Patents by Inventor Victor Moroz

Victor Moroz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200184136
    Abstract: Disclosed is technology for placing cells in a circuit design layout to thereby improve the operation of place-and route equipment used for fabrication of an integrated circuit. The target cells are chosen from a cell library which includes descriptions for a plurality of cells, and information about dependency of each cell on hypothetical boundary conditions that can be imposed on the cell by any stress source originating in the vicinity of said cell in the layout. In order to select a cell for a target location in the layout, boundary conditions imposed on the target position by each of the cells neighboring the target position are determined. The system then selects an appropriate target cell in dependence upon the determined boundary conditions and the performance of the cell based on the boundary conditions imposed on the cell by the neighboring cells from the cell library.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Applicant: Synopsys, Inc.
    Inventor: Victor MOROZ
  • Patent number: 10679719
    Abstract: A method for improving an integrated circuit design which has transistors with nanowire channels comprises identifying a particular device having a particular transistor with a nanowire channel; and adding to the integrated circuit design circuitry which, when activated, repairs the particular transistor by self-heating. The method can comprise determining a memory cell that has a read current below a passing criteria, the memory cell having a transistor with a nanowire channel on a current path through which the read current flows; and applying a stress on the memory cell to repair the nanowire channel of the transistor in the memory cell on the current path. The determining step can include sensing read currents of memory cells in an array of memory cells; and determining one or more memory cells in the array of memory cells having read currents below the passing criteria, using the read currents sensed.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: June 9, 2020
    Assignee: SYNOPSYS, INC.
    Inventors: Jamil Kawa, Victor Moroz
  • Patent number: 10665320
    Abstract: A method for improving an integrated circuit design having transistors with nanowire channels comprises identifying a particular device having a particular transistor with a nanowire channel; and adding to the integrated circuit design a controller which, when activated, repairs the particular transistor by self-heating. A critical path in logic circuitry in the design can be determined including a particular device having a transistor with a nanowire channel. A repair circuit can be added to the design connected to the particular device, the repair circuit when activated applying a self-heating stress to the particular device. The repair circuit can include a selection block selecting among a plurality of signals as an input signal to the particular device. The plurality of signals include a repair signal and an operational logic signal, the repair signal being such as to apply the self-heating stress to the nanowire channel of the particular device when activated.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 26, 2020
    Assignee: Synopsys, Inc.
    Inventors: Jamil Kawa, Victor Moroz
  • Patent number: 10606968
    Abstract: Roughly described, a system for simulating a temporal process in a body includes a meshing module to impose a grid of nodes on the body, the grid having a uniform node spacing which is less than the quantum separation distance in silicon. A system of node equations is provided, including at least one node equation for each of a plurality of nodes of the grid. The node equations describe behavior of at least one physical quantity at that node through each time step of the process. An iterating module iterates through the time steps to determine values for physical quantities of the body at the end of the simulation period. Preferably one particle of the body is assigned to each node of the grid. For moving boundary processes, boundary movement can be represented simply by changing the particle type assigned to various nodes of the grid as the boundary advances.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 31, 2020
    Assignee: SYNOPSYS, INC.
    Inventors: Victor Moroz, Stephen Lee Smith
  • Publication number: 20200089841
    Abstract: A system for evaluating candidate materials for fabrication of integrated circuits includes a data processor coupled to a memory. Roughly described, the data processor is configured to: calculate and write to a first database, for each of a plurality of candidate materials, values for each property in a set of intermediate properties; calculate and write to a second database, values for a selected target property for various combinations of values for the intermediate properties and values describing candidate environments; and for a particular candidate material and a particular environment in combination, determine values for the intermediate properties for the candidate material by reference to the first database, and determine the value of the target property for the candidate material by querying the second database with, in combination, (1) the determined intermediate property values of the candidate material and (2) a value or values describing the particular environment.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: Synopsys, Inc.
    Inventors: Victor Moroz, Stephen Lee Smith, Yong-Seog Oh, Michael C. Shaughnessy-Culver, Jie Liu, Terry Sylvan Kam-Chiu Ma
  • Publication number: 20200089543
    Abstract: Roughly described, a task control system for managing multi-scale simulations receives a case/task list which identifies cases to be evaluated, at least one task for each of the cases, and dependencies among the tasks. A module allocates available processor cores to at least some of the tasks, constrained by the dependencies, and initiates execution of the tasks on allocated cores. A module, in response to completion of a particular one of the tasks, determines whether or not the result of the task warrants stopping or pruning tasks, and if so, then terminates or prunes one or more of the uncompleted tasks in the case/task list. A module also re-allocates available processor cores to pending not-yet-executing tasks in accordance with time required to complete the tasks and constrained by the dependencies, and initiates execution of the tasks on allocated cores.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Applicant: Synopsys, Inc.
    Inventors: Stephen Lee Smith, Michael C. Shaughnessy-Culver, Jie Liu, Victor Moroz, Yong-Seog Oh, Pratheep Balasingam, Terry Sylvan Kam-Chiu Ma
  • Patent number: 10586588
    Abstract: The independent claims of this patent signify a concise description of embodiments. Disclosed is technology for detrapping charges in gate dielectrics in P-channel pull-up transistors and N-channel pull-down transistors in a portion of a static random access memory (SRAM) array due to hot carrier injection (HCI), negative bias temperature instability (NBTI) and positive bias instability (PBTI). This Abstract is not intended to limit the scope of the claims.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: March 10, 2020
    Assignee: SYNOPSYS, INC.
    Inventors: Jamil Kawa, Thu V. Nguyen, Victor Moroz
  • Patent number: 10572615
    Abstract: Disclosed is technology for placing cells in a circuit design layout to thereby improve the operation of place- and route equipment used for fabrication of an integrated circuit. The target cells are chosen from a cell library which includes descriptions for a plurality of cells, and information about dependency of each cell on hypothetical boundary conditions that can be imposed on the cell by any stress source originating in the vicinity of said cell in the layout. In order to select a cell for a target location in the layout, boundary conditions imposed on the target position by each of the cells neighboring the target position are determined. The system then selects an appropriate target cell in dependence upon the determined boundary conditions and the performance of the cell based on the boundary conditions imposed on the cell by the neighboring cells from the cell library.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: February 25, 2020
    Assignee: SYNOPSYS, INC.
    Inventor: Victor Moroz
  • Publication number: 20200004922
    Abstract: Roughly described, a system for estimating an effective channel length of a 3D transistor having a gate length below 20 nm involves estimating an effective volume of the channel and a cross-sectional area of the channel, and estimating the effective channel length as the ratio of effective volume to cross-sectional area. Preferably the effective volume is estimated as the sum of the Voronoi volumes within containing boundaries of the channel, excluding those volumes having a dopant concentration above the source/drain dopant concentration at the carrier injection point. The containing boundaries can be identified using geometry data describing the transistor, particularly the data identifying inner surfaces of the gate dielectric. The estimated effective channel length can be used in TCAD level analysis of the transistor and calculating characteristics of the transistor as needed for circuit simulation.
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Applicant: Synopsys, Inc.
    Inventors: Victor Moroz, Yong-Seog Oh, Stephen Lee Smith, Michael C. Shaughnessy-Culver, Jie Liu
  • Publication number: 20200006578
    Abstract: Roughly described, a transistor is formed with a semiconductor 2D material layer wrapped conformally on at least part of a 3D structure. The 3D structure can be for example a ridge made of a dielectric material, or made of dielectric material alternating longitudinally with a semiconductive or conductive material. Alternatively the 3D structure can be tree-shaped. Other shapes are possible as well. Aspects also include methods for making such structures, as well as integrated circuit layouts defining such structures and methods for developing such layouts, a machine readable data storage medium storing design entries which include some which define such structures and layouts, methods for developing such design entries. Aspects further include corrugated wafers which are prepared as an intermediate product for use in fabricating integrated circuits having a semiconductor 2D material layer disposed conformally on a 3D structure.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Applicant: Synopsys, Inc.
    Inventors: Victor Moroz, Joanne Huang, Jamil Kawa
  • Patent number: 10516725
    Abstract: Roughly described, a technique for approximating a target property of a target material is provided. For each material in a plurality of anchor materials, a correspondence is provided between the value for a predetermined index property of the material and a value for the target property of the material, the values of all the index properties being different. A predictor function is identified in dependence upon the correspondence. A computer system determines a value for the target property for the target material in dependence upon the predictor function and a value for the index property for the target material. The determined value for the target property for the target material is reported to a user. The correspondence can be provided in a database on a non-transitory computer readable medium. The correspondence can be determined experimentally or analytically for each material in a plurality of anchor materials.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: December 24, 2019
    Assignee: SYNOPSYS, INC.
    Inventors: Victor Moroz, Stephen Lee Smith, Yong-Seog Oh, Jie Liu, Michael C. Shaughnessy-Culver, Terry Sylvan Kam-Chiu Ma
  • Patent number: 10504988
    Abstract: Devices and methods are described relating to capacitor energy storage devices that are small in size and have a high energy stored to volume ratio. The capacitor devices include 2D material electrodes. The capacitor devices offer very fine granularity with high stacking possibilities which may be used in super capacitors and capacitor arrays. The devices include interleaved laminations 2D material electrode layers, for example graphene, and dielectric layers, for example Hafnium Oxide. In an embodiment a capacitor device includes 10,000 layers of interleaved graphene separated by 9,999 layers of HfO. Odd layers of the graphene are electrically connected to a first terminal and even layers of graphene are electrically connected to a second terminal of the capacitor device.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: December 10, 2019
    Assignee: Synopsys, Inc.
    Inventors: Jamil Kawa, Victor Moroz
  • Publication number: 20190362042
    Abstract: An electronic design automation tool includes an application program interface API which includes a set of parameters and procedures supporting atomistic scale modeling of electronic materials. The procedures include a procedure to execute first principles calculations, a procedure to process results from the first principles calculations to extract device scale parameters from the results, a procedure to determine whether the extracted device scale parameters lie within a specified range. The procedures also include a procedure to parameterize an input parameter of a first principles procedure, including a procedure to execute a set of DFT computations across an input parameter space to characterize sensitivity of one of the intermediate parameter and the output parameter. Also included is a procedure to execute a second set of DFT computations across a refined input parameter space. The procedures include a procedure that utilizes DFT computations to parameterize the force field computations.
    Type: Application
    Filed: August 13, 2019
    Publication date: November 28, 2019
    Applicant: Synopsys, Inc.
    Inventors: Yong-Seog Oh, Michael C. Shaughnessy-culver, Stephen L. Smith, Jie Liu, Victor Moroz, Pratheep Balasingam, Terry Sylvan Kam-Chiu Ma
  • Patent number: 10489212
    Abstract: Roughly described, a task control system for managing multi-scale simulations receives a case/task list which identifies cases to be evaluated, at least one task for each of the cases, and dependencies among the tasks. A module allocates available processor cores to at least some of the tasks, constrained by the dependencies, and initiates execution of the tasks on allocated cores. A module, in response to completion of a particular one of the tasks, determines whether or not the result of the task warrants stopping or pruning tasks, and if so, then terminates or prunes one or more of the uncompleted tasks in the case/task list. A module also re-allocates available processor cores to pending not-yet-executing tasks in accordance with time required to complete the tasks and constrained by the dependencies, and initiates execution of the tasks on allocated cores.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: November 26, 2019
    Assignee: SYNOPSYS, INC.
    Inventors: Stephen Lee Smith, Michael C. Shaughnessy-Culver, Jie Liu, Victor Moroz, Yong-Seog Oh, Pratheep Balasingam, Terry Sylvan Kam-Chiu Ma
  • Publication number: 20190355437
    Abstract: A method for improving an integrated circuit design which has transistors with nanowire channels comprises identifying a particular device having a particular transistor with a nanowire channel; and adding to the integrated circuit design circuitry which, when activated, repairs the particular transistor by self-heating. The method can comprise determining a memory cell that has a read current below a passing criteria, the memory cell having a transistor with a nanowire channel on a current path through which the read current flows; and applying a stress on the memory cell to repair the nanowire channel of the transistor in the memory cell on the current path. The determining step can include sensing read currents of memory cells in an array of memory cells; and determining one or more memory cells in the array of memory cells having read currents below the passing criteria, using the read currents sensed.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Applicant: Synopsys, Inc.
    Inventors: JAMIL KAWA, VICTOR MOROZ
  • Patent number: 10483171
    Abstract: Methods and apparatuses relate to implanting a surface of a semiconductor substrate with dopants, making undoped semiconductor material directly on the surface implanted with the dopants, and making a transistor with a transistor channel in the undoped semiconductor material, such that the transistor channel of the transistor remains undoped throughout manufacture of the integrated circuit.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: November 19, 2019
    Assignee: SYNOPSYS, INC.
    Inventor: Victor Moroz
  • Patent number: 10482212
    Abstract: Disclosed is technology for evaluating the performance, power, area, and cost of a new or significantly modified IC fabrication process. A layout of a circuit design is provided, the circuit design including pins, transistors, and interconnects. The interconnects have at least two endpoints, each of the endpoints being either a terminal of a transistor or a pin in the circuit design. The locations for a plurality of transistor and interconnect endpoints in the layout are identified. A three-dimensional circuit representation is fabricated in accordance with the layout and the fabrication process. Parasitic resistance and capacitance values are estimated for pairs of interconnect endpoints which share an interconnect in the three-dimensional circuit representation.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: November 19, 2019
    Assignee: Synopsys, Inc.
    Inventors: Zudian Qin, Karim El Sayed, Victor Moroz, Xi-Wei Lin
  • Publication number: 20190348541
    Abstract: The independent claims of this patent signify a concise description of embodiments. Disclosed is technology, roughly described, in which a semiconductor structure includes a substrate supporting a column of at least one (and preferably more than one) horizontally-oriented nanosheet transistor, each having a respective channel segment of semiconductor crystalline nanosheet material (preferably silicon or a silicon alloy) sheathed by gate stack material, wherein the channel segments have a diamond cubic crystal structure and are oriented such that the {111} planes are horizontal. Also disclosed is a method for fabricating such a structure, and a corrugated substrate that may be formed as an intermediate product. This Abstract is not intended to limit the scope of the claims.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 14, 2019
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, Ignacio Martin-Bragado
  • Publication number: 20190333600
    Abstract: A method for improving an integrated circuit design having transistors with nanowire channels comprises identifying a particular device having a particular transistor with a nanowire channel; and adding to the integrated circuit design a controller which, when activated, repairs the particular transistor by self-heating. A critical path in logic circuitry in the design can be determined including a particular device having a transistor with a nanowire channel. A repair circuit can be added to the design connected to the particular device, the repair circuit when activated applying a self-heating stress to the particular device. The repair circuit can include a selection block selecting among a plurality of signals as an input signal to the particular device. The plurality of signals include a repair signal and an operational logic signal, the repair signal being such as to apply the self-heating stress to the nanowire channel of the particular device when activated.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Applicant: Synopsys, Inc.
    Inventors: Jamil Kawa, Victor Moroz
  • Patent number: 10417373
    Abstract: Roughly described, a system for estimating an effective channel length of a 3D transistor having a gate length below 20 nm involves estimating an effective volume of the channel and a cross-sectional area of the channel, and estimating the effective channel length as the ratio of effective volume to cross-sectional area. Preferably the effective volume is estimated as the sum of the Voronoi volumes within containing boundaries of the channel, excluding those volumes having a dopant concentration above the source/drain dopant concentration at the carrier injection point. The containing boundaries can be identified using geometry data describing the transistor, particularly the data identifying inner surfaces of the gate dielectric. The estimated effective channel length can be used in TCAD level analysis of the transistor and calculating characteristics of the transistor as needed for circuit simulation.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 17, 2019
    Assignee: SYNOPSYS, INC.
    Inventors: Victor Moroz, Yong-Seog Oh, Stephen Lee Smith, Michael C. Shaughnessy-Culver, Jie Liu