Patents by Inventor Won Seok Cho

Won Seok Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7405450
    Abstract: Semiconductor devices that include a semiconductor substrate and a gate line are provided. The gate line is on the semiconductor substrate and includes a gate insulation pattern and a gate electrode which are stacked on the substrate in the order named. A spacer is on a sidewall of the gate line. A conductive line pattern is on the gate line. The conductive line pattern is parallel with the gate line and is electrically connected to the gate electrode.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: July 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-Ho Lyu, Soon-moon Jung, Sung-bong Kim, Hoon Lim, Won-Seok Cho
  • Patent number: 7387919
    Abstract: In one embodiment, an intrinsic single crystalline semiconductor plug is formed to pass through a lower insulating layer using a selective epitaxial growth process employing a node impurity region as a seed layer, and a single crystalline semiconductor body pattern is formed on the lower insulating layer using the intrinsic single crystalline semiconductor plug as a seed layer. When the recessed single crystalline semiconductor plug is doped with impurities having the same conductivity type as the node impurity region, a peripheral impurity region is prevented from being counter-doped. As a result, it is possible to implement a high performance semiconductor device that requires a single crystalline thin film transistor as well as a node contact structure with ohmic contact.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 17, 2008
    Inventors: Kun-Ho Kwak, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Jong-Hyuk Kim
  • Publication number: 20080087932
    Abstract: A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
    Type: Application
    Filed: January 17, 2007
    Publication date: April 17, 2008
    Inventors: Yang-Soo Son, Young-Seop Rah, Won-Seok Cho, Soon-Moon Jung, Jae-Hoon Jang, Young-Chul Jang
  • Publication number: 20080085582
    Abstract: Provided is a NAND-type nonvolatile memory device and method of forming the same. In the method, a plurality of cell layers are stacked on a semiconductor substrate. Seed contact holes for forming a semiconductor pattern included in a stacked cell are formed at regular distance. At this time, the seed contact holes are arranged such that a bit line plug or a source line pattern is disposed at a center between one pair of seed contact holes adjacent to each other.
    Type: Application
    Filed: January 10, 2007
    Publication date: April 10, 2008
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Publication number: 20080067517
    Abstract: A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
    Type: Application
    Filed: January 19, 2007
    Publication date: March 20, 2008
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Yang-Soo Son, Min-Sung Song
  • Publication number: 20080067573
    Abstract: A stacked memory includes at least two semiconductor layers each including a memory cell array. A transistor is formed in a peripheral circuit region of an uppermost semiconductor layer of the at least two semiconductor layers. The transistor is used to operate the memory cell array.
    Type: Application
    Filed: February 22, 2007
    Publication date: March 20, 2008
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Hoo-Sung Cho, Jong-Hyuk Kim
  • Patent number: 7312110
    Abstract: Methods of fabricating semiconductor devices are provided. An interlayer insulating layer is provided on a single crystalline semiconductor substrate. A single crystalline semiconductor plug is provided that extends through the interlayer insulating layer and a molding layer pattern is provided on the semiconductor substrate and the single crystalline semiconductor plug. The molding layer pattern defines an opening therein that at least partially exposes a portion of the single crystalline semiconductor plug. A single crystalline semiconductor epitaxial pattern is provided on the exposed portion of single crystalline semiconductor plug using a selective epitaxial growth technique that uses the exposed portion of the single crystalline semiconductor plug as a seed layer. A single crystalline semiconductor region is provided in the opening. The single crystalline semiconductor region includes at least a portion of the single crystalline semiconductor epitaxial pattern.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: December 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kun-Ho Kwak, Sung-Jin Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Hoon Lim, Jong-Hyuk Kim, Myang-Sik Han, Byung-Jun Hwang
  • Patent number: 7312144
    Abstract: An interconnection structure is provided by forming a first damascene interconnect structure that directly connects a first active area in a substrate, a first conductive line on the substrate and/or a first electrode on the substrate with a second active area in the substrate, a second conductive line on the substrate and/or a second electrode on the substrate. A second damascene interconnect structure may directly connect the first active area, the first conductive line and/or the first electrode to the second active area, the second conductive line and/or the second electrode.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: December 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-Seok Cho, Soon-Moon Jung, Sung-Bong Kim, Hyung-Shin Kwon
  • Publication number: 20070241335
    Abstract: Methods of fabricating a semiconductor integrated circuit having thin film transistors using an SEG technique are provided. The methods include forming an inter-layer insulating layer on a single-crystalline semiconductor substrate. A single-crystalline semiconductor plug extends through the inter-layer insulating layer, and a single-crystalline epitaxial semiconductor pattern is in contact with the single-crystalline semiconductor plug on the inter-layer insulating layer. The single-crystalline epitaxial semiconductor pattern is at least partially planarized to form a semiconductor body layer on the inter-layer insulating layer, and the semiconductor body layer is patterned to form a semiconductor body. As a result, the semiconductor body includes at least a portion of the single-crystalline epitaxial semiconductor pattern. Thus, the semiconductor body has an excellent single-crystalline structure. Semiconductor integrated circuits fabricated using the methods are also provided.
    Type: Application
    Filed: June 21, 2007
    Publication date: October 18, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kun-Ho KWAK, Jae-Hoon JANG, Soon-Moon JUNG, Won-Seok CHO, Hoon LIM, Sung-Jin KIM, Byung-Jun HWANG, Jong-Hyuk KIM
  • Patent number: 7276404
    Abstract: SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Jin Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Kun-Ho Kwak, Jong-Hyuk Kim, Jae-Joo Shim
  • Patent number: 7276421
    Abstract: Methods of forming a single crystal semiconductor thin film on an insulator and semiconductor devices fabricated thereby are provided. The methods include forming an interlayer insulating layer on a single crystal semiconductor layer. A single crystal semiconductor plug is formed to penetrate the interlayer insulating layer. A semiconductor oxide layer is formed within the single crystal semiconductor plug using an ion implantation technique and an annealing technique. As a result, the single crystal semiconductor plug is divided into a lower plug and an upper single crystal semiconductor plug with the semiconductor oxide layer being interposed therebetween. That is, the upper single crystal semiconductor plug is electrically insulated from the lower plug by the semiconductor oxide layer. A single crystal semiconductor pattern is formed to be in contact with the upper single crystal semiconductor plug and cover the interlayer insulating layer.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Hyuk Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Kun-Ho Kwak, Sung-Jin Kim, Jae-Joo Shim
  • Patent number: 7247528
    Abstract: Methods of fabricating a semiconductor integrated circuit having thin film transistors using an SEG technique are provided. The methods include forming an inter-layer insulating layer on a single-crystalline semiconductor substrate. A single-crystalline semiconductor plug extends through the inter-layer insulating layer, and a single-crystalline epitaxial semiconductor pattern is in contact with the single-crystalline semiconductor plug on the inter-layer insulating layer. The single-crystalline epitaxial semiconductor pattern is at least partially planarized to form a semiconductor body layer on the inter-layer insulating layer, and the semiconductor body layer is patterned to form a semiconductor body. As a result, the semiconductor body includes at least a portion of the single-crystalline epitaxial semiconductor pattern. Thus, the semiconductor body has an excellent single-crystalline structure. Semiconductor integrated circuits fabricated using the methods are also provided.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: July 24, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kun-Ho Kwak, Jae-Hoon Jang, Soon-Moon Jung, Won-Seok Cho, Hoon Lim, Sung-Jin Kim, Byung-Jun Hwang, Jong-Hyuk Kim
  • Publication number: 20070128789
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices that include a substrate and a device isolation layer in the substrate that defines an active region of the substrate are provided. The device isolation layer has a vertically protruding portion having a sidewall that extends vertically beyond a surface of the substrate. An epitaxial layer is provided on the surface of the substrate in the active region and extends onto the device isolation layer. The epitaxial layer is spaced apart from the sidewall of the vertically protruding portion of the device isolation layer. A gate pattern is provided on the epitaxial layer and source/drain regions are provided in the epitaxial layer at opposite sides of the gate pattern.
    Type: Application
    Filed: February 9, 2007
    Publication date: June 7, 2007
    Inventors: Hoon Lim, Soon-Moon Jung, Won-Seok Cho
  • Publication number: 20070087491
    Abstract: Disclosed is a method for fabricating a gate of a field effect transistor. The method comprises a) forming a field oxide layer on a silicon substrate and then applying a photoresist layer in order to define a gate, b) etching the silicon substrate using the photoresist layer as a mask, c) sequentially depositing a gate oxide layer and a gate polysilicon layer on an entire surface of the silicon substrate and defining the gate using the photoresist layer, d) etching the resulting silicon substrate using the photoresist layer as a mask to form the gate and forming an N? ion region by means of ion implantation, and e) depositing and etching back an oxide layer to form a sidewall oxide layer and forming an N+ ion region by means of ion implantation. Consequently, the gate is made by etching the silicon substrate. Thus, a length of the gate is reduced, so that it is possible not only to make a cell area smaller but also to prevent a short-channel effect.
    Type: Application
    Filed: December 15, 2006
    Publication date: April 19, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Chul Jang, Won-Seok Cho, Soon-Moon Jung
  • Patent number: 7193276
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices that include a substrate and a device isolation layer in the substrate that defines an active region of the substrate are provided. The device isolation layer has a vertically protruding portion having a sidewall that extends vertically beyond a surface of the substrate. An epitaxial layer is provided on the surface of the substrate in the active region and extends onto the device isolation layer. The epitaxial layer is spaced apart from the sidewall of the vertically protruding portion of the device isolation layer. A gate pattern is provided on the epitaxial layer and source/drain regions are provided in the epitaxial layer at opposite sides of the gate pattern.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: March 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoon Lim, Soon-Moon Jung, Won-Seok Cho
  • Publication number: 20070042554
    Abstract: SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
    Type: Application
    Filed: October 30, 2006
    Publication date: February 22, 2007
    Inventors: Sung-Jin Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Kun-Ho Kwak, Jong-Hyuk Kim, Jae-Joo Shim
  • Patent number: 7170133
    Abstract: A transistor and a method of fabricating the same: The transistor includes an isolation layer disposed in a semiconductor substrate to define an active region. A pair of source/drain regions is disposed in the active region, spaced apart from each other. A channel region is interposed between the pair of the source/drain regions. The active region has a mesa disposed across the channel region. The mesa extends to the source/drain regions. A gate electrode is disposed to cross the active region along the direction across the mesa.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 30, 2007
    Assignee: Samsung Electronics Co.
    Inventors: Young-Chul Jang, Won-Seok Cho, Soon-Moon Jung
  • Patent number: 7135746
    Abstract: SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: November 14, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Jin Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Kun-Ho Kwak, Jong-Hyuk Kim, Jae-Joo Shim
  • Publication number: 20060237725
    Abstract: Semiconductor devices having thin film transistors (TFTs) and methods of fabricating the same are provided. The semiconductor devices include a semiconductor substrate and a lower interlayer insulating layer disposed on the semiconductor substrate. A lower semiconductor body disposed on or in the lower interlayer insulating layer. A lower TFT includes a lower source region and a lower drain region, which are disposed in the lower semiconductor body, and a lower gate electrode, which covers and crosses at least portions of at least two surfaces of the lower semiconductor body disposed between the lower source and drain regions.
    Type: Application
    Filed: February 28, 2006
    Publication date: October 26, 2006
    Inventors: Jae-Hun Jeong, Soon-Moon Jung, Hoon Lim, Won-Seok Cho, Jin-Ho Kim, Chang-Min Hong, Jong-Hyuk Kim, Kun-Ho Kwak
  • Publication number: 20060115944
    Abstract: In one embodiment, an intrinsic single crystalline semiconductor plug is formed to pass through a lower insulating layer using a selective epitaxial growth process employing a node impurity region as a seed layer, and a single crystalline semiconductor body pattern is formed on the lower insulating layer using the intrinsic single crystalline semiconductor plug as a seed layer. When the recessed single crystalline semiconductor plug is doped with impurities having the same conductivity type as the node impurity region, a peripheral impurity region is prevented from being counter-doped. As a result, it is possible to implement a high performance semiconductor device that requires a single crystalline thin film transistor as well as a node contact structure with ohmic contact.
    Type: Application
    Filed: November 16, 2005
    Publication date: June 1, 2006
    Inventors: Kun-Ho Kwak, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Jong-Hyuk Kim