Patents by Inventor Uygar E. Avci

Uygar E. Avci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230097898
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to a transistor structure that includes a monolayer within an oxide material on a gate metal. There may be a stack of these structures. The monolayer, which may include a semiconductor material, in embodiments may include multiple monolayer sheets that are stacked on top of each other. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Chelsey DOROW, Carl H. NAYLOR, Uygar E. AVCI, Tristan A. TRONIC, Ashish Verma PENUMATCHA, Kirby MAXEY, Sudarat LEE, Scott B. CLENDENNING
  • Publication number: 20230101370
    Abstract: Thin film transistors having multi-layer gate dielectric structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is over the 2D material layer, the gate stack having a first side opposite a second side, and the gate stack having a gate electrode around a gate dielectric structure. A first gate spacer is on the 2D material layer and adjacent to the first side of the gate stack. A second gate spacer is on the 2D material layer and adjacent to the second side of the gate stack, wherein the first gate spacer and the second gate spacer are continuous with a layer of the gate dielectric structure. A first conductive structure is coupled to the 2D material layer and adjacent to the first gate spacer. A second conductive structure is coupled to the 2D material layer and adjacent to the second gate spacer.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sudarat LEE, Chelsey DOROW, Kevin P. O'BRIEN, Carl H. NAYLOR, Kirby MAXEY, Charles MOKHTARZADEH, Ashish Verma PENUMATCHA, Scott B. CLENDENNING, Uygar E. AVCI
  • Publication number: 20230100505
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such devices. In an embodiment, a transistor device comprises a first channel, wherein the first channel comprises a semiconductor material and a second channel above the first channel, wherein the second channel comprises the semiconductor material. In an embodiment, a first spacer is between the first channel and the second channel, and a second spacer is between the first channel and the second channel. In an embodiment, a first gate dielectric is over a surface of the first channel that faces the second channel, and a second gate dielectric is over a surface of the second channel that faces the first channel. In an embodiment, the first gate dielectric is physically separated from the second gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Sarah ATANASOV, Seung Hoon SUNG, Rahul RAMAMURTHY, I-Cheng TUNG, Uygar E. AVCI, Matthew V. METZ, Jack T. KAVALIEROS, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230097736
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to ferroelectric random access memory (FRAM) devices with an enhanced capacitor architecture. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Nazila HARATIPOUR, Uygar E. AVCI, Jason PECK, Nafees A. KABIR, Sarah ATANASOV
  • Publication number: 20230102900
    Abstract: A method of fabricating an integrated circuit structure comprises depositing an oxide insulator layer over a substrate having fins. A gate trench is formed within the oxide insulator layer with the fins extending above a surface of the oxide insulator layer within the gate trench. A semiconducting oxide material is deposited to conformally cover the oxide insulator layer, including on top surfaces and sidewalls of both the gate trench and the fins. A gate material is deposited to conformally cover the semiconducting oxide material, including on top surfaces and sidewalls of both the gate trench and the fins. An angled etch is performed to remove the gate material selective to the semiconducting oxide material from sidewalls of the gate trench, but not from sidewalls of the fins.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Nafees A. KABIR, Shriram SHIVARAMAN, Seung Hoon SUNG, Uygar E. AVCI
  • Publication number: 20230101604
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional (3D) memory devices with transition metal dichalcogenide (TMD) channels. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Tanay GOSAVI, Shriram SHIVARAMAN, Carl H. NAYLOR, Chelsey DOROW, Ian A. YOUNG, Nazila HARATIPOUR, Kevin P. O'BRIEN
  • Publication number: 20230098594
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related MIM capacitors that have a multiple trench structure to increase a charge density, where a dielectric of the MIM capacitor includes a perovskite-based material. In embodiments, a first electrically conductive layer may be coupled with a top metal layer of the MIM, and/or a second conductive layer may be coupled with a bottom metal layer of the MIM to reduce RC effects. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Kaan OGUZ, Sou-Chi CHANG, Arnab SEN GUPTA, I-Cheng TUNG, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Sudarat LEE
  • Publication number: 20230101760
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a first transistor on a first level, and a second transistor on a second level above the first level. In an embodiment, an insulating layer is between the first level and the second level, and a via passes through the insulating layer, and electrically couples the first transistor to the second transistor. In an embodiment, the first transistor and the second transistor comprise a first channel, and a second channel over the first channel. In an embodiment, the first second transistor further comprise a gate structure between the first channel and the second channel, a source contact on a first end of the first channel and the second channel, and a drain contact on a second end of the first channel and the second channel.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Uygar E. AVCI, Scott B. CLENDENNING, Chelsey DOROW, Sudarat LEE, Kirby MAXEY, Carl H. NAYLOR, Tristan A. TRONIC, Shriram SHIVARAMAN, Ashish Verma PENUMATCHA
  • Publication number: 20230097184
    Abstract: Embodiments of the present disclosure are directed to advanced integrated circuit structure fabrication and, in particular, integrated circuits with high dielectric constant (HiK) interfacial layering between an electrode and a ferroelectric (FE) or anti-ferroelectric (AFE) layer. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sarah ATANASOV, Nazila HARATIPOUR, Sou-Chi CHANG, Shriram SHIVARAMAN, Uygar E. AVCI
  • Publication number: 20230102695
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit (IC) structure fabrication and, in particular, to IC structures with graphene contacts. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING
  • Publication number: 20230101111
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional ferroelectric random access memory (3D FRAM) devices with a sense transistor coupled to a plurality of capacitors to (among other things) help improve signal levels and scaling. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Nazila HARATIPOUR, Uygar E. AVCI, Sarah ATANASOV, Jason PECK, Christopher M. NEUMANN
  • Publication number: 20230100952
    Abstract: Embodiments disclosed herein include transistors and transistor gate stacks. In an embodiment, a transistor gate stack comprises a semiconductor channel. In an embodiment, an interlayer (IL) is over the semiconductor channel. In an embodiment, the IL has a thickness of 1 nm or less and comprises zirconium. In an embodiment, a gate dielectric is over the IL, and a gate metal over the gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: I-Cheng TUNG, Ashish Verma PENUMATCHA, Seung Hoon SUNG, Sarah ATANASOV, Jack T. KAVALIEROS, Matther V. METZ, Uygar E. AVCI, Rahul RAMAMURTHY, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230102177
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to stacked MIM capacitors with multiple metal and dielectric layers that include insulating spacers on edges of one or more of the multiple layers to prevent unintended electrical coupling between metal layers during manufacturing. The dielectric layers may include Perovskite-based materials. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ
  • Publication number: 20230100860
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to memory devices utilizing dead-layer-free materials to reduce disturb effects. Other embodiments may be described or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sou-Chi CHANG, Nazila HARATIPOUR, Shriram SHIVARAMAN, Uygar E. AVCI, Sarah ATANASOV, Christopher M. NEUMANN
  • Publication number: 20230099724
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, to memory devices having ferroelectric capacitors coupled between intersecting bitlines and wordlines. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Elijah V. KARPOV, Sou-Chi CHANG, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20230096347
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a sheet that is a semiconductor. In an embodiment a length dimension of the sheet and a width dimension of the sheet are greater than a thickness dimension of the sheet. In an embodiment, a gate structure is around the sheet, and a first spacer is adjacent to a first end of the gate structure, and a second spacer adjacent to a second end of the gate structure. In an embodiment, a source contact is around the sheet and adjacent to the first spacer, and a drain contact is around the sheet and adjacent to the second spacer.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Tristan A. TRONIC, Anandi ROY, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Sudarat LEE, Chelsey DOROW, Scott B. CLENDENNING, Uygar E. AVCI
  • Publication number: 20230087668
    Abstract: Thin film transistors having strain-inducing structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is on the 2D material layer, the gate stack having a first side opposite a second side. A first gate spacer is on the 2D material layer and adjacent to the first side of the gate stack. A second gate spacer is on the 2D material layer and adjacent to the second side of the gate stack. The first gate spacer and the second gate spacer induce a strain on the 2D material layer. A first conductive structure is on the 2D material layer and adjacent to the first gate spacer. A second conductive structure is on the 2D material layer and adjacent to the second gate spacer.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Carl NAYLOR, Kirby MAXEY, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI
  • Publication number: 20230090093
    Abstract: Thin film transistors having semiconductor structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is above the 2D material layer, the gate stack having a first side opposite a second side. A semiconductor structure including germanium is included, the semiconductor structure laterally adjacent to and in contact with the 2D material layer adjacent the first side of the gate stack. A first conductive structure is adjacent the first side of the second gate stack, the first conductive structure over and in direct electrical contact with the semiconductor structure. The semiconductor structure is intervening between the first conductive structure and the 2D material layer. A second conductive structure is adjacent the second side of the second gate stack, the second conductive structure over and in direct electrical contact with the 2D material layer.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Chelsey DOROW, Tanay GOSAVI, Chia-Ching LIN, Carl NAYLOR, Nazila HARATIPOUR, Kevin P. O'BRIEN, Seung Hoon SUNG, Ian A. YOUNG, Urusa ALAAN
  • Publication number: 20230087624
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to increasing the capacitance density of MIM capacitors on dies or within packages. In particular, a MIM stack is disclosed that has multiple insulator layers between the metal, in order to increase the dielectric constant of the MIM stack. In particular, the first dielectric layer may include strontium, titanium, and oxygen and may be physically coupled with a second dielectric layer that may include barium, strontium, titanium, and oxygen. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Kaan OGUZ, I-Cheng TUNG, Chia-Ching LIN, Sou-Chi CHANG, Matthew V. METZ, Uygar E. AVCI, Arnab SEN GUPTA
  • Publication number: 20230088101
    Abstract: Thin film transistors having edge-modulated two-dimensional (2D) channel material are described. In an example, an integrated circuit structure includes a device layer including a two-dimensional (2D) material layer above a substrate, the 2D material layer including a center portion and first and second edge portions, the center portion consisting essentially of molybdenum or tungsten and of sulfur or selenium, and the first and second edge portions including molybdenum or tungsten and including tellurium.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING