Apparatus Patents (Class 117/200)
  • Patent number: 8840723
    Abstract: An apparatus for manufacturing polycrystalline silicon whereby raw-material gas is supplied to one or more heated silicon seed rods provided vertically in a reactor so as to deposit the polycrystalline silicon on a surface of the silicon seed rod, having a seed rod holding member, made of conductive material, having a holding hole in which a lower end of the silicon seed rod is inserted, the holding hole having a horizontal cross-sectional shape with at least two corners, and the holding member having a screw hole extending from the outer surface of the seed rod holding member to at least the holding hole and formed at the location of at least two corners of the holding hole; and a fixing screw which fixes the silicon seed rod and is threaded through at least one of the screw holes.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshihide Endoh, Masayuki Tebakari, Toshiyuki Ishii, Masaaki Sakaguchi
  • Publication number: 20140245948
    Abstract: A graphoepitaxy template to align a self-assembled block polymer adapted to self-assemble into a 2-D array having parallel rows of discontinuous first domains extending parallel to a first axis, mutually spaced along an orthogonal second axis, and separated by a continuous second domain. The graphoepitaxy template has first and second substantially parallel side walls extending parallel to and defining the first axis and mutually spaced along the second axis to provide a compartment to hold at least one row of discontinuous first domains of the self-assembled block copolymer on the substrate between and parallel to the side walls, and separated therefrom by a continuous second domain. The compartment has a graphoepitaxial nucleation feature arranged to locate at least one of the discontinuous first domains at a specific position within the compartment. Methods for forming the graphoepitaxy template and its use for device lithography are also disclosed.
    Type: Application
    Filed: October 2, 2012
    Publication date: September 4, 2014
    Applicant: ASML Netherlands B.V.
    Inventors: Thanh Trung Nguyen, Jozef Maria Finders, Wilhelmus Sebastianus Marcus Maria Ketelaars, Sander Frederik Wuister, Eddy Cornelis Antonius Van Der Heijden, Hieronymus Johannus Christiaan Meessen, Roelof Koole, Emiel Peeters, Christianus Martinus Van Heesch, Aurelie Marie Andree Brizard, Henri Marie Joseph Boots, Tamara Druzhinina, Jessica Marggaretha De Ruiter
  • Patent number: 8795432
    Abstract: An apparatus for pulling a silicon single crystal, comprising: a crucible that stores a silicon melt; a heater that heats the crucible; a crucible driving unit for rotating and/or lifting up and down the crucible; a chamber that holds the crucible and the heater; and a magnetic field applying unit that is provided outside the chamber and applies a magnetic field to the chamber, wherein the magnetic field applying unit is formed along the outer peripheral surface of the chamber such that substantially concentric circle-shaped equi-strength lines of the magnetic field are formed about a center axis of the crucible.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: August 5, 2014
    Assignee: Sumco Corporation
    Inventor: Jun Furukawa
  • Patent number: 8790463
    Abstract: Disclosed is a hot wall type substrate processing apparatus, including a processing chamber which is to accommodate at least one product substrate therein; a heating member which is disposed outside of the processing chamber and which is to heat the product substrate; a processing gas supply system connected to the processing chamber; and an exhaust system, wherein with a member from which a Si film is exposed being disposed such as to be opposed to a surface on which selective growth is to be effected of the product substrate, an epitaxial film including Si is allowed to selectively grow on a Si surface of the product substrate.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: July 29, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Atsushi Moriya, Yasuhiro Inokuchi, Yasuo Kunii
  • Patent number: 8771416
    Abstract: A substrate processing apparatus comprises: a reaction chamber to process a substrate; a heating target object disposed in the reaction chamber to surround at least a region where the substrate is disposed, the heating target object having a cylindrical shape with a closed end; an insulator disposed between the reaction chamber and the heating target object to surround the heating target object, the insulator having a cylindrical shape with a closed end facing the closed end of the heating target object; an induction heating unit disposed outside the reaction chamber to surround at least the region where the substrate is disposed; a first gas supply system to supply at least a source gas into the reaction chamber; and a controller to control the first gas supply system so that the first gas supply system supplies at least the source gas into the reaction chamber for processing the substrate.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 8, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Shuhei Saido, Takatomo Yamaguchi, Kenji Shirako
  • Patent number: 8747554
    Abstract: A unibody, multi-piece crucible for use in for use in elemental purification, compounding, and growth of semi-conductor crystals, e.g., in the process of molecular beam epitaxy (MBE) for melting silicon and the like at high temperature. The crucible has an outer coating layer that fixedly joins the multi pieces making up the crucible. The invention also provides a method for making a unibody containing structure comprising pyrolytic boron nitride having a negative draft, which method obviates the need of complicated overhang structure of graphite mandrels or the removal of the graphite mandrels by burning at high temperatures.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 10, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Yuji Morikawa, Kazuo Kawasaki, Sun-joong Hwang, Marc Schaepkens
  • Patent number: 8741060
    Abstract: This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: June 3, 2014
    Assignee: AMG IdealCast Solar Corporation
    Inventors: James A. Cliber, Roger F. Clark, Nathan G. Stoddard, Paul Von Dollen
  • Patent number: 8734584
    Abstract: In accordance with one aspect, the present invention provides a method for providing polycrystalline films having a controlled microstructure as well as a crystallographic texture. The methods provide elongated grains or single-crystal islands of a specified crystallographic orientation. In particular, a method of processing a film on a substrate includes generating a textured film having crystal grains oriented predominantly in one preferred crystallographic orientation; and then generating a microstructure using sequential lateral solidification crystallization that provides a location-controlled growth of the grains orientated in the preferred crystallographic orientation.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 27, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. van der Wilt
  • Patent number: 8728238
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 20, 2014
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Patent number: 8728586
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 20, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Carl A. Sorensen, John M. White
  • Patent number: 8715416
    Abstract: A doping device includes a first dopant accommodating portion including an opening on an upper portion to accommodate a first dopant that is evaporated near a surface of a semiconductor melt; a second dopant accommodating portion including a dopant holder that holds a second dopant that is liquefied near the surface of the semiconductor melt while including a communicating hole for delivering the liquefied dopant downwardly, and a conduit tube provided on a lower portion of the dopant holder for delivering the liquefied dopant flowed from the communicating hole to the surface of the semiconductor melt; and a guide provided by a cylinder body of which a lower end is opened and an upper end is closed for guiding dopant gas generated by evaporation of the first dopant to the surface of the semiconductor melt.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 6, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota
  • Patent number: 8715415
    Abstract: Provided is a vitreous silica crucible for pulling silicon single crystals, which can melt a silicon raw material in a short time and improve production yield of silicon single crystals by temporal change of an opaque vitreous silica layer. The vitreous silica crucible includes an opaque vitreous silica layer(11) provided on an outer surface thereof and containing plural bubbles, and a transparent vitreous silica layer(12) provided on an inner surface and not containing bubbles substantially. The opaque vitreous silica layer(11) has a bubble diameter distribution in which the content of bubbles having a diameter of less than 40 ?m is 10% or more and less than 30%, the content of bubbles having a diameter of 40 ?m or more and less than 90 ?m is 40% or more and less than 80%, and the content of bubbles having a diameter equal to or more than 90 ?m is 10% or more and less than 30%.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Makiko Kodama, Hiroshi Kishi, Minoru Kanda
  • Patent number: 8702863
    Abstract: A method for the evaporative production of phenol-BPA adduct crystals in a crystallizer is provided. First, a supersaturated BPA solution is introduced into a crystallizer that includes a cylindrical vessel and a concentrically-disposed draft tube that defines an annular space between the vessel and tube. Next, the BPA solution is circulated through the draft tube and annular space while a coolant is uniformly distributed in the circulating flow by radially injecting a volatile hydrocarbon compound at between about 30% and 60% of a radial extent of the annular space of to form a BPA mixture. Phenol-BPA adduct crystals are produced in the vessel by evaporating the volatile hydrocarbon compound out of the BPA mixture. The method provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 22, 2014
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Patent number: 8696813
    Abstract: Leakage of silicon melt is monitored and touch of a seed crystal at the silicon melt is detected, and in addition, reinforcement of a vitreous silica crucible to be endurable during pulling for a long time and decrease of impurity concentration of a silicon single crystal can be expected. A method for manufacturing a silicon single crystal is provided.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 15, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Hideki Watanabe, Nobumitsu Takase
  • Patent number: 8696809
    Abstract: A manufacturing method of an epitaxial silicon wafer is provided. The epitaxial silicon wafer includes: a substrate cut out from a silicon monocrystal that has been manufactured, doped with nitrogen and pulled up in accordance with Czochralski method; and an epitaxial layer formed on the substrate. The manufacturing method includes: cleaning a surface of the substrate with fluorinated acid by spraying onto the surface of the substrate fluorinated acid vaporized by a bubbling tank of a substrate cleaning apparatus; and forming an epitaxial layer on the cleaned surface of the substrate.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 15, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Kazuaki Kozasa, Kosuke Miyoshi
  • Patent number: 8691013
    Abstract: A crystal puller for melting silicon and forming a single crystal ingot and a feed tool for shielding a portion of the crystal puller during charging of the crystal puller are disclosed herein. The crystal puller includes a crucible for containing molten silicon. The feed tool includes a cylinder and a plate. The cylinder has an inner surface and an annular ledge formed in a portion of the inner surface. The cylinder has a diameter at the annular ledge that is less than a diameter of the cylinder at the inner surface. The plate is positioned on the annular ledge and includes a first section separate from a second section. The first section and the second section are operable to move laterally with respect to each other. The plate has a central opening formed in at least one of the first section and the second section.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: April 8, 2014
    Assignee: MEMC Singapore Pte Ltd
    Inventors: Benjamin Michael Meyer, Hariprasad Sreedharamurthy, Steven Lawrence Kimbel
  • Patent number: 8663389
    Abstract: A method and apparatus for depositing III-V material is provided. The apparatus includes a reactor partially enclosed by a selectively permeable membrane 12. A means is provided for generating source vapors, such as a vapor-phase halide of a group III element (IUPAC group 13) within the reactor volume 10, and an additional means is also provided for introducing a vapor-phase hydride of a group V element (IUPAC group 15) into the volume 10. The reaction of the group III halide and the group V hydride on a temperature-controlled substrate 18 within the reactor volume 10 produces crystalline III-V material and hydrogen gas. The hydrogen is preferentially removed from the reactor through the selectively permeable membrane 12, thus avoiding pressure buildup and reaction imbalance. Other gases within the reactor are unable to pass through the selectively permeable membrane.
    Type: Grant
    Filed: May 21, 2011
    Date of Patent: March 4, 2014
    Inventor: Andrew Peter Clarke
  • Patent number: 8657956
    Abstract: Provided is a production method and a production apparatus using a method for producing a solid product by a reaction of gaseous raw materials with a plurality of components including a step of conducting the reaction using a reactor disposed in a vertical direction; a step of feeding the gaseous raw materials with a plurality of components from the upper part of the reactor; a step of, in the lower part of the reactor, forming a seal gas layer composed of a gas having a high density and fed continuously from the lower part of the reactor; a step of discharging an exhaust gas containing a by-product gas generated by the reaction and unreacted gaseous raw materials from somewhere in the upper part of the formed seal gas layer; and a step of accommodating a solid product in the seal gas layer of the lower part.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 25, 2014
    Assignee: JNC Corporation
    Inventors: Shuuichi Honda, Toru Tanaka, Satoshi Hayashida
  • Patent number: 8657957
    Abstract: A method of manufacturing a fused silica crucible by heating and melting a vitreous silica powder compact shaped into a mold using arc discharge of electrodes arranged around a rotation shaft of the mold, includes the steps of: arranging the electrodes in a ring shape, and setting a ratio W/R of a horizontal distance W between the electrode front end and the surface of the vitreous silica powder compact to a vitreous silica powder compact opening radius R, for at least a predetermined time during arc heating, to be in the range of 0.002 to 0.98.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 25, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Hiroshi Kishi, Masanori Fukui, Masaki Morikawa
  • Patent number: 8658118
    Abstract: An object of the present invention is to provide more inexpensive high purity crystalline silicon which can satisfy not only a quality required to a raw material of silicon for a solar cell but also a part of a quality required to silicon for an up-to-date semiconductor and a production process for the same and provide high purity silicon tetrachloride used for production of high purity crystalline silicon and a production process for the same. The high purity crystalline silicon of the present invention has a boron content of 0.015 ppmw or less and a zinc content of 50 to 1000 ppbw. The production process for high purity crystalline silicon according to the present invention is characterized by that a silicon tetrachloride gas and a zinc gas are supplied to a vertical reactor to react them at 800 to 1200° C.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 25, 2014
    Assignees: JNC Corporation, JX Nippon Mining & Metals Corporation, Toho Titanium Co., ltd.
    Inventors: Satoshi Hayashida, Wataru Kato
  • Patent number: 8652253
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: February 18, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Stefan Eichler, Thomas Bünger, Michael Butter, Rico Rühmann, Max Scheffer-Czygan
  • Patent number: 8652257
    Abstract: A melting furnace, mounted adjacent a growth furnace, comprises a receiving container for melting therein raw material in a particle or powder form falling in it from a feeder. The receiving container accommodates a set of slope-wise plates providing a distributed sliding of partially melted raw material particles over the surface of these plates and their complete melting while moving downward; eventually the melted raw material flows into the crucible of the growth furnace through a conveying tube extending slantingly from the bottom of the receiving container to the crucible through coaxial openings in housings of both furnaces. The rate of feeding is given solely by the feeder, and at continuous feeding the raw material flows continuously by gravity from the feeder to the crucible of the growth furnace, first in a solid state (powder, granules, pellets, etc.) and then in a liquid state.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 18, 2014
    Inventors: Lev George Eidelman, Vladimir Ilya Zheleznyak
  • Patent number: 8652256
    Abstract: A manufacturing apparatus of polycrystalline silicon products polycrystalline silicon by depositing on a surface of a silicon seed rod by supplying raw-material gas to the heated silicon seed rod provided vertically in a reactor, includes: an electrode which holds the silicon seed rod and is made of carbon; an electrode holder which holds the electrode, and cooled by coolant medium flowing therein, wherein the electrode includes: a seed rod holding member which holds the silicon seed rod; a heat cap which is provided between the seed rod holding member and the electrode holder; and a cap protector having a ring-like plate shape, which covers an upper surface of the heat cap, and in which a through hole penetrating the lower-end portion of the seed rod holding member is formed.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 18, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshihide Endoh, Masayuki Tebakari, Toshiyuki Ishii, Masaaki Sakaguchi
  • Patent number: 8647432
    Abstract: A method for making a large surface area silicon filament for production of bulk polysilicon by chemical vapor deposition (CVD) includes melting silicon and growing the filament from the melted silicon by an EFG method using a shaping die. The cross sectional shape of the silicon filament is constant over its axial length to within a tolerance of 10%. In embodiments, a plurality of identical and/or dissimilar filaments are grown simultaneously using a plurality of shaping dies. The filaments can be tubular. Filament cross sections can be annular and/or can include outwardly extending fins, with wall and/or fin thicknesses constant to within 10%. Filaments can be doped with at least one element from groups 3 and 5 of the Periodic Table. The filament can have a length equal to a length of a specified slim rod filament, and a total impedance not greater than the slim rod impedance.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 11, 2014
    Assignee: GTAT Corporation
    Inventors: Yuepeng Wan, Santhana Raghavan Parthasarathy, Carl Chartier, Adrian Servini, Chandra P Khattak
  • Patent number: 8641822
    Abstract: An improvement to a method and an apparatus for growing a monocrystalline silicon ingot from silicon melt according to the CZ process. The improvement performs defining an error between a target taper of a meniscus and a measured taper, and translating the taper error into a feedback adjustment to a pull-speed of the silicon ingot. The conventional control model for controlling the CZ process relies on linear control (PID) controlling a non-linear system of quadratic relationship defined in the time domain between the diameter and the pull-speed. The present invention transforms the quadratic relationship in the time domain between the diameter and the pull-speed into a simile, linear relationship in the length domain between a meniscus taper of the ingot and the pull-speed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 4, 2014
    Assignee: Sumco Phoenix Corporation
    Inventors: Benno Orschel, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Patent number: 8636845
    Abstract: Methods and compositions for depositing a metal containing film on a substrate are disclosed. A reactor and at least one substrate disposed in the reactor are provided. A metal containing precursor is provided and introduced into the reactor, which is maintained at a temperature of at least 100° C. A metal is deposited on to the substrate through a deposition process to form a thin film on the substrate.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: January 28, 2014
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Julien Gatineau, Kazutaka Yanagita, Shingo Okubo
  • Patent number: 8623139
    Abstract: An apparatus for producing polycrystalline silicon which heats a silicon seed rod in a reactor to which a raw material gas is supplied, and deposits polycrystalline silicon on the surface of the silicon seed rod, includes an electrode extending in a vertical direction to hold the silicon seed rod, an electrode holder having a cooling flow passage circulating a cooling medium formed therein, and inserted into a through-hole formed in a bottom plate of the reactor to hold the electrode, and an annular insulating material arranged between an inner peripheral surface of the through-hole and an outer peripheral surface of the electrode holder to electrically insulate the bottom plate and the electrode holder from each other.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 7, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshihide Endoh, Masayuki Tebakari, Toshiyuki Ishii, Masaaki Sakaguchi
  • Patent number: 8623138
    Abstract: A group-III nitride crystal growth method comprises the steps of: a) preparing a mixed molten liquid of an alkaline material and a substance at least containing a group-III metal; b) causing growth of a group-III nitride crystal from the mixed molten liquid prepared in the step a) and a substance at least containing nitrogen; and c) creating a state in which nitrogen can be introduced into the molten liquid prepared by the step a).
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: January 7, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Seiji Sarayama, Hisanori Yamane, Masahiko Shimada, Masafumi Kumano, Hirokazu Iwata, Takashi Araki
  • Patent number: 8617313
    Abstract: A system for preparing a semiconductor film, the system including: a laser source; optics to form a line beam, a stage to support a sample capable of translation; memory for storing a set of instructions, the instructions including irradiating a first region of the film with a first laser pulse to form a first molten zone, said first molten zone having a maximum width (Wmax) and a minimum width (Wmin), wherein the first molten zone crystallizes to form laterally grown crystals; laterally moving the film in the direction of lateral growth a distance greater than about one-half Wmax and less than Wmin; and irradiating a second region of the film with a second laser pulse to form a second molten zone, wherein the second molten zone crystallizes to form laterally grown crystals that are elongations of the crystals in the first region, wherein laser optics provide Wmax less than 2×Wmin.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. Van Der Wilt
  • Patent number: 8613802
    Abstract: Affords nitride semiconductor crystal manufacturing apparatuses that are durable and that are for manufacturing nitride semiconductor crystal in which the immixing of impurities from outside the crucible is kept under control, and makes methods for manufacturing such nitride semiconductor crystal, and the nitride semiconductor crystal itself, available. A nitride semiconductor crystal manufacturing apparatus (100) is furnished with a crucible (101), a heating unit (125), and a covering component (110). The crucible (101) is where, interiorly, source material (17) is disposed. The heating unit (125) is disposed about the outer periphery of the crucible (101), where it heats the crucible (101) interior. The covering component (110) is arranged in between the crucible (101) and the heating unit (125).
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: December 24, 2013
    Assignee: Sumitomo Electric Industies, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Patent number: 8609059
    Abstract: To provide a production method for a nitride crystal, where a nitride crystal can be prevented from precipitating in a portion other than on a seed crystal and the production efficiency of a gallium nitride single crystal grown on the seed crystal can be enhanced. In a method for producing a nitride crystal by an ammonothermal method in a vessel containing a mineralizer-containing solution, out of the surfaces of said vessel and a member provided in said vessel, at least a part of the portion coming into contact with said solution is constituted by a metal or alloy containing one or more atoms selected from the group consisting of tantalum (Ta), tungsten (W) and titanium (Ti), and has a surface roughness (Ra) of less than 1.80 ?m.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 17, 2013
    Assignees: Mitsubishi Chemical Corporation, Tohoku University, The Japan Steel Works, Ltd.
    Inventors: Yutaka Mikawa, Makiko Kiyomi, Yuji Kagamitani, Toru Ishiguro, Yoshihiko Yamamura
  • Publication number: 20130323534
    Abstract: There is provided a manufacturing method of a ferroelectric crystal film in which an orientation of a seed crystal film is transferred preferably and a film deposition rate is suitable for volume production. A seed crystal film is formed on a substrate in epitaxial growth by a sputtering method, an amorphous film including ferroelectric material is formed over the seed crystal film by a spin-coat coating method, the seed crystal film and the amorphous film are heated in an oxygen atmosphere for oxidation and crystallization of the amorphous film, and thereby a ferroelectric coated-and-sintered crystal film is formed.
    Type: Application
    Filed: November 30, 2012
    Publication date: December 5, 2013
    Applicants: SAE MAGNETICS (H.K.) LTD., YOUTEC CO., LTD.
    Inventors: Takeshi KIJIMA, Yuuji HONDA, Daisuke IITSUKA, Kenjirou HATA
  • Patent number: 8591993
    Abstract: An epitaxial wafer manufacturing apparatus including: a chamber; a gas introduction port provided in the chamber and configured to introduce a reaction gas into the chamber; a gas exhaust port provided in the chamber and configured to exhaust the reaction gas from inside the chamber; a rotating unit provided inside the chamber; a wafer holder provided in an upper portion of the rotating unit and configured to hold a wafer; and an annular flow-regulating wall being spaced from the rotating unit and the wafer holder, the annular flow-regulating surrounding the upper portion of the rotating unit and a upper portion of the wafer holder, and the annular flow-regulating expanding downward. The flow-regulating wall has an upper end being located above the wafer holder. The upper end has a smaller inner diameter than an outer periphery of the wafer holder. The flow-regulating wall has a lower end being located below an upper surface of the rotating unit.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Higashi, Masashi Aizawa
  • Patent number: 8591654
    Abstract: A device for manufacturing a SiC single crystal includes: a raw material gas introduction pipe; a raw material gas heat chamber having a raw material gas supply passage for heating the gas in the passage; a reaction chamber having a second sidewall, an inner surface of which contacts an outer surface of a first sidewall of the heat chamber, and having a bottom, on which a SiC single crystal substrate is arranged; and a discharge pipe in a hollow center of the raw material gas heat chamber. The supply passage is disposed between an outer surface of the discharge pipe and an inner surface of the first sidewall. The discharge pipe discharges a residual gas, which is not used for crystal growth of the SiC single crystal.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: November 26, 2013
    Assignee: DENSO CORPORATION
    Inventors: Yasuo Kitou, Jun Kojima
  • Patent number: 8580033
    Abstract: A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 12, 2013
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Helge Riemann, Joerg Fischer
  • Patent number: 8580036
    Abstract: The method and apparatus includes a vessel having a bottom and sidewalls arranged to house the material in a molten state. A temperature controlled horizontally oriented, cooling plate is movable into and out of the top of the molten material. When the cooling plate is lowered into the top of the melt, an ingot of solid silicon is solidified downwards.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: November 12, 2013
    Assignee: Elkem Solar AS
    Inventor: Kenneth Friestad
  • Patent number: 8568532
    Abstract: Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 29, 2013
    Assignees: NGK Insulators, Ltd.
    Inventors: Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka, Naoya Miyoshi
  • Patent number: 8562739
    Abstract: A silica glass crucible used for pulling up a silicon single crystal and made from natural silica a raw material is provided with a region within a certain range from the center of a bottom section of the crucible and up to 0.5 mm deep from an inner surface and which substantially does not include gas bubbles, wherein an average value of a concentration of Al included in a region within the certain range from the center of the bottom section of the crucible and up to 0.5 mm deep from the inner surface is 30 ppm or more and 150 ppm or less. In the case where the inner layer of the crucible bottom section is formed in this way, dents in the inner surface are prevented and the generation of gas bubbles is reduced.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 22, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Kazuhiro Harada, Satoshi Kudo
  • Patent number: 8562740
    Abstract: The present invention relates to an apparatus and method for purifying silicon using directional solidification. The apparatus can be used more than once for the directional solidification of silicon without failure. The apparatus and method of the present invention can be used to make silicon crystals for use in solar cells.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Silicor Materials Inc.
    Inventors: Scott Nichol, Dan Smith
  • Patent number: 8555674
    Abstract: A quartz glass crucible for silicon single crystal pulling operation that by a simple arrangement, attains prevention of any collapse onto the inside at a superior edge of straight trunk part; and a process for manufacturing the same. The quartz glass crucible for silicon single crystal pulling operation having a straight trunk part and a bottom part, is characterized in that at least the straight trunk part is provided with a gradient of fictive temperature so that the fictive temperature on the outermost side thereof is 25° C. or more lower than the fictive temperature on the innermost side thereof.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventor: Yasuo Ohama
  • Patent number: 8545628
    Abstract: The present invention relates to methods and apparatus that are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the methods relate to substantially preventing the formation of unwanted materials on an isolation valve fixture within a chemical vapor deposition (CVD) reactor. In particular, the invention provides apparatus and methods for limiting deposition/condensation of GaCl3 and reaction by-products on an isolation valve that is used in the system and method for forming a monocrystalline Group III-V semiconductor material by reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 1, 2013
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Patent number: 8545623
    Abstract: The present invention provides a method and apparatus for controlling the growth of a silicon ingot in which the diameter of the growing silicon ingot can be accurately measured. A camera captures an image of the interface ring between the growing silicon ingot and the silicon melt. An image processor extracts local intensity maxima from the captured image, which are then digitized into an image data which comprises attributes of the pixels forming the local intensity maxima. An analyzer statistically analyzes the image data to derive parameters of an equation statistically simulating the interface ring. A probabilistic filter conducts the statistical analysis on the equation in which the respective pixels are weighted by their weight factors. The weight factor functions to attenuate the effect of noises caused by pixels which do not represent the interface ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: October 1, 2013
    Assignees: Sumco Phoenix Corporation, Sumco Corporation
    Inventors: Benno Orschel, Keiichi Takanashi
  • Patent number: 8535441
    Abstract: A lid for a crystal growth chamber crucible is constructed by forming arcuate sector-shaped portions and coupling them in abutting relationship, for example by welding, to form an annular profile fabricated lid. The arcuate sector-shaped portions may be formed and removed from a lid fabrication blank with less waste than when unitary annular lids are formed and removed from a similarly sized fabrication blank. For example, the sector-shaped portions may be arrayed in an undulating pattern on the fabrication sheet.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 17, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton
  • Patent number: 8535442
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 17, 2013
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Patent number: 8518180
    Abstract: A silicon single crystal pull-up apparatus is used to pull up a doped silicon single crystal from a melt by means of the Czochralski process and includes a pull-up furnace, a sample chamber which is externally mounted on the pull-up furnace and houses a sublimable dopant, a shielding means for thermally isolating the interior of the pull-up furnace and the interior of the sample chamber, a sample tube which can be raised and lowered between the interior of the sample chamber and the interior of the pull-up furnace, and a raising and lowering means which is provided with guide rails on which the sample tube can slide and a wire mechanism by which the sample tube is raised and lowered along the guide rails.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: August 27, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota, Tomohiro Fukuda
  • Patent number: 8512470
    Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 20, 2013
    Assignee: China Crystal Technologies Co. Ltd
    Inventor: Meng Zhu
  • Patent number: 8506708
    Abstract: A silica glass crucible for pulling up a silicon single crystal including a wall part and a bottom part is provided with a natural silica glass layer which forms at least one part of a an inner surface of the bottom part, and a synthetic silica glass layer which forms at least an inner surface of the wall part, wherein a concentration of Ca included in the natural silica glass layer is 0.5 ppm or less.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Satoshi Kudo
  • Patent number: 8507368
    Abstract: High throughput systems and processes for recrystallizing thin film semiconductors that have been deposited at low temperatures on a substrate are provided. A thin film semiconductor workpiece is irradiated with a laser beam to melt and recrystallize target areas of the surface exposed to the laser beam. The laser beam is shaped into one or more pulses. The beam pulses have suitable dimensions and orientations to pattern the laser beam radiation so that the areas targeted by the beam have dimensions and orientations that are conductive to semiconductor recrystallization. The workpiece is mechanically translated along linear paths relative to the laser beam to process the entire surface of the workpiece at high speeds. Position sensitive triggering of a laser can be used to generate laser beam pulses to melt and recrystallize semiconductor material at precise locations on the surface of the workpiece while it is translated on a motorized stage.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: August 13, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8500905
    Abstract: Disclosed is a sapphire single crystal growing apparatus using the Kyropoulos method, and more particularly, is a Kyropoulos sapphire single crystal growing apparatus using an elliptic crucible, which can increase the recovery rate by the elliptic crucible and anisotropic heating.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 6, 2013
    Assignee: DK Aztec Co., Ltd.
    Inventor: Jong Kwan Park
  • Patent number: 8475592
    Abstract: A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: July 2, 2013
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Helge Riemann, Joerg Fischer