Patents by Inventor Tyler Gomm

Tyler Gomm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140240013
    Abstract: Apparatuses and methods for compensating for differing power supply sensitivities of a circuit in a clock path. One such method includes altering signal timing of at least one of reference and feedback clock signals differently according to variations in power supply voltage to compensate for differences in delay power supply sensitivities of delays of a forward clock path and of a feedback clock path. Another example method includes providing an output clock signal in phase with an input clock signal and compensating for delay error between delays used in providing at least some of the delay of the output clock signal relative to the input clock signal by providing delays having power supply sensitivities resulting in a combined power supply sensitivity that is inverse to the delay error.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: MICRON TECHNOLOGY, INC
    Inventors: Yantao Ma, Tyler Gomm
  • Patent number: 8717835
    Abstract: Apparatuses and methods for compensating for differing power supply sensitivities of a circuit in a clock path. One such method includes altering signal timing of at least one of reference and feedback clock signals differently according to variations in power supply voltage to compensate for differences in delay power supply sensitivities of delays of a forward clock path and of a feedback clock path. Another example method includes providing an output clock signal in phase with an input clock signal and compensating for delay error between delays used in providing at least some of the delay of the output clock signal relative to the input clock signal by providing delays having power supply sensitivities resulting in a combined power supply sensitivity that is inverse to the delay error.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Yantao Ma, Tyler Gomm
  • Patent number: 8587354
    Abstract: Disclosed herein is a VDL/DLL architecture in which the power supply to the VDL, VccVDL, is regulated at least as a function of the entry point of the input signal (ClkIn) into the VDL. Specifically, VccVDL is regulated to be higher when the delay through the VDL is relatively small (when the entry point is toward the right (or minimum delay) edge of the VDL) and is reduced when the delay is relatively high (when the entry point is toward the left (or maximum delay) edge of the VDL). This provides for graduated delays across the stages of the VDL, but without the need to design each stage separately. Other benefits include a VDL/DLL design operable over a wider range of frequencies, and a reduced number of stages, including a reduced number of buffer stages. Moreover, when the disclosed technique is used, buffer stages may be dispensed with altogether.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 19, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Tyler Gomm, Kang Yong Kim, Jongtae Kwak
  • Patent number: 8519767
    Abstract: Circuits, integrated circuits, and methods are disclosed for bimodal disable circuits. In one such example method, a counter is maintained, with the counter indicating a logic level at which an output signal will be disabled during at least a portion of one of a plurality of disable cycles. The logic level indicated by the counter is transitioned. An input signal is provided as the output signal responsive to the enable signal indicating that the output signal is to be enabled, and the output signal is disabled at the logic level indicated by the counter responsive to the enable signal indicating that the output signal is to be disabled.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Eric Booth, Tyler Gomm, Kallol Mazumder, Scott E. Smith, John F. Schreck
  • Publication number: 20130163713
    Abstract: Circuits, integrated circuits, and methods are disclosed for bimodal disable circuits. In one such example method, a counter is maintained, with the counter indicating a logic level at which an output signal will be disabled during at least a portion of one of a plurality of disable cycles. The logic level indicated by the counter is transitioned. An input signal is provided as the output signal responsive to the enable signal indicating that the output signal is to be enabled, and the output signal is disabled at the logic level indicated by the counter responsive to the enable signal indicating that the output signal is to be disabled.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Eric Booth, Tyler Gomm, Kallol Mazumder, Scott E. Smith, John F. Schreck
  • Publication number: 20130051166
    Abstract: Apparatuses and methods for compensating for differing power supply sensitivities of a circuit in a clock path. One such method includes altering signal timing of at least one of reference and feedback clock signals differently according to variations in power supply voltage to compensate for differences in delay power supply sensitivities of delays of a forward clock path and of a feedback clock path. Another example method includes providing an output clock signal in phase with an input clock signal and compensating for delay error between delays used in providing at least some of the delay of the output clock signal relative to the input clock signal by providing delays having power supply sensitivities resulting in a combined power supply sensitivity that is inverse to the delay error.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Yantao Ma, Tyler Gomm
  • Patent number: 8368448
    Abstract: Locked loops, delay lines, delay circuits, and methods for delaying signals are disclosed. An example delay circuit includes a delay line including a plurality of delay stages, each delay stage having an input and further having a single inverting delay device, and also includes a two-phase exit tree coupled to the delay line and configured to provide first and second output clock signals responsive to clock signals from inputs of the delay stages of the plurality of delay stages. Another example delay circuit includes a delay line configured to provide a plurality of delayed clock signals, each of the delayed clock signals having a delay relative to a previous delayed clock signal equal to a delay of a single inverting delay device. The example delay circuit also includes a two-phase exit tree configured to provide first and second output clock signals responsive to the delayed clock signals.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 5, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Tyler Gomm
  • Patent number: 8339167
    Abstract: A system and method for trimming an unadjusted forward delay of a delay-locked loop (DLL) and trimming a duty cycle of first and second output clock signals provided by a DLL. For trimming an unadjusted forward delay, delay is added to one of a feedback clock signal path and an input clock signal path and a feedback clock signal is provided from the feedback clock signal path and an input clock signal is provided from the input clock signal path for phase comparison. For trimming a duty cycle of first and second output clock signals, one of a first delayed input clock signal and a second delayed input clock signal is delayed. The first and second delayed input clock signals are complementary. The delayed clock signal and the other clock signal are provided as the first and second output clock signals.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Tyler Gomm, Kang Yong Kim
  • Patent number: 8324946
    Abstract: Closed-loop duty-cycle correctors (DCCs), clock generators, memory devices, systems, and methods for generating an output clock signal having a particular duty cycle are provided, such as clock generators configured to generate an output clock signal synchronized with a received input clock signal having a predetermined duty cycle. Embodiments of clock generators include closed-loop duty cycle correctors that receive an already-controlled and corrected output signal. For example, DLL control circuitry and DCC control circuitry may each adjust a delay of a variable delay line. The DLL control circuitry adjusts the delay such that an output clock signal is synchronized with an input clock signal. The DCC control circuitry detects a duty cycle error in the output clock signal and adjusts the delay of the variable delay line to achieve a duty cycle corrected output signal.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Eric Becker, Eric Booth, Tyler Gomm
  • Publication number: 20120274376
    Abstract: Duty cycle corrector circuits that utilize differing unit delay elements in their delay lines in either a graduated or a stepped unit time delay arrangement are for synchronizing with a clock signal. These graduated or a stepped unit time delays allow reduction in the number of the fine unit delay elements of the delay lines by placing a fine delay element granularity at the most critical timings to sense and adjust for the portion of the clock signal time period that are high speed or critical.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventors: Tyler Gomm, Gary Johnson
  • Publication number: 20120223755
    Abstract: Locked loops, delay lines, delay circuits, and methods for delaying signals are disclosed. An example delay circuit includes a delay line including a plurality of delay stages, each delay stage having an input and further having a single inverting delay device, and also includes a two-phase exit tree coupled to the delay line and configured to provide first and second output clock signals responsive to clock signals from inputs of the delay stages of the plurality of delay stages. Another example delay circuit includes a delay line configured to provide a plurality of delayed clock signals, each of the delayed clock signals having a delay relative to a previous delayed clock signal equal to a delay of a single inverting delay device. The example delay circuit also includes a two-phase exit tree configured to provide first and second output clock signals responsive to the delayed clock signals.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 6, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Tyler Gomm
  • Publication number: 20120201090
    Abstract: A system and method are disclosed to accomplish power savings in an electronic device, such as a memory chip, by performing selective frequency locking and subsequent instantaneous frequency switching in the DLL (delay locked loop) used for clock synchronization in the electronic device. By locking the DLL at a slow clock frequency, the operational frequency may be substantially instantaneously switched to an integer-multiplied frequency of the initial locking frequency without losing the DLL lock point. This DLL locking methodology allows for faster frequency changes from higher (during normal operation) to lower (during a power saving mode) clock frequencies without resorting to gradual frequency slewing to conserve power and maintain DLL locking. Hence, a large power reduction may be accomplished substantially instantaneously without adding complexity to the system clock generator. Because of the rules governing abstracts, this abstract should not be used in construing the claims.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Greg A. Blodgett, Tyler Gomm
  • Patent number: 8217694
    Abstract: Clock synchronization and skew adjustment circuits that utilize differing unit delay elements in their delay lines in either a graduated or a stepped unit time delay arrangement are for synchronizing with a clock signal. These graduated or a stepped unit time delays allow reduction in the number of the fine unit delay elements of the delay lines by placing a fine delay element granularity at the most critical timings to sense and adjust for the portion of the clock signal time period that are high speed or critical.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Tyler Gomm, Gary Johnson
  • Patent number: 8164368
    Abstract: A system and method are disclosed to accomplish power savings in an electronic device, such as a memory chip, by performing selective frequency locking and subsequent instantaneous frequency switching in the DLL (delay locked loop) used for clock synchronization in the electronic device. By locking the DLL at a slow clock frequency, the operational frequency may be substantially instantaneously switched to an integer-multiplied frequency of the initial locking frequency without losing the DLL lock point. This DLL locking methodology allows for faster frequency changes from higher (during normal operation) to lower (during a power saving mode) clock frequencies without resorting to gradual frequency slewing to conserve power and maintain DLL locking. Hence, a large power reduction may be accomplished substantially instantaneously without adding complexity to the system clock generator. Because of the rules governing abstracts, this abstract should not be used in construing the claims.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: April 24, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Greg A. Blodgett, Tyler Gomm
  • Patent number: 8149034
    Abstract: Locked loops, delay lines and methods for delaying signals are disclosed, such as a delay line and delay lock loop using the delay line includes a series of delay stages, each of which consists of a single inverting delay device. The inputs and outputs of a selected stage are applied to a phase inverter that inverts one of the signals and applies it to a first input of a phase mixer with the same delay that the other signal is applied to a second input of the phase inverter. The delay of the signals from the selected delay element are delayed from each other by a coarse delay interval, and the phase mixer interpolates within the coarse delay interval by fine delay intervals. A phase detector compares the timing of a signal generated by the phase interpolator to the timing of a reference clock signal applied to the delay line to determine the selected delay stage and a phase interpolation value.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 3, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Tyler Gomm
  • Publication number: 20120051493
    Abstract: A circuit and method for generating an active output signal in response to detecting N events, which are represented by an event signal. A counter circuit is configured to increment and decrement through a sequence of values in response to the event signal. Detection logic coupled to the counter circuit is configured to detect at least first and second values of the sequence. The detection logic is further configured to generate the active output signal and switch to detecting the second value in response to detecting the first value and generate the active output signal and switch to detecting the first value in response to detecting the second value. The first and second values are separated by N counts.
    Type: Application
    Filed: November 10, 2011
    Publication date: March 1, 2012
    Inventors: Tyler Gomm, Kang Yong Kim
  • Publication number: 20110298504
    Abstract: Closed-loop duty-cycle correctors (DCCs), clock generators, memory devices, systems, and methods for generating an output clock signal having a particular duty cycle are provided, such as clock generators configured to generate an output clock signal synchronized with a received input clock signal having a predetermined duty cycle. Embodiments of clock generators include closed-loop duty cycle correctors that receive an already-controlled and corrected output signal. For example, DLL control circuitry and DCC control circuitry may each adjust a delay of a variable delay line. The DLL control circuitry adjusts the delay such that an output clock signal is synchronized with an input clock signal. The DCC control circuitry detects a duty cycle error in the output clock signal and adjusts the delay of the variable delay line to achieve a duty cycle corrected output signal.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Eric Becker, Eric Booth, Tyler Gomm
  • Patent number: 8073890
    Abstract: A circuit and method for generating an active output signal in response to detecting N events, which are represented by an event signal. A counter circuit is configured to increment and decrement through a sequence of values in response to the event signal. Detection logic coupled to the counter circuit is configured to detect at least first and second values of the sequence. The detection logic is further configured to generate the active output signal and switch to detecting the second value in response to detecting the first value and generate the active output signal and switch to detecting the first value in response to detecting the second value. The first and second values are separated by N counts.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Tyler Gomm, Kang Yong Kim
  • Publication number: 20110254604
    Abstract: Disclosed herein is a VDL/DLL architecture in which the power supply to the VDL, VccVDL, is regulated at least as a function of the entry point of the input signal (ClkIn) into the VDL. Specifically, VccVDL is regulated to be higher when the delay through the VDL is relatively small (when the entry point is toward the right (or minimum delay) edge of the VDL) and is reduced when the delay is relatively high (when the entry point is toward the left (or maximum delay) edge of the VDL). This provides for graduated delays across the stages of the VDL, but without the need to design each stage separately. Other benefits include a VDL/DLL design operable over a wider range of frequencies, and a reduced number of stages, including a reduced number of buffer stages. Moreover, when the disclosed technique is used, buffer stages may be dispensed with altogether.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Tyler Gomm, Kang Yong Kim, Jongtae Kwak
  • Patent number: 8018261
    Abstract: Closed-loop duty-cycle correctors (DCCs), clock generators, memory devices, systems, and methods for generating an output clock signal having a particular duty cycle are provided, such as clock generators configured to generate an output clock signal synchronized with a received input clock signal having a predetermined duty cycle. Embodiments of clock generators include closed-loop duty cycle correctors that receive an already-controlled and corrected output signal. For example, DLL control circuitry and DCC control circuitry may each adjust a delay of a variable delay line. The DLL control circuitry adjusts the delay such that an output clock signal is synchronized with an input clock signal. The DCC control circuitry detects a duty cycle error in the output clock signal and adjusts the delay of the variable delay line to achieve a duty cycle corrected output signal.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: September 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Eric Becker, Eric Booth, Tyler Gomm