With Responsive Control Means Patents (Class 117/202)
  • Patent number: 8535442
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 17, 2013
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Publication number: 20130213295
    Abstract: An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus may further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Brian H. Mackintosh, Peter L. Kellerman, Dawei Sun
  • Patent number: 8506708
    Abstract: A silica glass crucible for pulling up a silicon single crystal including a wall part and a bottom part is provided with a natural silica glass layer which forms at least one part of a an inner surface of the bottom part, and a synthetic silica glass layer which forms at least an inner surface of the wall part, wherein a concentration of Ca included in the natural silica glass layer is 0.5 ppm or less.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Satoshi Kudo
  • Publication number: 20130152850
    Abstract: In a method for monitoring and controlling crystal growth during a crystal growing procedure, heights of a plurality of measuring points on a solid-liquid interface of a crystal material disposed in a crucible are measured, and at least one parameter of the crystal growing procedure is optimized based on the measured heights, so that the solid-liquid interface maintains a dome shape with a predetermined curvature during the crystal growing procedure.
    Type: Application
    Filed: July 23, 2012
    Publication date: June 20, 2013
    Inventors: Chia-Ying Hsieh, Chi-Hao Chang, Hsin-Hwa Hu
  • Patent number: 8460462
    Abstract: Silicon single crystals are grown from the melt by providing the melt in a crucible; imposing a horizontal magnetic field on the melt; directing a gas between the single crystal and a heat shield to a melt free surface, and controlling the gas to flow over a region of the melt free surface extending in a direction substantially perpendicular to the magnetic induction. A suitable apparatus has a crucible for holding the melt; a heat shield surrounding the silicon single crystal having a lower end which is connected to a bottom cover facing a melt free surface and a non-axisymmetric shape with respect to a crucible axis, such that gas which is directed between the crystal and the heat shield to the melt free surface is forced to flow over a region of the melt which extends substantially perpendicular to the magnetic induction.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: June 11, 2013
    Assignee: Siltronic AG
    Inventor: Piotr Filar
  • Publication number: 20130139749
    Abstract: A method for crystallizing a substance dissolved in a solvent, including the following steps: introducing a solvent volume containing the substance into a chamber having a preset temperature, humidity, and gas composition, adding a predetermined volume of a precipitant to the solvent volume containing the substance, allowing the solvent to evaporate while simultaneously observing structural changes in the solvent volume containing the substance and the precipitant by means of dynamic light scattering, detecting weight changes and determining the molarities, making an association with the location in the phase diagram on the basis of the DLS measurement and the results of the molarity determination, allowing a predetermined number of crystal nuclei to form by adding solvent or adding precipitant, putting the solvent volume containing the substance and the precipitant into a metastable state by adding solvent and/or protein solution or by allowing the concentration of the dissolved substance to decrease by allo
    Type: Application
    Filed: June 30, 2011
    Publication date: June 6, 2013
    Applicants: UNIVERSITAET HAMBURG, UNIVERSITAET ZU LUEBECK
    Inventors: Christian Betzel, Rolf Hilgenfeld, Dierk Hilterhaus, Thomas Klupsch, Peter Muehlig, Karsten Dierks, Arne Meyer
  • Publication number: 20130133567
    Abstract: An improved system based on the Czochralski process for continuous growth of a single crystal ingot comprises a low aspect ratio, large diameter, and substantially flat crucible, including an optional weir surrounding the crystal. The low aspect ratio crucible substantially eliminates convection currents and reduces oxygen content in a finished single crystal silicon ingot. A separate level controlled silicon pre-melting chamber provides a continuous source of molten silicon to the growth crucible advantageously eliminating the need for vertical travel and a crucible raising system during the crystal pulling process. A plurality of heaters beneath the crucible establish corresponding thermal zones across the melt. Thermal output of the heaters is individually controlled for providing an optimal thermal distribution across the melt and at the crystal/melt interface for improved crystal growth. Multiple crystal pulling chambers are provided for continuous processing and high throughput.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 30, 2013
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventor: MEMC Electronic Materials, Inc.
  • Patent number: 8435346
    Abstract: A phase modulation element according to the present invention has a first area having a first phase value based on a phase modulation unit having a predetermined size and a second area having a second phase value based on the phase modulation unit having the predetermined size, and each phase distribution is defined by a change in area shares of the first area and the second area depending on each position.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 7, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Publication number: 20130047913
    Abstract: A method and apparatus for forming a sheet wafer add material to a crucible having a feed area and a dump area, and melt the material to form a wafer growth area between the feed area and the dump area. The material is added to the feed area and removed through the dump area. The method and apparatus substantially simultaneously draw a plurality of sheet wafers from the growth area, and directly apply dopant to the melted material at the growth area. The dopant thus bypasses the feed area to dope at least a portion of the growth area.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: Max Era, Inc.
    Inventor: Brian Kernan
  • Patent number: 8377205
    Abstract: The present disclosure relates to an apparatus for producing silicon nanocrystals, which can minimize plasma diffusion by finely adjusting a plasma region created by an ICP coil. The apparatus includes a reactor having an ICP coil wound around an outer wall thereof and a tube inserted into the reactor, wherein a primary gas for forming silicon nanocrystals and a secondary gas for surface reaction of the silicon nanocrystals are separately supplied to the reactor through an inner side and an outer side of the tube, respectively.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: February 19, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Bo-Yun Jang, Chang-Hyun Ko, Jeong-Chul Lee, Joon-Soo Kim, Joo-Seok Park
  • Patent number: 8361223
    Abstract: Provided is a method for reliably and easily measuring a liquid level by selecting an optimal reflection method from among a plurality of reflection methods, depending on growing conditions of a pulled single crystal. The method comprises: setting a plurality of measuring methods having different ways of determining the liquid level; creating, in advance, information that associates with a gap between the outer peripheral face of the single crystal and a predetermined position located between a heat shield and the outer peripheral face of the single crystal; determining the gap in accordance with manufacturing conditions; selecting a measuring method associated to the determined gap, on the basis of the information; and measuring the liquid level of a melt surface in use of the selected measuring method.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 29, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Toshio Hayashida, Ayumi Kihara, Takuaki Takami
  • Patent number: 8349074
    Abstract: A method for detecting a diameter of a single crystal at the time of pulling the single crystal from a silicon melt contained in a crucible according to the Czochralski method, the method including at least: using two cameras placed equidistant from each other as a target diameter upon forming a straight-body portion of the single crystal and face both ends of the diameter of the single crystal in a growth point of the single crystal respectively, to separately capture both of the ends of the growth point of the single crystal from an outside of a furnace, the growth point being a contact point between the single crystal and a melt surface; and detecting the diameter of the single crystal on the basis of the captured images. As a result, diameter detection precision is improved.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: January 8, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroshi Ohtsuna, Atsushi Iwasaki
  • Patent number: 8349080
    Abstract: A micro-manipulator machine for harvesting and cryofreezing crystals for cryogenic storage and subsequent analysis includes a micropositioner mechanism for converting motions manually input to a position control knob to fractionally-scaled motions of a follower mechanism which includes a tool head support arm and tool head that releasably holds a filamentary polymer cryoloop for immersion into a liquid crystal growth media and extraction of a liquid drop containing a selected crystal from the media. A first automatic actuator mechanism orbits the tool head support arm, tool head, cryoloop, liquid drop and harvested crystal from a harvesting location to a retrieval location when the micropositioner input control arm has been moved manually away from the crystal harvesting location by the operator after extracting a crystal drop, and a second automatic actuator mechanism pivots the toll head into a flowing stream of a cryogenic gas to freeze the liquid drop and crystal.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: January 8, 2013
    Assignee: West Bond, Inc.
    Inventor: John C. Price
  • Patent number: 8317919
    Abstract: An improved system based on the Czochralski process for continuous growth of a single crystal ingot comprises a low aspect ratio, large diameter, and substantially flat crucible, including an optional weir surrounding the crystal. The low aspect ratio crucible substantially eliminates convection currents and reduces oxygen content in a finished single crystal silicon ingot. A separate level controlled silicon pre-melting chamber provides a continuous source of molten silicon to the growth crucible advantageously eliminating the need for vertical travel and a crucible raising system during the crystal pulling process. A plurality of heaters beneath the crucible establish corresponding thermal zones across the melt. Thermal output of the heaters is individually controlled for providing an optimal thermal distribution across the melt and at the crystal/melt interface for improved crystal growth. Multiple crystal pulling chambers are provided for continuous processing and high throughput.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 27, 2012
    Assignee: Solaicx, Inc.
    Inventor: David L Bender
  • Publication number: 20120260846
    Abstract: A method for forming a bulk crystal from precursors in the molten state, of solidification and growth around a seed of a material having a defined crystalline structure, includes subjecting the crystalline solid phase obtained at the end of the growth to a first controlled cooling step performed at a first higher cooling rate until a predetermined threshold temperature is reached, and to a subsequent controlled cooling step from the threshold temperature, performed at a second cooling rate lower than the first cooling rate.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Applicant: Consiglio Nazionale Delle Ricerche
    Inventors: Daniela PARISI, Stefano Veronesi, Mauro Tonelli
  • Patent number: 8268074
    Abstract: A method and a device for producing oriented solidified blocks made of semi-conductor material are provided. The device includes a crucible, in which melt is received, and has an insulation which surrounds the crucible at least from the top and from the side and which is arranged at a distance therefrom at least above the crucible, and at least one heating device which is arranged above the crucible. The region inside the insulation above the crucible is divided by an intermediate cover in a process chamber and a heating chamber is arranged thereabove, where at least one heating element is arranged.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: September 18, 2012
    Assignee: Rec Scan Wafer AS
    Inventor: Franz Hugo
  • Patent number: 8257675
    Abstract: An object of the present invention is to provide an artificial quartz member inhibited from suffering the decrease in transmittance in a laser light wavelength region which is caused by long-term irradiation with a laser light having a wavelength of 200 nm or shorter; and a process for producing the artificial quartz member. The invention provides an artificial quartz member for use as an optical element to be irradiated with a laser light having a wavelength of 200 nm or shorter, having an aluminum content of 200 ppb or lower.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: September 4, 2012
    Assignees: Tokyo Denpa Co., Ltd., Asahi Glass Company, Limited
    Inventors: Noriyuki Agata, Shinya Kikugawa, Yutaka Shimizu, Kazumi Yoshida, Masatoshi Nishimoto
  • Patent number: 8257496
    Abstract: A weighing system is provided for a continuous Czochralski process that accurately measures the weight of the crucible and melt during crystal growth to control the introduction of feedstock in order to keep the weight approximately constant. The system can measure the weight of the crucible while the crucible is rotating, and is insensitive to vibrations of the melt surface as well as variable torques on the crucible shaft induced by the rotation. The system also measures the weight of the crucible and its contents in order to control the amount of feedstock recharged after an ingot is withdrawn.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: September 4, 2012
    Assignee: Solaicx, Inc.
    Inventors: David L. Bender, Gary Janik, Roy P. Crawford, David E. A. Smith
  • Publication number: 20120186512
    Abstract: A method and apparatus for growing a semiconductor crystal include pulling the semiconductor crystal from melt at a pull speed and modulating the pull speed by combining a periodic pull speed with an average speed. The modulation of the pull speed allows in-situ determination of characteristic temperature gradients in the melt and in the crystal during crystal formation. The temperature gradients may be used to control relevant process parameters that affect morphological stability or intrinsic material properties in the finished crystal such as for instance the target pull speed of the crystal or the melt gap, which determines the thermal gradient in the crystal during growth.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Inventors: Benno Orschel, Andrzej Buczkowski, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Patent number: 8216371
    Abstract: A Czochralski single crystal manufacturing apparatus uses multiple heaters to improve the controllability of crystal diameter. The power supplied to the multiple heaters is controlled so as to bring the pulling up speed close to a predetermined speed set value, and so as to bring the heater temperatures close to predetermined target temperature values. The ratio of electrical power between the heaters is controlled to agree with a predetermined power ratio set value which varies according to the crystal pulling up length, and the heater temperatures change along with this change, which causes disturbance to the diameter control. To compensate for this, heater temperature changes along with the power ratio set value change are taken into account in advance in the temperature set values. Accordingly, along with change of the power ratio set value, the temperature set values change to values appropriate for the current power ratio set value.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: July 10, 2012
    Assignee: Sumco Techxiv Corporation
    Inventors: Tetsuhiro Iida, Shin Matsukuma
  • Patent number: 8216369
    Abstract: A physical vapor transport system includes a growth chamber charged with source material and a seed crystal in spaced relation, and at least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: July 10, 2012
    Assignee: II-VI Incorporated
    Inventors: Avinash K. Gupta, Edward Semenas, Ilya Zwieback, Donovan L. Barrett, Andrew E. Souzis
  • Patent number: 8216370
    Abstract: A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 10, 2012
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Thomas Richard Anthony, Stephen Daley Arthur, Lionel Monty Levinson, John William Lucek, Larry Burton Rowland, Suresh Shankarappa Vagarali
  • Publication number: 20120145068
    Abstract: An apparatus of producing a silicon single crystal including: an imaging device; a heat shield that has a circular opening; a first operation unit that operates the imaging device and takes a real image of the heat shield and a mirror image of the heat shield reflected on a surface of the silicon melt, measures a spacing between the real image and the mirror image, and calculates a position of a melt-surface; a second operating unit that operates the imaging device and takes an image of a bright-zone in the vicinity of the solid-liquid interface, and calculates a position of the melt-surface based on the image of the bright zone; and a controlling unit that refers a data of the position of the silicon melt obtained by the first operation unit and the second operation unit, and controls the position of the silicon melt.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: SUMCO CORPORATION
    Inventors: Keiichi TAKANASHI, Ken HAMADA
  • Publication number: 20120145071
    Abstract: Provides are a system of controlling a diameter of a single crystal ingot and a single crystal ingot growing apparatus including the same. The system of controlling a diameter of a single crystal ingot includes: a diameter measuring sensor measuring a diameter of a single crystal ingot; a Low-Pass Filter (LPF) removing short period noise from measured data from the diameter measuring sensor; and an Automatic Diameter Control (ADC) sensor controlling the diameter of the single crystal ingot through controlling of a pull speed by using data having the noise removed as current data.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 14, 2012
    Inventors: Young-Ho Hong, Se-Geun Ha, Yo-Han Jung
  • Patent number: 8197595
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Patent number: 8192544
    Abstract: Disclosed herein is an apparatus for manufacturing a polycrystalline silicon ingot for solar batteries having a door control device using a hinge. The apparatus includes a vacuum chamber, a crucible, a susceptor which surrounds the crucible, a heater which heats the crucible, and an insulation plate which is disposed below the susceptor and has an opening therein. The apparatus further includes a cooling plate which moves upwards through the opening of the insulation plate and comes into close contact with or approaches the lower end of the susceptor, a cooling plate moving unit which actuates the cooling plate, a temperature sensor which measures the temperature of the crucible, and a control unit which controls the temperature in the crucible and the cooling plate moving unit. Furthermore, a door is provided on the insulation plate to open or close the opening of the insulation plate. The hinge is provided between the door and the insulation plate.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: June 5, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Jong-Won Gil, Sang-Jin Moon, Won-Wook So
  • Patent number: 8163086
    Abstract: A physical vapor transport growth technique for silicon carbide is disclosed. The method includes the steps of introducing a silicon carbide powder and a silicon carbide seed crystal into a physical vapor transport growth system, separately introducing a heated silicon-halogen gas composition into the system in an amount that is less than the stoichiometric amount of the silicon carbide source powder so that the silicon carbide source powder remains the stoichiometric dominant source for crystal growth, and heating the source powder, the gas composition, and the seed crystal in a manner that encourages physical vapor transport of both the powder species and the introduced silicon-halogen species to the seed crystal to promote bulk growth on the seed crystal.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: April 24, 2012
    Assignee: Cree, Inc.
    Inventors: Stephan G. Mueller, Hudson M. Hobgood, Valeri F. Tsvetkov
  • Publication number: 20120067272
    Abstract: According to one exemplary embodiment, a single crystal pulling-up apparatus of pulling-up silicon single crystals by a Czochralski method, is provided with: a neck diameter measuring portion which measures a diameter of a grown neck portion; a first compensation portion which outputs a first compensated pulling-up speed for the seed crystals based on a difference between a measured value of the diameter of the neck portion and a target value of the neck portion diameter previously stored; a second compensation portion which outputs a second pulling-up speed while limiting an upper limit of the first pulling-up speed to a first limit value; and a crucible rotation number compensation portion which lowers the number of a rotation of a crucible at least in a period where the upper limit of the first pulling-up speed is limited to the first limit value.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 22, 2012
    Applicant: Covalent Materials Corporation
    Inventors: Hironori Banba, Hiromichi Isogai, Yoshiaki Abe, Takashi Ishikawa, Shingo Narimatsu, Jun Nakao, Hiroyuki Abiko, Michihiro Ohwa
  • Publication number: 20120055395
    Abstract: A Czochralski process (“CZ”) crystal growth method and furnace having a heater capable of generating a heating zone, a crucible within the heating zone and capable of retaining a volume of molten crystal growth material forming a melt line oriented in a designated position within the heating zone, a seed growth rod retractable from the crucible with a rod retraction mechanism, for forming a crystal boule thereon proximal the melt line from the molten crystal growth material. The furnace causes relative movement between the crucible and heating zone as the crystal boule is retracted, so that the melt line is maintained in the designated position within the heating zone. In some embodiments relative movement is based at least in part on sensed weight of the growing crystal boule. In other embodiments the crucible growth rod retraction mechanism are fixed relative to each other by a gantry.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 8, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton, Piotr Szupryczynski
  • Patent number: 8118932
    Abstract: By locally heating specific scan positions within a region of interest and automatically obtaining respective measurement data in a time-resolved and spatially-resolved fashion, dynamic processes within a metallization layer of semiconductor devices may be efficiently monitored and/or modified. For instance, OBIRCH and SEI techniques may be used in combination with the automated data recording and manipulation, thereby providing an efficient means for in situ failure analysis, defect identification, for any dynamic degradation processes in interconnects and interlayer dielectrics.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 21, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Joerg Buschbeck, Eckhard Langer, Marco Grafe
  • Patent number: 8114217
    Abstract: There are provided a crystallization method which can design laser beam having a light intensity and a distribution optimized on an incident surface of a substrate, form a desired crystallized structure while suppressing generation of any other undesirable structure area and satisfy a demand for low-temperature processing, a crystallization apparatus, a thin film transistor and a display apparatus. When crystallizing a non-single-crystal semiconductor thin film by irradiating laser beam thereto, irradiation light beam to the non-single-crystal semiconductor thin film have a light intensity with a light intensity distribution which cyclically repeats a monotonous increase and a monotonous decrease and a light intensity which melts the non-single-crystal semiconductor. Further, at least a silicon oxide film is provided on a laser beam incident surface of the non-single-crystal semiconductor film.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 14, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masayuki Jyumonji, Hiroyuki Ogawa, Masakiyo Matsumura, Masato Hiramatsu, Yoshinobu Kimura, Yukio Taniguchi, Tomoya Kato
  • Patent number: 8105435
    Abstract: The inhomogeneous energy distribution at the beam spot on the irradiated surface is caused by a structural problem and processing accuracy of the cylindrical lens array forming an optical system. According to the present invention, in the optical system for forming a rectangular beam spot, an optical system for homogenizing the energy distribution of the shorter side direction of a rectangular beam spot of a laser light on an irradiated surface is replaced with a light guide. The light guide is a circuit that can confine emitted beams in a certain region and guide and transmit its energy flow in parallel with the axis of a path thereof.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 31, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 8066814
    Abstract: A crystal-growing furnace having a slurry drainage duct structure includes a furnace body, a supporting table, a loading frame, a plurality of eaves elements, and a set of eaves gutters. The supporting table includes a table plate and a plurality of supporting posts. The loading frame includes a lower plate and four side plates, where four elongated eaves boards descend from sides of the lower plate. Four eaves gutters, having V-shaped grooves, are connected with one another and disposed beneath the four eaves elements correspondingly. Any high-temperature silicon slurry leaks from a furnace crucible will be guided by the elongated eaves boards into the V-shaped grooves of the eaves gutters to prevent the silicon slurry from flowing along the periphery of the table plate and down to the supporting posts.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: November 29, 2011
    Assignee: Green Energy Technology Inc.
    Inventors: Shiow-Jeng Lew, Hur-Lon Lin
  • Patent number: 8062422
    Abstract: Embodiments described herein are directed to an apparatus for generating a precursor for a semiconductor processing system. In one embodiment, an apparatus for generating a precursor gas during a vapor deposition process is described. The apparatus includes a canister containing an interior volume between a lid and a bottom, a gaseous inlet and a gaseous outlet disposed on the lid, a plurality of silos coupled to the bottom and extending from a lower region to an upper region of the interior volume, and a tantalum precursor having a chlorine concentration of about 5 ppm or less contained within the lower region of the canister.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: November 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Patent number: 8062423
    Abstract: A crystal-growing furnace with a convectional cooling structure includes a furnace body, a heating room, and at least one heater. The heating room is accommodated in the furnace body, and includes an upper partition, a plurality of side partitions, and a lower partition. The upper partition is provided with an upper opening, and the lower partition with a central opening. Further, the heating room is provided with an upper door, a lower door, an upper driver, and a lower driver. When silicon slurry is to be cooled and solidified, cooling gaseous stream flows into a lower portion of the heating room through the central opening. Then the upper opening is opened by the upper door which is driven by the upper driver, so that heated gaseous stream is discharged from the upper opening and flows downward along furnace inside wall, and flows back to the heating room from the central opening.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 22, 2011
    Assignee: Green Energy Technology Inc.
    Inventor: Shiow-Jeng Lew
  • Patent number: 8048224
    Abstract: Embodiments of the invention relate to a process for producing a III-N bulk crystal, wherein III denotes at least one element selected from group III of the periodic system, selected from Al, Ga and In, wherein the III-N bulk crystal is grown by vapor phase epitaxy on a substrate, and wherein the growth rate is measured in real-time. By actively measuring and controlling the growth rate in situ, i.e. during the epitaxial growth, the actual growth rate can be maintained essentially constant. In this manner, III-N bulk crystals and individualized III-N single crystal substrates separated therefrom, which respectively have excellent crystal quality both in the growth direction and in the growth plane perpendicular thereto, can be obtained.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Gunnar Leibiger, Frank Habel, Stefan Eichler
  • Patent number: 8012258
    Abstract: The liquid surface position of the melt in the crucible in the silicon single crystal growth process utilizing the Czochralski method is monitored using the melt surface position on the occasion of seeding as a reference position and an estimated melt surface position can be calculated according to every situation, so that the distance between the melt and the thermal shield or water-cooling structure can be controlled with high precision. When the estimated melt surface position passes a preset upper limit and approaches the thermal shield, an alarm goes off and, further, when the melt comes into contact with the thermal shield or approaches the water-cooling structure, an alarm goes off if desired and, at the same time, the crucible is forcedly stopped from moving, so that a serious accident such as steam-incurred explosion resulting from the melt coming into contact with the water-cooling structure can be prevented.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: September 6, 2011
    Assignee: Sumco Corporation
    Inventors: Hiroshi Hayakawa, Tokuji Maeda
  • Publication number: 20110203515
    Abstract: A crystal growing cell which has computerized temperature control and agitation means to inhibit crystal nucleation. The temperature is controlled semi-actively, i.e., by monitoring the temperature with a thermistor and balancing ambient heat loss with heat added to the system by heating resistors or heating elements. When the chemical is completely dissolved by heating the mixture to a temperature above the saturation temperature, the temperature is lowered. At the saturation temperature the temperature is initially reduced slowly to avoid crystal nucleation. The saturation temperature of the initial solution is selected to be at an intermediate temperature which is high enough that the amount of dissolved material is large enough to produce a large crystal or large crystal clusters, yet not so high that the solubility curve has a large slope and therefore requires a high degree of temperature control to avoid crystal nucleation in the solution.
    Type: Application
    Filed: January 29, 2011
    Publication date: August 25, 2011
    Inventor: Michael Krautter
  • Patent number: 7981212
    Abstract: A flash lamp annealing device comprises a heater plate, a loader, a lamp set and a control circuit. The heater plate heats a wafer to a predetermined temperature. The wafer is loaded on the loader disposed on the heater plate. The lamp set has one or a plurality of lamps to provide the wafer with a power. The control circuit is coupled to the lamp set to control the flash time of the lamp set.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 19, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Kang Tien, Jui-Pin Hung
  • Patent number: 7972440
    Abstract: A system (10) for monitoring and controlling a fabrication process includes at least a first subsystem (12), a crystallographic analysis subsystem (14), and a second subsystem (16), wherein the first subsystem and second subsystem perform respective fabrication steps on a workpiece. The crystallographic analysis subsystem may be coupled to both the first subsystem and second subsystem. The analysis subsystem acquires crystallographic information from the workpiece after the workpiece undergoes a fabrication step by the first subsystem and then provides information, based on the crystallographic information acquired, for modifying parameters associated with the respective fabrication steps. The system may also include neural networks (24, 28) to adaptively modify, based on historical process data (32), parameters provided to the respective fabrication steps. The analysis subsystem may include a electromagnetic source (61), a detector (66), a processor (67), a controller (68) and a scanning actuator (65).
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: July 5, 2011
    Assignee: Agere Systems Inc.
    Inventors: Erik C. Houge, John M. McIntosh, Robert Francis Jones
  • Patent number: 7967910
    Abstract: A fine structure body comprises: (i) a base body, and (ii) a plurality of metal nanorods, which have been distributed and located on a surface of the base body, a proportion X being equal to at least 15%, the proportion X being calculated with the formula: X=(A?B)/C×100[%] wherein A represents the sum total of the projected areas of all of the metal nanorods, B represents the sum total of the projected areas of certain metal nanorods, each of which is located as an isolated metal nanorod at a spacing larger than 10 nm from the closest metal nanorod, and C represents the entire projected area of the fine structure body, including regions free from the metal nanorods.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: June 28, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Yuki Matsunami
  • Publication number: 20110146564
    Abstract: A method for detecting a diameter of a single crystal at the time of pulling the single crystal from a silicon melt contained in a crucible according to the Czochralski method, the method including at least: using two cameras placed equidistant from each other as a target diameter upon forming a straight-body portion of the single crystal and face both ends of the diameter of the single crystal in a growth point of the single crystal respectively, to separately capture both of the ends of the growth point of the single crystal from an outside of a furnace, the growth point being a contact point between the single crystal and a melt surface; and detecting the diameter of the single crystal on the basis of the captured images. As a result, diameter detection precision is improved.
    Type: Application
    Filed: September 24, 2009
    Publication date: June 23, 2011
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Hiroshi Ohtsuna, Atsushi Iwasaki
  • Patent number: 7964035
    Abstract: A crystallization apparatus is provided. The crystallization apparatus includes a visible light source capable of obtaining high energy density output therein. A visible light irradiation system is formed by a plurality of visible laser beam sources arranged in a two-dimensional array. The visible light irradiation system includes a light intensity distribution forming apparatus for patterning light intensity distribution of a plurality of visible laser beams emitted by each visible laser beam source, and an imaging optical system for imaging the light having the light intensity distribution patterned by the light intensity distribution forming apparatus onto an irradiated region on the processed substrate. The visible laser beams emitted by a plurality of solid lasers or semiconductor lasers are overlapped in the light intensity distribution forming apparatus that satisfies an imaging position relationship in an optical axis with respect to the processed substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 21, 2011
    Assignee: Shimadzu Corporation
    Inventors: Noritaka Akita, Yoshio Takami
  • Patent number: 7927422
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 19, 2011
    Assignees: National Institutes of Health (NIH), The United States of America as represented by the Dept. of Health and Human Services (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 7927421
    Abstract: A light irradiation apparatus irradiates a target plane with light having a predetermined light intensity distribution. The apparatus includes a light modulation element having a light modulation pattern of a periodic structure represented by a primitive translation vector (a1, a2), an illumination system for illuminating the modulation element with the light, and an image forming optical system for forming the predetermined light intensity distribution obtained by the modulation pattern on the target plane. A shape of an exit pupil of the illumination system is similar to the Wigner-Seitz cell of a primitive reciprocal lattice vector (b1, b2) obtained from the primitive translation vector (a1, a2) by the following equations: b1=2?(a2×a3)/(a1·(a2×a3)) and b2=2?(a3×a1)/(a1·(a2×a3)) in which a3 is a vector having an arbitrary size in a normal direction of a flat surface of the modulation pattern of the modulation element, “·” is an inner product of the vector, and “×” is an outer product of the vector.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: April 19, 2011
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventor: Yukio Taniguchi
  • Publication number: 20110060467
    Abstract: A system and method correct crystal pulling motor speed deviations in a crystal pulling mechanism. In a first embodiment, a processor implements a tracking filter by estimating new filter state based on previous state and the since-then-travelled nominal distance, and then updating the filter state based on estimation error and filter gains which are also functions of the travelled nominal distance. In a second embodiment, a harmonic tracking filter suppresses residual harmonic modulation and allows a short time constant. Rapid variations of pulling speed may thus be corrected.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventors: Benno Orschel, Keiichi Takanashi
  • Publication number: 20110048316
    Abstract: A method for minimizing unwanted ancillary reactions in a vacuum furnace used to process a material, such as growing a crystal. The process is conducted in a furnace chamber environment in which helium is admitted to the furnace chamber at a flow rate to flush out impurities and at a predetermined pressure to achieve thermal stability in a heat zone, to minimize heat flow variations and to minimize temperature gradients in the heat zone. During cooldown helium pressure is used to reduce thermal gradients in order to increase cooldown rates.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: GT CRYSTAL SYSTEMS, LLC
    Inventors: Frederick Schmid, David B. Joyce, John Brouillette, Daniel P. Betty, Ryan Philpott
  • Patent number: 7875118
    Abstract: A crystallization method includes the steps of melting a crystallized material in a crucible by heating, and growing a crystal by cooling and coagulating the melted material, wherein said melting step includes introducing a predetermined gas into the melted material.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 25, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasunao Oyama, Kazutaka Terashima
  • Publication number: 20100326349
    Abstract: Leakage of silicon melt is monitored and touch of a seed crystal at the silicon melt is detected, and in addition, reinforcement of a vitreous silica crucible to be endurable during pulling for a long time and decrease of impurity concentration of a silicon single crystal can be expected. A method for manufacturing a silicon single crystal is provided.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 30, 2010
    Applicants: JAPAN SUPER QUARTZ CORPORATION, SUMCO CORPORATION
    Inventors: Masanori FUKUI, Hideki WATANABE, Nobumitsu TAKASE
  • Publication number: 20100319611
    Abstract: The present invention provides a method and apparatus for controlling the growth of a silicon ingot in which the diameter of the growing silicon ingot can be accurately measured. A camera captures an image of the interface ring between the growing silicon ingot and the silicon melt. An image processor extracts local intensity maxima from the captured image, which are then digitized into an image data which comprises attributes of the pixels forming the local intensity maxima. An analyzer statistically analyzes the image data to derive parameters of an equation statistically simulating the interface ring. A probabilistic filter conducts the statistical analysis on the equation in which the respective pixels are weighted by their weight factors. The weight factor functions to attenuate the effect of noises caused by pixels which do not represent the interface ring.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Inventors: Benno Orschel, Keiichi Takanashi