Patents by Inventor Uygar E. Avci

Uygar E. Avci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980037
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: May 7, 2024
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung
  • Publication number: 20240113101
    Abstract: Techniques are provided herein to form a semiconductor device that has a capacitor structure integrated with the source or drain region of the semiconductor device. A given semiconductor device includes one or more semiconductor regions extending in a first direction between corresponding source or drain regions. A gate structure extends in a second direction over the one or more semiconductor regions. A capacitor structure is integrated with one of the source or drain regions of the integrated circuit such that a first electrode of the capacitor contacts the source or drain region and a second electrode of the capacitor contacts a conductive contact formed over the capacitor structure. The capacitor structure may include a ferroelectric capacitor having a ferroelectric layer between the electrodes.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Sourav Dutta, Nazila Haratipour, Vachan Kumar, Uygar E. Avci, Shriram Shivaraman, Sou-Chi Chang
  • Publication number: 20240114692
    Abstract: Inverted pillar capacitors that have a U-shaped insulating layer are oriented with the U-shaped opening of the insulating layer opening toward the surface of the substrate on which the inverted pillar capacitors are formed. The bottom electrodes of adjacent inverted pillar capacitors are isolated from each other by the insulating layers of the adjacent electrodes and the top electrode that fills the volume between the electrodes. By avoiding the need to isolate adjacent bottom electrodes by an isolation dielectric region, inverted pillar capacitors can provide for a greater capacitor density relative to non-inverted pillar capacitors. The insulating layer in inverted pillar capacitors can comprise a ferroelectric material or an antiferroelectric material. The inverted pillar capacitor can be used in memory circuits (e.g., DRAMs) or non-memory applications.
    Type: Application
    Filed: October 1, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Uygar E. Avci, Vachan Kumar, Hai Li, Yu-Ching Liao, Ian Alexander Young
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240114693
    Abstract: In one embodiment, an apparatus includes a first metal layer, a second metal layer above the first metal layer, a first metal via generally perpendicular with and connected to the first metal layer, a second metal via generally perpendicular with and connected to the second metal layer, a third metal via generally perpendicular with and extending through the first metal layer and the second metal layer, a ferroelectric material between the third metal via and the first metal layer and between the third metal via and the second metal layer, and a hard mask material around a portion of the first metal via above the first metal layer and the second metal layer, around a portion of the second metal via above the first metal layer and the second metal layer, and around a portion of the ferroelectric material above the first metal layer and the second metal layer.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Christopher M. Neumann, Brian Doyle, Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Uygar E. Avci, Eungnak Han, Manish Chandhok, Nafees Aminul Kabir, Gurpreet Singh
  • Publication number: 20240114697
    Abstract: Embodiments disclosed herein include a memory device. In an embodiment, the memory device comprises a first transistor, where the first transistor is an access transistor to write data. In an embodiment, the memory device further comprises a ferroelectric capacitor for storing data. In an embodiment, the memory device further comprises a second transistor, where the second transistor is a sense transistor to read the data stored on the ferroelectric capacitor.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Sourav DUTTA, Uygar E. AVCI
  • Publication number: 20240114694
    Abstract: Backside integrated circuit capacitor structures. In an example, a capacitor structure includes a layer of ferroelectric material between first and second electrodes. The first electrode can be connected to a transistor terminal by a backside contact that extends downward from a bottom surface of the transistor terminal to the first electrode. The transistor terminal can be, for instance, a source or drain region, and the backside contact can be self-aligned with the source or drain region. The second electrode can be connected to a backside interconnect feature. In some cases, the capacitor has a height that extends through at least one backside interconnect layer. In some cases, the capacitor is a multi-plate capacitor in which the second conductor is one of a plurality of plate line conductors arranged in a staircase structure. The capacitor structure may be, for example, part of a non-volatile memory device or the cache of a processor.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Sourav Dutta, Nazila Haratipour, Uygar E. Avci, Vachan Kumar, Christopher M. Neumann, Shriram Shivaraman, Sou-Chi Chang, Brian S. Doyle
  • Patent number: 11935956
    Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 19, 2024
    Assignee: Intel Corporation
    Inventors: Kevin P. O'Brien, Carl Naylor, Chelsey Dorow, Kirby Maxey, Tanay Gosavi, Ashish Verma Penumatcha, Shriram Shivaraman, Chia-Ching Lin, Sudarat Lee, Uygar E. Avci
  • Patent number: 11908950
    Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Kirby Maxey, Chelsey Dorow, Kevin P. O'Brien, Carl Naylor, Ashish Verma Penumatcha, Tanay Gosavi, Uygar E. Avci, Shriram Shivaraman
  • Publication number: 20240006481
    Abstract: Embodiments disclosed herein include transistors and methods of forming transistors. In an embodiment, the transistor comprises a source region, a drain region, a first semiconductor channel between the source region and the drain region, and a second semiconductor channel between the source region and the drain region over the first semiconductor channel. In an embodiment, an insulator is around the source region, the drain region, the first semiconductor channel, and the second semiconductor channel. In an embodiment, a first access hole is in the insulator adjacent to a first edge of the first semiconductor channel, and a second access hole is in the insulator adjacent to a second edge of the first semiconductor channel.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Sudarat LEE, Ande KITAMURA, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Chia-Ching LIN, Scott B. CLENDENNING, Uygar E. AVCI
  • Publication number: 20240008290
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques directed to creating back end of line 2D transistors that include a metal-ferroelectric-metal-insulator-semiconductor structure used as a memory cell. In embodiments, a combination wet etch and dry etch process may be used to form the 2D transistors. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Chia-Ching LIN, Shriram SHIVARAMAN, Kevin P. O'BRIEN, Ashish Verma PENUMATCHA, Chelsey DOROW, Kirby MAXEY, Carl H. NAYLOR, Sudarat LEE, Uygar E. AVCI, Sou-Chi CHANG
  • Publication number: 20240006484
    Abstract: Embodiments disclosed herein include transistors and methods of forming transistors. In an embodiment, the transistor comprises a channel with a first end and a second end opposite from the first end, a first spacer around the first end of the channel, a second spacer around the second end of the channel, and a gate stack over the channel, where the gate stack is between the first spacer and the second spacer. In an embodiment, the transistor may further comprise a first extension contacting the first end of the channel; and a second extension contacting the first end of the channel. In an embodiment, the transistor further comprises conductive layers over the first extension and the second extension outside of the first spacer and the second spacer.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Ashish Verma PENUMATCHA, Kevin P. O'BRIEN, Kirby MAXEY, Carl H. NAYLOR, Chelsey DOROW, Uygar E. AVCI, Matthew V. METZ, Sudarat LEE, Chia-Ching LIN, Sean T. MA
  • Publication number: 20240006521
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques directed to creating back end of line 2D transistors that may be used as access transistors for a memory cell. In embodiments, a combination wet etch and dry etch process may be used to form the 2D transistors. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Chia-Ching LIN, Shriram SHIVARAMAN, Kevin P. O'BRIEN, Ashish Verma PENUMATCHA, Chelsey DOROW, Kirby MAXEY, Carl H. NAYLOR, Sudarat LEE, Uygar E. AVCI
  • Publication number: 20230420364
    Abstract: A microelectronic device, a semiconductor package including the device, an IC device assembly including the package, and a method of making the device. The device includes a substrate; a first structure on the substrate, the first structure corresponding to a front end of line (FEOL) stack of the device and including a plurality of first transistors therein; and a second structure on the substrate, the second structure corresponding to a back end of line (BEOL) stack of the device, and including a plurality of second transistors therein, the plurality of second transistors including a transition metal dichalcogenide (TMD) material. The second transistors are part of a voltage regulation architecture to regulate voltage supply to the die.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Tristan A. Tronic, Ande Kitamura, Ashish Verma Penumatcha, Carl Hugo Naylor, Chelsey Dorow, Kirby Maxey, Scott B. Clendenning, Sudarat Lee, Uygar E. Avci
  • Publication number: 20230420510
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to creating a transistor structure by selectively growing a 2D TMD directly in a stacked channel configuration, such as a stacked nanowire or nanoribbon formation. In embodiments, this TMD growth may occur for all of the nanowires or nanoribbons in the transistor structure in one stage. Placement of a SAM on a plurality of dielectric layers within the transistor structure stack facilitates channel deposition and channel geometry in the stacked channel configuration. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING, Jiun-Ruey CHEN, Chia-Ching LIN, Carly ROGAN
  • Publication number: 20230420511
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques for a transistor structure that includes stacked nanoribbons as a single crystal or monolayer, such as a transition metal dichalcogenide (TMD) layer, grown on a silicon wafer using a seeding material. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING, Chia-Ching LIN, Carly ROGAN, Arnab SEN GUPTA
  • Publication number: 20230420514
    Abstract: Embodiments disclosed herein include transistor devices. In an embodiment, the transistor comprises a transition metal dichalcogenide (TMD) channel. In an embodiment, a two dimensional (2D) dielectric is over the TMD channel. In an embodiment, a gate metal is over the 2D dielectric.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Chelsey DOROW, Sudarat LEE, Kevin P. O'BRIEN, Ande KITAMURA, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Scott B. CLENDENNING, Uygar E. AVCI, Chia-Ching LIN
  • Publication number: 20230411390
    Abstract: In one embodiment, a transistor device includes a metal layer, a first dielectric layer comprising Hafnium and Oxygen on the metal layer, a channel layer comprising Tungsten and Selenium above the dielectric layer, a second dielectric layer comprising Hafnium and Oxygen on the channel layer, a source region comprising metal on a first end of the channel layer, a drain region comprising metal on a second end of the channel layer opposite the first end, and a metal contact on the second dielectric layer between the source regions and the drain region. In some embodiments, the transistor device may be included in a complementary metal-oxide semiconductor (CMOS) logic circuit in the back-end of an integrated circuit device, such as a processor or system-on-chip (SoC).
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Ande Kitamura, Ashish Verma Penumatcha, Carl Hugo Naylor, Kirby Maxey, Rachel A. Steinhardt, Scott B. Clendenning, Sudarat Lee, Uygar E. Avci, Chelsey Dorow
  • Publication number: 20230411443
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode. An insulator is over the first electrode. The insulator includes a first layer, and a second layer over the first layer. The first layer has a leakage current that is less than a leakage current of the second layer. The second layer has a dielectric constant that is greater than a dielectric constant of the first layer. A second electrode is over the insulator.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Kaan OGUZ, Chia-Ching LIN, Arnab SEN GUPTA, I-Cheng TUNG, Sou-Chi CHANG, Sudarat LEE, Matthew V. METZ, Uygar E. AVCI, Scott B. CLENDENNING, Ian A. YOUNG
  • Publication number: 20230411278
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode that includes a bottom region and a pair of vertical regions. First metal layers are outside the vertical regions and in contact with the vertical regions. An insulator is over the first electrode. A second electrode is over the insulator. A second metal layer is on a top surface of the second electrode.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, Arnab SEN GUPTA, I-Cheng TUNG, Matthew V. METZ, Sudarat LEE, Scott B. CLENDENNING, Uygar E. AVCI, Aaron J. WELSH