage to a second DC input voltage to produce a sum output.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Applicant: LSI Logic Corporation
    Inventor: Todd Randazzo
  • Publication number: 20050245226
    Abstract: A receiver circuit is provided on an integrated circuit. The receiver circuit includes first and second power supply terminals, a ground supply terminal, a resistive element coupled between the first and second power supply terminals, and a receiver biased between the second power supply terminal and the ground supply terminal. The receiver draws a bias current through the resistive element, which varies as a positive function with a voltage on the second power supply terminal. The voltage on the second power supply terminal varies as an inverse function of the bias current.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Applicant: LSI Logic Corporation
    Inventor: Todd Randazzo