Patents by Inventor Uygar E. Avci

Uygar E. Avci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230088101
    Abstract: Thin film transistors having edge-modulated two-dimensional (2D) channel material are described. In an example, an integrated circuit structure includes a device layer including a two-dimensional (2D) material layer above a substrate, the 2D material layer including a center portion and first and second edge portions, the center portion consisting essentially of molybdenum or tungsten and of sulfur or selenium, and the first and second edge portions including molybdenum or tungsten and including tellurium.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING
  • Publication number: 20230086499
    Abstract: Thin film transistors having fin structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a plurality of insulator fins above a substrate. A two-dimensional (2D) material layer is over the plurality of insulator fins. A gate dielectric layer is on the 2D material layer. A gate electrode is on the gate dielectric layer. A first conductive contact is on the 2D material layer adjacent to a first side of the gate electrode. A second conductive contact is on the 2D material layer adjacent to a second side of the gate electrode, the second side opposite the first side.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Kirby MAXEY, Ashish Verma PENUMATCHA, Kevin P. O'BRIEN, Chelsey DOROW, Uygar E. AVCI, Sudarat LEE, Carl NAYLOR, Tanay GOSAVI
  • Publication number: 20230058938
    Abstract: A pbit device, in one embodiment, includes a first field-effect transistor (FET) that includes a source region, a drain region, a source electrode on the source region, a drain electrode on the drain region, a channel region between the source and drain regions, a dielectric layer on a surface over the channel region, an electrode layer above the dielectric layer, and a ferroelectric (FE) material layer between the dielectric layer and the electrode layer. The pbit device also includes a second FET comprising a source electrode, a drain electrode, and a gate electrode. The drain electrode of the second FET is connected to the drain electrode of the first FET.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Dmitri Evgenievich Nikonov, Hai Li, Chia-Ching Lin, Raseong Kim, Tanay A. Gosavi, Ashish Verma Penumatcha, Uygar E. Avci, Marko Radosavljevic, Ian Alexander Young
  • Publication number: 20220415894
    Abstract: A method for fabricating floating body memory cells (FBCs), and the resultant FBCs where gates favoring different conductivity type regions are used is described. In one embodiment, a p type back gate with a thicker insulation is used with a thinner insulated n type front gate. Processing, which compensates for misalignment, which allows the different oxide and gate materials to be fabricated is described.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 29, 2022
    Inventors: Peter L.D. CHANG, Uygar E. AVCI, David KENCKE, Ibrahim BAN
  • Patent number: 11532439
    Abstract: Described is an ultra-dense ferroelectric memory. The memory is fabricated using a patterning method by that applies atomic layer deposition with selective dry and/or wet etch to increase memory density at a given via opening. A ferroelectric capacitor in one example comprises: a first structure (e.g., first electrode) comprising metal; a second structure (e.g., a second electrode) comprising metal; and a third structure comprising ferroelectric material, wherein the third structure is between and adjacent to the first and second structures, wherein a portion of the third structure is interdigitated with the first and second structures to increase surface area of the third structure. The increased surface area allows for higher memory density.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Nazila Haratipour, Seung Hoon Sung, Ashish Verma Penumatcha, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Patent number: 11522130
    Abstract: A routing structure is disclosed. A first wiring line coupled to a programming access device and a routing block driver and receiver enabling device and a second wiring line coupled to a programming access device and a routing block driver and receiver enabling device. An insulator-metal-transistor device that includes a top electrode, a middle electrode and a bottom electrode, coupled at the intersection of the first wiring line and the second wiring line.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 11502103
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gates with FE capacitors integrated therein. An example memory cell includes a transistor having a semiconductor channel material, a gate dielectric over the semiconductor material, a first conductor material over the gate dielectric, a FE material over the first conductor material, and a second conductor material over the FE material. The first and second conductor materials form, respectively, first and second capacitor electrodes of a capacitor, where the first and second capacitor electrodes are separated by the FE material (hence, a “FE capacitor”). Separating a FE material from a semiconductor channel material of a transistor with a layer of a gate dielectric and a layer of a first conductor material eliminates the FE-semiconductor interface that may cause endurance issues in some other FE memory cells.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Daniel H. Morris, Seiyon Kim, Uygar E. Avci, Ian A. Young
  • Patent number: 11495596
    Abstract: An integrated circuit structure comprises a substrate having a memory region of and an adjacent logic region. A first N type well (Nwell) is formed in the substrate for the memory region and a second Nwell formed in the substrate for the logic region. A plurality of memory transistors in the memory region and a plurality of logic transistors are in the logic region, wherein ones the memory transistors include a floating gate over a channel, and a source and a drain on opposite sides of the channel. A diode portion is formed over one of the source and the drain of at least one of the memory transistors to conduct charge to the floating-gate of the at least one of the memory transistors for state retention during power gating.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 8, 2022
    Assignee: Intel Corporation
    Inventors: Uygar E. Avci, Daniel H. Morris, Ian A. Young
  • Publication number: 20220328663
    Abstract: Disclosed herein are tunneling field effect transistors (TFETs), and related methods and computing devices. In some embodiments, a TFET may include: a first source/drain material having a p-type conductivity; a second source/drain material having an n-type conductivity; a channel material at least partially between the first source/drain material and the second source/drain material, wherein the channel material has a first side face and a second side face opposite the first side face; and a gate above the channel material, on the first side face, and on the second side face.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Ashish Agrawal, Benjamin Chu-Kung, Uygar E. Avci, Jack T. Kavalieros, Ian A. Young
  • Patent number: 11462540
    Abstract: A method for fabricating floating body memory cells (FBCs), and the resultant FBCs where gates favoring different conductivity type regions are used is described. In one embodiment, a p type back gate with a thicker insulation is used with a thinner insulated n type front gate. Processing, which compensates for misalignment, which allows the different oxide and gate materials to be fabricated is described.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Peter L. D. Chang, Uygar E. Avci, David Kencke, Ibrahim Ban
  • Patent number: 11450675
    Abstract: Described herein are one access transistor and one ferroelectric capacitor (1T-1FE-CAP) memory cells in diagonal arrangements, as well as corresponding methods and devices. When access transistors of memory cells are implemented as FinFETs, then, in a first diagonal arrangement, memory cells are arranged so that the BLs for the cells are diagonal with respect to the fins of the access transistors of the cells, while the WLs for the cells are perpendicular to the fins. In a second diagonal arrangement, memory cells are arranged so that the fins of the access transistors of the cells are diagonal with respect to the WLs for the cells, while the BLs for the cells are perpendicular to the WLs. Such diagonal arrangements may advantageously allow achieving high layout densities of 1T-1FE-CAP memory cells and may benefit from the re-use of front-end transistor process technology with relatively minor adaptations.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 11404562
    Abstract: Disclosed herein are tunneling field effect transistors (TFETs), and related methods and computing devices. In some embodiments, a TFET may include: a first source/drain material having a p-type conductivity; a second source/drain material having an n-type conductivity; a channel material at least partially between the first source/drain material and the second source/drain material, wherein the channel material has a first side face and a second side face opposite the first side face; and a gate above the channel material, on the first side face, and on the second side face.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Ashish Agrawal, Benjamin Chu-Kung, Uygar E. Avci, Jack T. Kavalieros, Ian A. Young
  • Publication number: 20220231035
    Abstract: Described herein are anti-ferroelectric (AFE) memory cells and corresponding methods and devices. For example, in some embodiments, an AFE memory cell disclosed herein includes a capacitor employing an AFE material between two capacitor electrodes. Applying a voltage to one electrode of such capacitor allows boosting the charge at the other electrode, where nonlinear behavior of the AFE material between the two electrodes may advantageously manifest itself in that, for a given voltage applied to the first electrode, a factor by which the charge is boosted at the second electrode of the capacitor may be substantially different for different values of charge at that electrode before the boost. Connecting the second capacitor electrode to a storage node of the memory cell may then allow boosting the charge on the storage node so that different logic states of the memory cell become more clearly resolvable, enabling increased retention times.
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Applicant: Intel Corporation
    Inventors: Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Publication number: 20220208778
    Abstract: A memory device comprises a series of alternating plate lines and an insulating material over a substrate. Two or more ferroelectric capacitors are through the series of alternating plate lines and an insulating material such that a first one of the ferroelectric capacitors is coupled to a first one of the plate lines and a second one of the ferroelectric capacitors is coupled to a second one of the plate lines. A plurality of substantially parallel bitlines is along a first direction over the two or more ferroelectric capacitors. A plurality of substantially parallel bitlines is along a first direction over the two or more ferroelectric capacitors. A plurality of substantially parallel wordlines is along a second direction orthogonal to the first direction over the two or more ferroelectric capacitors. An access transistor is located over and controls the two or more ferroelectric capacitors, the access transistor incorporating a first one of the bitlines and a first one of the wordlines.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: Nazila HARATIPOUR, Sou-Chi CHANG, Shriram SHIVARAMAN, Jason PECK, Uygar E. AVCI, Jack T. KAVALIEROS
  • Publication number: 20220208777
    Abstract: A memory device comprises an access transistor comprising a bitline and a wordline. A series of alternating plate lines and an insulating material is over the access transistor, the plate lines comprising an adhesion material on a top and a bottom thereof and a metal material in between the adhesion material, the metal material having one or more voids therein. Two or more ferroelectric capacitors is over the access transistor and through the series of alternating plate lines and an insulating material such that a first one of the ferroelectric capacitors is coupled to a first one of the plate lines and a second one of the ferroelectric capacitors is coupled to a second one of the plate lines, and wherein the two or more ferroelectric capacitors are each coupled to and controlled by the access transistor. A plurality of vias each land on a respective one of the plate lines, wherein the plurality of vias comprises a same metal material as the plate lines.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: Nazila HARATIPOUR, Sou-Chi CHANG, Shriram SHIVARAMAN, Uygar E. AVCI, Jack T. KAVALIEROS
  • Publication number: 20220199519
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode plate, and a first capacitor dielectric on the first electrode plate. The first capacitor dielectric is or includes a perovskite high-k dielectric material. A second electrode plate is on the first capacitor dielectric and has a portion over and parallel with the first electrode plate, and a second capacitor dielectric is on the second electrode plate. A third electrode plate is on the second capacitor dielectric and has a portion over and parallel with the second electrode plate.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ, Ashish Verma PENUMATCHA, Anandi ROY
  • Publication number: 20220199756
    Abstract: Metal insulator metal capacitors or backend transistors having epitaxial oxides are described. In a first example, metal-insulator-metal (MIM) capacitor includes a first electrode plate. A capacitor dielectric is on the first electrode plate. The capacitor dielectric includes a single crystalline oxide material. A second electrode plate is on the capacitor dielectric, the second electrode plate having a portion over and parallel with the first electrode plate. In a second example, a transistor includes a gate electrode above a substrate. A gate dielectric above and on the gate electrode. The gate dielectric includes a single crystalline oxide material. A channel material layer is on the single crystalline oxide material. Source or drain contacts are on the channel material layer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: I-Cheng TUNG, Kaan OGUZ, Chia-Ching LIN, Sou-Chi CHANG, Matthew V. METZ, Uygar E. AVCI
  • Publication number: 20220199635
    Abstract: Plate line architectures for 3D-Ferroelectric Random Access Memory (3D-FRAM) are described. In an example, a memory device includes a plurality of bitlines along a first direction and a plurality of wordlines along a second direction orthogonal to the first direction. An access transistor is at an intersection of a first one of the bitlines and a first one of the wordlines. A series of alternating plate lines and insulating material are fabricated over the access transistor. Two or more ferroelectric capacitors are over the access transistor and through the series of alternating plate lines and an insulating material such that a first one of the ferroelectric capacitors is coupled to a first one of the plate lines and a second one of the ferroelectric capacitors is coupled to a second one of the plate lines, and wherein the two or more ferroelectric capacitors are each coupled to and controlled by the access transistor.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Shriram SHIVARAMAN, Uygar E. AVCI, Sou-Chi CHANG, Nazila HARATIPOUR, Jack T. KAVALIEROS
  • Publication number: 20220199799
    Abstract: Thin film transistors having boron nitride integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a first gate stack above a substrate. A 2D channel material layer is above the first gate stack. A second gate stack is above the 2D channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack and in contact with the 2D channel material layer. A second conductive contact is adjacent the second side of the second gate stack and in contact with the 2D channel material layer. A hexagonal boron nitride (hBN) layer is included between the first gate stack and the 2D channel material layer, between the second gate stack and the 2D channel material layer, or both.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Kevin P. O'BRIEN, Chelsey DOROW, Carl NAYLOR, Kirby MAXEY, Tanay GOSAVI, Uygar E. AVCI, Ashish Verma PENUMATCHA, Chia-Ching LIN, Shriram SHIVARAMAN, Sudarat LEE
  • Publication number: 20220199758
    Abstract: Capacitors with a carbon-based electrode layer in contact with a ferroelectric insulator. The insulator may be a perovskite oxide. Low reactivity of the carbon-based electrode may improve stability of a ferroelectric capacitor. A carbon-based electrode layer may be predominantly carbon and have a low electrical resistivity. A carbon-based electrode layer may be the only layer of an electrode, or it may be a barrier between the insulator and another electrode layer. Both electrodes of a capacitor may include a carbon-based electrode layer, or a carbon-based electrode layer may be included in only one electrode.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Jason C. Retasket, Matthew V. Metz, I-Cheng Tung, Chia-Ching Lin, Sou-Chi Chang, Kaan Oguz, Uygar E. Avci, Edward Johnson