Patents by Inventor Yuichi Tanaka

Yuichi Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9023195
    Abstract: A process for hydrotreating a naphtha fraction that includes a step of estimating the difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature, based on the reaction temperature of the Fischer-Tropsch synthesis reaction and the ratio of the flow rate of the treated naphtha fraction returned to the naphtha fraction hydrotreating step relative to the flow rate of the treated naphtha fraction discharged from the naphtha fraction hydrotreating step, a step of measuring the difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature, and a step of adjusting the reaction temperature of the naphtha fraction hydrotreating step so that the measured difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature becomes substantially equal to the estimated difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 5, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9005336
    Abstract: To develop a means for effectively utilize terpene compounds contained in tree leaves, whereby branches and leaves cut in tree thinning and pruning can be effectively utilized as a resource. For this purpose, provided are a monoterpene component-rich essential oil containing 90% or more of monoterpene components; a method for producing the monoterpene component-rich essential oil which includes subjecting coniferous leaves to microwave steam distillation and collecting a distillate thus obtained; and a method for removing environmental pollutants which includes bringing the monoterpene component-rich essential oil into contact with atmosphere containing the environmental pollutants.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 14, 2015
    Assignee: S.T. Corporation
    Inventors: Toshihiko Kaneko, Yuichi Tanaka, Tatsuro Ohira, Naoyuki Matsui
  • Patent number: 8993642
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 31, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel & Sumikin Engineering Co., Ltd.
    Inventor: Yuichi Tanaka
  • Patent number: 8974660
    Abstract: There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 10, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Yasumasa Morita, Kenichi Kawazuishi
  • Patent number: 8951408
    Abstract: A method for starting-up a naphtha fraction hydrotreating reactor which subjects a naphtha fraction obtained in a fractionator by fractional distillation of hydrocarbon compounds produced by a Fischer-Tropsch synthesis reaction to hydrotreating, the method comprising: charging in advance an inactive hydrocarbon compound corresponding to the naphtha fraction into a vapor-liquid separator to which hydrogenated naphtha, which has been subjected to hydrotreating in the naphtha fraction hydrotreating reactor, is transferred; mixing the inactive hydrocarbon compound drawn from the vapor-liquid separator and the naphtha fractions being transferred from the fractionator to the naphtha fraction hydrotreating reactor, and supplying a mixture of the naphtha fractions and the inactive hydrocarbon compound to the naphtha fraction hydrotreating reactor.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 10, 2015
    Assignees: JX Nippon Oil & Energy Corporation, Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Hidekatsu Honda
  • Publication number: 20150004041
    Abstract: A method for manufacturing porous aluminum, comprising steps of: press-molding a powder mixture of aluminum powder and supporting powder under pressure of not lower than 200 MPa, the aluminum powder having a volume ratio of 5 to 30% with respect to a total volume of the powder mixture; sintering a press-molded body with heat treatment in an inert atmosphere within a temperature range of not lower than a melting point of the aluminum powder and lower than 700° C.; and removing the supporting powder from a sintered body. With this method, the porous aluminum having a high porosity and a uniform pore diameter, which is suitable for a current collector in a lithium-ion secondary battery and for a variety of filters, is readily manufactured.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 1, 2015
    Inventors: Yuichi Tanaka, Yoichi Kojima, Yukiou Honkawa
  • Publication number: 20140377142
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Marie IWAMA, Kazuhiko TASAKA, Yuichi TANAKA
  • Patent number: 8906969
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: December 9, 2014
    Assignees: Japan Oil, Gas, and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel & Sumikin Engineering Co., Ltd.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Publication number: 20140326642
    Abstract: The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 6, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20140241126
    Abstract: A sound source detection system for detecting a sound source (e.g., running sound of a vehicle) based on sound collected by microphones extracts characteristic amounts from the sound collected by the microphones, sets a plurality of classes according to the position of the sound source by a multi-class pattern recognition method (e.g., multi-class SVM) using the characteristic amounts, extracts characteristic amounts from sound collected by the microphones for detection of a sound source, determines a class to which the extracted characteristic amounts belong, from the preset plurality of classes, and estimates the sound source based on the class.
    Type: Application
    Filed: September 19, 2012
    Publication date: August 28, 2014
    Applicants: MEIJO UNIVERSITY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryuji Funayama, Jun Sato, Osami Yamamoto, Kensaku Asahi, Hideki Banno, Keiichi Yamada, Akira Ogawa, Yuichi Tanaka, Hiroyuki Hoshino
  • Publication number: 20140241532
    Abstract: A sound source detecting system that detects a predetermined sound source on the basis of sounds collected by sound collectors includes: a noise extracting unit that extracts a noise from signals of the collected sounds; and a noise suppressing unit that suppresses a signal component of the noise extracted by the noise extracting unit from the signals of the collected sounds. The sound source detecting unit detects a location of the predetermined sound source, such as an approaching vehicle, using information about the sounds having the signals of which the noise is suppressed.
    Type: Application
    Filed: September 19, 2012
    Publication date: August 28, 2014
    Applicants: MEIJO UNIVERSITY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun Sato, Ryuji Funayama, Tomoya Takatani, Osami Yamamoto, Kensaku Asahi, Hideki Banno, Keiichi Yamada, Akira Ogawa, Yuichi Tanaka, Hiroyuki Hoshino
  • Publication number: 20140193302
    Abstract: This invention provides a base material comprising a plastic-containing support and, on its surface, a hydrophilic layer comprising an ethylene glycol chain (an EG chain) composed of one or more ethylene glycol units, as well as a method for producing such base material. A polysiloxane-containing primer layer is provided on the support comprising a plastic material on its surface, and the EG chain is covalently bound to a polysiloxane side chain of the primer layer. Thus, a hydrophilic layer comprising the EG chain can be provided on the surface of the plastic-containing support.
    Type: Application
    Filed: April 16, 2012
    Publication date: July 10, 2014
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventors: Norihiko Ookouchi, Hirohito Ayame, Yuichi Tanaka, Hiroko Watanabe
  • Patent number: 8744615
    Abstract: A substrate processing system comprising a first detecting part configured to detect unprocessed wafers, and a second detecting part configured to detect processed wafers. The first detecting part is configured to detect whether the unprocessed wafers are respectively accommodated in respective accommodating portions of a container or not, and to detect accommodated conditions of the respective unprocessed wafers accommodated in the respective accommodating portions. The second detecting part is configured to collectively detect whether the processed wafers are respectively accommodated in the respective accommodating portions of the container.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 3, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Yuichi Tanaka
  • Patent number: 8734636
    Abstract: Provided is a method of manufacturing diesel fuel, including: fractionating in a first fractionator a synthetic oil obtained by Fisher-Tropsch synthesis into at least two fractions of a middle fraction, and a wax fraction containing a wax component heavier than the middle fraction; hydroisomerizing the middle fraction by bringing the middle fraction into contact with a hydroisomerizing catalyst to produce a hydroisomerized middle fraction; hydrocracking the wax fraction by bringing the wax fraction into contact with a hydrocracking catalyst to produce a wax decomposition compound; fractionating in a second fractionator a mixture of the hydroisomerized middle fraction and the hydrocracked wax fraction into at least two fractions including a kerosene fraction and a gas oil fraction; and mixing the at least two fractions at a predetermined blend ratio to produce a diesel fuel having a kinematic viscosity at 30° C. of 2.5 mm2/s or more and a pour point of ?7.5° C. or less.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: May 27, 2014
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Nippon Oil Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventor: Yuichi Tanaka
  • Publication number: 20140124411
    Abstract: The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Application
    Filed: March 26, 2012
    Publication date: May 8, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Nitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 8713923
    Abstract: An exhaust system for a motorcycle includes a plurality of exhaust pipes connected respectively to exhaust ports of cylinders of a multi-cylinder engine; a manifold portion connected to the exhaust pipes; and a muffler connected to a downstream side of the manifold portion, the manifold portion being disposed below the engine, wherein the manifold portion is disposed sideways of an oil pan disposed below the engine so as to overlap the oil pan when seen in a side view of the motorcycle, and the exhaust pipes are connected to the manifold portion from a front side of the motorcycle.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: May 6, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Morita, Yuichi Tanaka
  • Patent number: 8702969
    Abstract: A hydrocracking process that includes a wax fraction hydrocracking step of hydrocracking the wax fraction contained within a Fischer-Tropsch synthetic oil to obtain a hydrocracked product, a gas-liquid separation step of using a multi-stage gas-liquid separator to separate the hydrocracked product into a gas component, a heavy oil component and a light oil component, a specific component content estimation step of determining the flow rate ratio between the heavy oil component and the light oil component, and using this flow rate ratio to determine an estimated value for the content of a specific hydrocarbon component contained within the hydrocracked product, and a control step of controlling the operation of the wax fraction hydrocracking step on the basis of this estimated value, so that the content of the specific hydrocarbon component falls within a predetermined range.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 22, 2014
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 8685212
    Abstract: A start-up method of a fractionator which fractionally distills FT synthesized hydrocarbons produced by the Fischer-Tropsch synthesis reaction, the method includes: discharging light FT synthesized hydrocarbons which exist in a gaseous state in an FT reactor performing the Fischer-Tropsch synthesis reaction from the FT reactor to the outside; cooling down the light FT synthesized hydrocarbons discharged from the FT reactor for liquefaction; supplying the liquefied light FT synthesized hydrocarbons to the fractionator; and heating the light FT synthesized hydrocarbons and circulating the light FT synthesized hydrocarbons to the fractionator.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 1, 2014
    Assignees: JX Nippon Oil & Energy Corporation, Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Hidekatsu Honda
  • Publication number: 20140083907
    Abstract: The regenerated hydrocracking catalyst according to the present invention is a regenerated hydrocracking catalyst prepared by regenerating a used hydrocracking catalyst including: a catalyst support containing zeolite and an amorphous composite metal oxide having solid acidity; and at least one active metal supported by the catalyst support, selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrocracking catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of carbon atoms based on the entire mass of the catalyst.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 27, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20140088204
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 27, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Yuichi Tanaka