With Vapor-treating Devices Patents (Class 202/182)
  • Patent number: 7981256
    Abstract: A splitter system is disclosed that produces a product stream from a mixed stream of two materials with similar boiling points. A multi-stage heat pump compressor is used in combination with a bottoms reboiler and an intermediate reboiler resulting in reduced utility consumption. The appropriately placed intermediate reboiler enables use of a lower temperature heat source relative to the bottoms reboiler heat source. As a result, a lower pressure overhead vapor stream can be used to deliver heat to both the intermediate and bottoms reboilers, thereby conserving energy. The first stage of the multi-stage heat pump compressor delivers pressurized overhead vapor to the intermediate reboiler and the second stage provides pressurized overhead vapor to the bottoms reboiler. The disclosed design and method lessens the heat pump compressor power consumption and trim condenser duty for a propylene/propane splitter system by over 20%.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Paul A. Sechrist
  • Patent number: 7959768
    Abstract: The invention relates to a falling film evaporator, which is fitted with a liquid distributor which is divided into segments, such that it is possible to charge only a limited number of evaporator tubes with liquid and the evaporator can be operated in an optimum manner even with a partial load. The invention also relates to a method for operating said falling film evaporator, the aim of which is to transfer heat, which is released when a gas-vapor mixture is condensed, to a liquid which is to be evaporated at least partially. It would be useful to use said falling film evaporator thus fitted in heat recuperation systems such as those used in the production of 1,2 dichloroethane.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 14, 2011
    Assignee: UHDE GmbH
    Inventors: Peter Porscha, Michael Benje, Harald Hafenscher
  • Patent number: 7955476
    Abstract: A multiple application recycling and purification device has a coaxial core that is horizontally oriented, non-rotating, cylindrical distillation chamber. The enhanced, completely coaxial configuration continuously cleans the entire distillation chamber and spreads a thin film of liquid to enhance distillation and positively aid in the removal of remaining contaminants. Through a timed and positioned valve, the device removes and purges lower-temperature contaminants. Timed valves and sensors control all phases of the distillation to provide a coaxially integrated, stand-alone, adaptable, scalable and maintenance free distillation unit that self-monitors, self-cleans and economically functions to produce the pure distilled liquid, e.g., water. This device can be modified to purify any numerous array of liquids and can be scaled to produce any amount of purified liquids for either household, commercial, or industrial applications.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: June 7, 2011
    Assignee: Mansur Corporation
    Inventor: Pierre G. Mansur
  • Patent number: 7927464
    Abstract: A vapor compression distillation system (10) is provided and includes a fluid inlet (12) for receiving a fluid, a fluid outlet (14) for a distillate that has been distilled from the fluid, a heat exchanger (16) connected to the fluid inlet (12) and the fluid outlet (14) to transfer heat from the distillate to the fluid; and an integrated motor/compressor unit (18) connected to the heat exchanger (16) to receive vaporized distillate therefrom and to supply pressurized distillate thereto. The system 10 may further include a coolant system (20) connected to the integrated motor/compressor (18) to supply a coolant flow thereto. The system (10) may also include an air oil mist system (22) that is connected to the integrated motor/compressor unit (18) to supply an air oil mist thereto for bearing lubrication and cooling.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: April 19, 2011
    Assignee: Mechanical Equipment Company, Inc.
    Inventors: George V. Gsell, Kim C. Klein
  • Patent number: 7927463
    Abstract: The present invention provides a novel tritium distillation device, which includes a container, a radiator covered on top of the container with a protrusion at the bottom, a conduit penetrating the container with an inlet and an outlet, the inlet being arranged in correspondence with the protrusion, and a heating device fixed below the container. The method of operating the tritiated water distillation includes the steps of adding environmental tritiated water in the container, covering the radiator on top of the container closely, heating environmental tritiated water to cause tritiated water steam to be condensed to the bottom of the radiator, and collecting the tritiated water condensation dropped from the protrusion with conduit. The present invention uses a simple structure to ease assembly and reduce the cost of cooling water source.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 19, 2011
    Assignee: Institute of Nuclear Energy Research
    Inventor: Hsin-Fa Fang
  • Patent number: 7892403
    Abstract: A condenser includes: a top face of a tube plate on which acrylic acid may be condensed inside the condenser; a spray for spreading a polymerization inhibitor on the tube plate; a first polymerization inhibitor supply tube for supplying the polymerization inhibitor to the spray; and a supporter for supporting the spray at a predetermined position. The supporter supports the first polymerization inhibitor supply tube outside the condenser. The condenser allows a stable continuous operation for a long period of time by preventing polymerization of an easily polymerizable compound in the condenser into which a vapor of an easily polymerizable compound is supplied with a simple structure thereof.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 22, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Yada, Yasushi Ogawa, Yoshiro Suzuki, Kimikatsu Jinno
  • Patent number: 7857944
    Abstract: The method and apparatus for improving the esterification procedure, in particular for improving the esterification procedure to obtain an ester of low carbon number such as the ethyl acetate and the isopropyl acetate, are provided. By applying the provided method and apparatus, the conversion ratio of the esterification procedure is significantly increased and hence an ester product of a relatively high purity, up to the industrial specification, is obtained.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 28, 2010
    Assignee: National Taiwan University
    Inventors: Huang Hsiao-Ping, Yu Cheng-Ching, Lee Ming-Jer, Hung Shih-Bo, Lai I-Kuan
  • Patent number: 7842121
    Abstract: A system and method are disclosed for providing aqueous stream purification services. The system includes at least one separation unit. Each separation unit may include a mechanical vapor recompression separator, a steam stripper, and a secondary recovery heat exchanger. The system for wastewater purification may receive water from a waste water storage, purify the water, and return the purified water to a purified water storage. The system may include a controller. The controller may include an operating conditions module configured to interpret at least one operating condition.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 30, 2010
    Assignee: General Electric Capital Corporation
    Inventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
  • Patent number: 7837768
    Abstract: A system and method are disclosed for purifying a waste fluid stream. The system includes a recirculation pump having an inlet for a recirculation stream and an outlet to expel a pressurized stream. The system includes a compressor having an inlet for an evaporation stream and an outlet for a pressurized evaporation stream. A primary heat exchanger has inlets for the pressurized stream and the pressurized evaporation stream, an internal surface area for heat transfer from the evaporation stream to the pressurized stream, and outlets for a cooled product stream and a heated pressurized stream. The heated pressurized stream is formed by heating the pressurized stream and the cooled product stream is formed by cooling the evaporation stream. The system includes an evaporation unit having an inlet for the heated pressurized stream and outlets for an evaporation stream and the recycled liquid bottoms stream.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 23, 2010
    Assignee: General Electric Capital Corporation as Administrative Agent
    Inventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
  • Publication number: 20100275599
    Abstract: A solar desalination system for creation of desalinated water from seawater that produces electricity includes: a) a solar furnace unit including a vessel for receiving and evaporating seawater to create desalinated steam and a solar energy concentrator positioned adjacent the vessel to concentrate solar energy to the vessel; b) input for feeding seawater to the vessel; c) brine output for removal of brine water bottoms from the vessel; d) a riser pipe connected at its bottom to the vessel and extending upwardly from for transporting steam from the vessel to a higher elevation electric power-producing steam turbine generator; f) a drop pipe having a top and a bottom, and being connected at its tops to the steam turbine generator for removal of desalinated water from the steam turbine generator; g) a hydroturbine generator connected to the bottom of the drop pipe for production of electric power with desalinated water from the steam turbine generator; and, h) egress for removal of desalinated water from the hy
    Type: Application
    Filed: May 1, 2009
    Publication date: November 4, 2010
    Inventor: Kenneth P. Glynn
  • Patent number: 7815776
    Abstract: A method and an apparatus for desalinizing raw water are disclosed. The method can include wicking the raw water into a porous material by capillary action and heating the raw water in the porous material with a heating element to form water vapor. The water vapor then can be condensed to form purified water. The apparatus can include a chamber for holding raw water, a heating element, a sheet of porous material and a chamber for collecting water vapor evaporated from the raw water in the porous material.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: October 19, 2010
    Inventor: George E. Wilson
  • Publication number: 20100243425
    Abstract: The system contains a liquid-tight enclosure. An input source is connected to the liquid-tight enclosure for inputting water into the liquid-tight enclosure. A heating element is in thermal communication with at least a portion of the water within the liquid-tight enclosure. A plurality of substantially vertical plates are aligned along a substantially horizontal axis within the liquid-tight enclosure. Each of the substantially vertical plates has an opening. A groove is formed along each of the substantially vertical plates. A first end of the groove on each of the substantially vertical plates is proximate to the opening. At least one manifold extends through a plurality of the openings of the substantially vertical plates. The manifold is in fluid communication with a plurality of the first ends of the grooves. An output opening is formed in the liquid-tight enclosure. The output opening is arranged in fluid communication with the manifold.
    Type: Application
    Filed: October 2, 2009
    Publication date: September 30, 2010
    Inventor: Samuel T. Kjellman
  • Patent number: 7794564
    Abstract: A multistage evaporation system is proposed in which the first evaporator is heated via a jet wet washer with superheated, air-containing waste steam, for example of a drier. The product vapor of the first evaporator stage is fed via a mechanical compressor to a second evaporator stage for heating. The compressor ensures firstly a lowering of the dew point in the evaporator space of the first evaporator stage and secondly a temperature increase of the product vapor fed to the second evaporator stage for heating.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: September 14, 2010
    Assignee: GEA Wiegand GmbH
    Inventor: Herbert Praschak
  • Patent number: 7770511
    Abstract: The invention relates to a device and method for preparing liquid from solid materials such as medicinal materials. It includes liquid and materials for preparing the liquid at the beginning and the end of the process. The device uses a steam generator, an intermediate switch valve and a material chamber, which are connected sequentially with pipes, and further includes an outlet pipe, which is at the bottom of the material chamber. The method involves the steps of: distillation and absorption; immersion; and repetition. The device and method for preparing liquid alternates the distillation and immersion steps, which reduces harmful substance in the prepared liquid that would otherwise occur by conventional methods. The method not only extracts soluble effective matter, but also reduces loss of volatile effective matter. Ultimately, the method makes the steps for preparing liquid simple and clear, and it can prepare liquid quantitatively, effectively and without pasty and shrinkable characteristics.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: August 10, 2010
    Assignee: Shenzhen Zofu Technology Co., Ltd.
    Inventor: Linlin Yao
  • Patent number: 7749360
    Abstract: A vapor based liquid purification system and process utilizes an evaporator for evaporating a liquid into a vapor and a vapor condenser for condensing the vapor into the processed liquid. The vapor condenser has a stator and a rotor, with the rotor disposed for rotation about the stator. The stator and the rotor each have protrusions proximate to an inlet of the vapor condenser. These protrusions cooperate to draw vapor from the evaporator into the vapor condenser. The stator and the rotor each further have at least one axially extending ridge. These ridges cooperate to move a mixture of the vapor and the processed liquid towards at least one drain in the rotor where the processed liquid is communicated to an outlet of the vapor condenser. A multi-level vapor based purification system may also be utilized.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: July 6, 2010
    Inventor: Wesley K. Waldron
  • Patent number: 7708865
    Abstract: According to one embodiment of the invention, a vapor-compression evaporation system includes a plurality of vessels in series each containing a feed having a nonvolatile component, a mechanical compressor coupled to the last vessel in the series and operable to receive a vapor from the last vessel in the series, a pump operable to deliver a cooling liquid to the mechanical compressor, a tank coupled to the mechanical compressor and operable to separate liquid and vapor received from the mechanical compressor, a plurality of heat exchangers coupled inside respective ones of the vessels, the heat exchanger in the first vessel in the series operable to receive the vapor from the tank, at least some of the vapor condensing therein, whereby the heat of condensation provides the heat of evaporation to the first vessel in the series, and wherein at least some of the vapor inside the first vessel in the series is delivered to the heat exchanger in the next vessel in the series, whereby the condensing, evaporating, a
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: May 4, 2010
    Assignees: Texas A&M University System, StarRotor Corporation
    Inventors: Mark T. Holtzapple, Gary P. Noyes, George A. Rabroker
  • Patent number: 7699961
    Abstract: A water-soluble organic material condensation apparatus equipped with a distillation column for distilling an aqueous solution of a water-soluble organic material, wherein a vapor generated at the top of the distillation column or a condensed liquid from the vapor is introduced to a device other than the distillation column which has the function to separate water from the water-soluble organic material to thereby condense the water-soluble organic material through separating water and then the condensed water-soluble organic material is recycled to the distillation column. The device other than the distillation column is desirably a separating film such as a zeolite film. The apparatus is improved in the operation of the upper portion of the condensation section of the distillation column and allows energy savings during distillation.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 20, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shiro Ikeda, Takashi Nakane
  • Publication number: 20100089232
    Abstract: The invention relates to a gas liquid contactor and effluent cleaning system and method and more particularly to individually fed nozzle banks including an array of nozzles configured to produce uniformly spaced flat liquid jets shaped to minimize disruption from a gas. An embodiment of the invention is directed towards a gas liquid contactor having a plurality of modules including a liquid inlet and outlet and a gas inlet and outlet. An array of nozzles is in communication with the liquid inlet and the gas inlet. The array of nozzles is configured to produce uniformly spaced flat liquid jets shaped to minimize disruption from a gas flow and maximize gas flow and liquid flow interactions while rapidly replenishing the liquid.
    Type: Application
    Filed: September 28, 2009
    Publication date: April 15, 2010
    Applicant: Neumann Systems Group, Inc
    Inventors: David Kurt Neumann, Keith R. Hobbs, Jeffrey L. Courtright
  • Patent number: 7670456
    Abstract: In a multi-effect falling-film evaporator, purified water for special purposes is produced. In each effect, a steam phase and a water phase is produced from the feed water. The steam phase is used for heating in the subsequent effect, whereby it condenses to product water, and the water phase becomes the feed stream for the subsequent effect. A reject stream is removed from the process to carry off impurities separated from the water. According to the invention, a reject stream is removed from each effect. Preferably, each reject stream is a condensed fraction of the steam generated in the respective effect.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: March 2, 2010
    Assignee: STERIS Europe Inc. Suomen Sivuliike
    Inventors: Teppo Nurminen, Mauri Salmisuo
  • Patent number: 7641772
    Abstract: A distillation unit (10) employs a fluid circuit (FIG. 8) in which a counterflow heat exchanger (102, 104, 106, 108, 110) transfers heat from condensate and concentrate to feed liquid to be distilled. The pumping system (100, 238) that drives fluid through the circuit is arranged to keep the pressure in the counterflow heat exchanger's condensate higher than that in its feed-liquid passage. This tends to discourage the contamination that could otherwise occur in the concentrate if the fluid isolation ordinarily maintained between those passages is compromised.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: January 5, 2010
    Assignee: Zanaqua Technologies, Inc.
    Inventor: William H. Zebuhr
  • Patent number: 7597784
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In some embodiments of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, and a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product. Other embodiments of the invention are directed toward heat management, and other process enhancements for making the system especially efficient.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: October 6, 2009
    Assignee: DEKA Products Limited Partnership
    Inventors: David F. Bednarek, Jason A. Demers, Timothy P. Duggan, James L. Jackson, Scott A. Leonard, David W. McGill, Kingston Owens
  • Patent number: 7594980
    Abstract: Device for distillation, for example extraction of fresh water from sea water, including a number of chambers (3) at least in one row, an inlet (10) for distillation fluid, an outlet (11) for the distillation residue, an outlet (5) for the distillate, and a gas compressor (13). Further, the device includes two pipe systems (1,2), where the first pipe system (1) has an inlet (10) for the distillation fluid and an outlet (11) for the distillation residue, together with an outlet (12) for damp. The second pipe system (2) has a number of chambers (3) in a row, each row (3) having an upper inlet (4) for damp and a lower outlet (5) for distillate. The inlets (4) are connected in parallel, and the outlets (5) are connected in parallel.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: September 29, 2009
    Assignee: GND Water AS
    Inventor: Olav E. Sandstad
  • Patent number: 7553396
    Abstract: A system for generating purified water from polluted water which includes an entry chamber communicating with a source of polluted water, a pump for delivering water vapor from the entry chamber to the vapor chamber, and a passageway for delivering condensed water from the vapor chamber to a reservoir of purified water.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: June 30, 2009
    Inventor: Joel Vance Miller
  • Patent number: 7494572
    Abstract: A mechanical water still (10) includes an impervious dome-like upper surface (12) and a membrane base (14) that is coupled (26) to the impervious dome-like structure (12) to form, when inflated, a chamber (20). The membrane base (14) supports a water pervaporation process therethrough. A water collection well (16) has an opening into which water droplets condensed from the water pervaporation process collect. The water collection well (16) is sited within the membrane base (14) and generally extends outwardly and downwardly from the membrane base (14), as shown in FIG. 1. In use, a contaminated water source (24) is brought into, ideally, complete contact with the membrane base (14), with the water collection well (16) arranged both to act as a heat sink into the water source (24) and to provide stability to the water still (10) when floating and immersed in the water source (24).
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 24, 2009
    Assignee: Design Technology and Innovation Ltd.
    Inventors: Mark Christopher Tonkin, Mark Andrew Young, Neil David Eckert
  • Patent number: 7470348
    Abstract: A separation system has a distillation column, an overhead vapor supply pipe connected to the top of the distillation column, first and second branch pipes branching from the overhead vapor supply pipe and a superheater connected to the first branch pipe. A separator downstream of the superheater has a separation membrane for separating overhead vapor from the top of the distillation column into permeable vapor and nonpermeable vapor by allowing only a selected portion of the overhead vapor to permeate the separation membrane. A reflux unit has a condenser connected to the second branch pipe for cooling a portion of the overhead vapor into a liquid and a gas-liquid separator for separating gas from the liquid produced by cooling and returning the separated liquid into the top of the distillation column.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 30, 2008
    Assignees: Mitsubishi Heavy Industries, Ltd., Mitsubishi Chemical Corporation
    Inventors: Yoshio Seiki, Kazuto Kobayashi, Yoshiyuki Takeuchi, Hiroyuki Osora, Keiichi Akimoto, Noritaka Matsumoto, Motoki Numata, Hiroaki Shimazu
  • Patent number: 7470349
    Abstract: A device for delivering purified water from a reservoir of salt water including a vapor tube supported concentrically inside a barrier tube The vapor tube has apertures that provide a passage of purified condensate from interior of the purified waste to the space between the space between the outside of the vapor tube and the inside of the barrier tube. A pump between the reservoir of salt water and the interior of the vapor tube generates a pressure differential that forces water vapor from the surface of salt water to the inside of the vapor tube. Condensate inside the vapor tube flows as fresh water to outside the vapor tube.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: December 30, 2008
    Inventor: Joel Miller
  • Patent number: 7465375
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 16, 2008
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens
  • Publication number: 20080237026
    Abstract: The heat transfer surfaces of a vapor-compression-type distiller's rotary heat exchanger are provided by a plurality of “blades” that extend radially outward from the rotary heat exchanger's axis of rotation and have interior surfaces that define respective narrow constituent condensation chambers. The blades' outer surfaces transfer heat of vaporization to a liquid to be purified, and the distiller's compressor draws the resultant vapor in, compresses it, and feeds the resultant pressurized vapor at one axial end into the blades' interior condensation chambers, where it surrenders the heat of vaporization to the interior blade surfaces and condenses. Passages formed in adjacent blades' elongated walls provide fluid communication between the constituent condensation chambers in such a manner that together they form a manifold from which condensate from all the blades can be withdrawn from any of them.
    Type: Application
    Filed: March 21, 2008
    Publication date: October 2, 2008
    Applicant: ZanAqua Technologies
    Inventor: William H. Zebuhr
  • Patent number: 7427336
    Abstract: A blade heat exchanger includes blades that extend axially with respect to an axis of rotation and are elongated in the radial direction. The blades are arranged about the axis such that, when they are disposed in a housing, they form composite condensation and evaporation chambers that are isolated from each other. The interiors of at least some of the blades form the composite condensation chamber. The exteriors of the blades and the inner surface of the housing cooperate to form the composite evaporation chamber.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: September 23, 2008
    Assignee: Zanaqua Technologies, Inc.
    Inventor: William H. Zebuhr
  • Patent number: 7357849
    Abstract: A method and system for treating feedwater includes evaporating a portion of the feedwater in a first evaporation chamber so as to separate water vapor from the remaining feedwater. Droplets of the remaining feedwater are dispersed into a stream of hot air produced in a second evaporation chamber. The droplets evaporate and solids in the feedwater precipitate. The precipitated solids are collected in the lower section of the second evaporation chamber. Water vapor discharged from both evaporation chambers can be treated in a cyclone separator to remove residual solids therefrom. The cleansed water vapor output from the cyclone separator can be condensed to recover clean water. Dry solids can be discharged from the second evaporation chamber and the cyclone separator for recovery.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 15, 2008
    Assignee: Watervap, LLC
    Inventor: Robert R. Wright
  • Patent number: 7291250
    Abstract: The present invention relates to a vacuum distillation plant and a process for concentrating organic aqueous solutions, especially spissum extracts, using said plant. The vacuum distillation plant of the invention comprises a flash evaporator, a means for vapor concentration and a multi-stage condenser positioned down-stream of said means for vapor concentration, means for recycling at least part of the condensate from a condensation stage into the bottoms product being provided. In addition, the present invention relates to a process for concentrating organic aqueous solutions such as concentrated extracts using said plant.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: November 6, 2007
    Assignee: Bionorica AG
    Inventors: Michael A. Popp, Heinz Walter Joseph, Michael R. Rannow
  • Patent number: 7276138
    Abstract: A vapor generating and recovery apparatus including a housing having an open top, a closed bottom and a plurality of sidewalls therebetween defining a boiling sump with a treating solution therein. The housing is further provided with at least one heating coil and at least one condensing coil for providing and removing heat from the apparatus. The housing also includes at least one glove extending through one of the sidewalls allowing a user to manually handle and/or manually spray parts or objects needing cleaning using the vapor generating and recovery apparatus.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: October 2, 2007
    Inventors: Richard G. McCord, Thomas G. McCord
  • Patent number: 7267747
    Abstract: A vacuum distillation system and method utilizing a low capacity vacuum producing ejector operated in parallel with a primary ejector during the Winter months enables significant reduction in the absolute pressure of a vacuum distillation column. Operation of a vacuum distillation tower at lower absolute pressures results in increased yield of desirable vacuum distillation products.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: September 11, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventor: Thomas Hugh Musial
  • Patent number: 7253314
    Abstract: A method for refining an easily polymerizable matter while preventing an easily polymerizable matter-containing substance from being polymerized and an apparatus for use in the method are disclosed. The method and apparatus for refining and separating the easily polymerizable matter-containing substance by the use of a distillation column provided with a heat exchanger set the linear velocity of a vapor in a connecting line intervening between the distillation column and the heat exchanger at a level of not less than 5 m per second and the retention time of the vapor at a level of not more than 3 seconds.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 7, 2007
    Assignee: Nippon Shokubai Co., Ltd
    Inventors: Takeshi Nishimura, Yukihiro Matsumoto
  • Patent number: 7101463
    Abstract: A system and process for the recovery of oil from the pyrolysis of material containing hydrocarbons such as shredded vehicle tires. The system utilizes a pair of sequentially positioned packed towers to recover at least 95% of the oil contained in the pyrolysis gases. The first packed tower operates above the dew point of the water vapor in the pyrolysis gases to insure that no water is condensed and obtain a primary oil fraction having oil with a high flash point of about 60° C. or greater and a primary vapor fraction containing additional oils, fuel gases and water vapor. The primary vapor fraction is fed to the second packed tower which operates below the dew point of the water vapor to condense the water and oil having a low flash point of 34° C. or below, and provide a secondary vapor fraction containing valuable fuel gases.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: September 5, 2006
    Assignee: Metso Minerals Industries, Inc.
    Inventors: Michael H. Weinecke, Robert J. Unterweger
  • Patent number: 7087157
    Abstract: A multi-phase separation system utilized to remove contaminants from fluids includes a pre-filtering module for filtering a contaminated fluid to provide a filtered contaminated fluid. A condenser module receives the filtered contaminated fluid and a contaminated gas phase for condensing the contaminated gas phase to a contaminated liquid. A phase reaction chamber converts the filtered contaminated fluid to a contaminated mist wherein the mist is subjected to a low energy, high vacuum environment for providing a first change of phase by separating into a contaminated gas phase and a liquid mist phase. The contaminated gas phase is carried out of the phase reaction chamber by a carrier air. A vacuum pump provides the low energy, high vacuum environment in the phase reaction chamber and delivers the contaminated gas phase to the condenser module for condensation providing a second change of phase.
    Type: Grant
    Filed: July 12, 2003
    Date of Patent: August 8, 2006
    Assignee: Advanced Phase Separation, LLC
    Inventor: Wayne W. Spani
  • Patent number: 6953518
    Abstract: A specific ingredient-dissolved liquid condensing apparatus, comprising an upper tank, a lower tank provided under the upper tank, the upper tank being provided with a liquid-falling opening and a valve for falling a specific ingredient-dissolved liquid in the upper tank to the lower tank, a circulator for circulating the specific ingredient-dissolved liquid in the upper tank, and a transfer means for transferring the specific ingredient-dissolved liquid in the lower tank into the upper tank.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: October 11, 2005
    Assignee: Hiroshima University
    Inventor: Hisashi Nobukawa
  • Patent number: 6908533
    Abstract: An evaporator and condenser unit for use in distilling a liquid, such as water, includes a rotary heat exchanger plate having a plurality of folds or pleats. Adjacent panels of the folded plate define spaces between their oppositely facing surfaces, and these spaces are alternatingly configured as evaporating and condensing chambers. The evaporating chambers, moreover, are defined between adjacent panels that are joined at an outer diameter fold, while the condensing chambers are defined between adjacent panels that are joined at an inner diameter fold. The evaporating chambers are thus closed at their outer diameter ends and open at their inner diameter ends, while the condensing chambers are closed at their inner diameter ends and open at their outer diameter ends.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: June 21, 2005
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Patent number: 6869502
    Abstract: A liquid having certain undesired elements therein is distilled in a distillation column to form a vapor stream. This vapor stream is fed by means of an inert gas drive to a first container having an array of semi-permeable screens which are rotated at a speed of 3,000-10,000 rpm to generate vertical spiral vortexes which act on the vapor to separate out heavier impurities. An inert gas is employed to drive the vapor stream from the first container to the bottom of a second container having a narrower diameter array of semi-permeable screens, these screens being driven at a velocity of 6000-100,000 rpm. In the second container, the molecular species is separated from the main vapor stream by virtue of the exposure of the vapor to large centrifugal gravity forces generated by the horizontal velocity vectors of the rotating screens.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: March 22, 2005
    Assignee: General Grinding Corporation
    Inventor: Ernest Csendes
  • Patent number: 6846387
    Abstract: An evaporator and condenser unit for use in distilling a liquid, such as water, includes a rotary heat exchanger plate having a plurality of accordion-style folds, and having its two ends joined together so as to give the folded plate a generally circular form. The adjacent panels of the folded plate define spaces between their oppositely facing surfaces, and these spaces are alternatingly configured as evaporating and condensing chambers. The evaporating chambers have their inner edges sealed by corresponding folds, while the condensing chambers have their outer edges sealed by corresponding folds. The folded plate is disposed between first and second end plates, and is mounted for rotation about its axis in a housing having a sump containing the liquid to be distilled. Liquid is supplied to the evaporating chambers and compressed vapor is supplied to the condensing chambers. Condensate is removed from the condensing chambers.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: January 25, 2005
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Patent number: 6835287
    Abstract: An apparatus comprising first to third columns, wherein the outlet of a first column reboiler and the inlet of a second column condenser are connected by a first introduction conduit, and the outlet of a second distillation column reboiler and the inlet of a third column condenser are connected by a second introduction conduit, and additionally the outlet of the second column condenser and the inlet of the first column reboiler are connected by a first return conduit, and the outlet of the third column condenser and the inlet of the second column reboiler are connected by a second return conduit.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: December 28, 2004
    Assignee: Nippon Sanso Corporation
    Inventors: Hitoshi Kihara, Hiroshi Tachibana, Shigeru Hayashida, Hiroshi Kawakami
  • Patent number: 6802941
    Abstract: A distillation unit (10) employs a rotary heat exchanger (32) forming a multiplicity of evaporation chambers (56) into which a liquid to be purified is sprayed for evaporation. Spray arms (58) spray at a steady rate into all of the evaporation chambers (56) simultaneously but not at a rate that is adequate to maintain the wetting required for efficient transfer of heat to the liquid. A scanning sprayer (140) supplements this steady spray with spray from nozzles (142 and 144) into only a few of the evaporation chambers at a time, visiting all of them cyclically. The overall rate of spray from the two sources thus combined to spray the chamber cyclically maintains proper wetting even though on average it is lower than the rate that would be required of a constant-rate spray into all of the evaporation chambers.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 12, 2004
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Publication number: 20040188237
    Abstract: A vacuum distillation system and method utilizing a low capacity vacuum producing ejector operated in parallel with a primary ejector during the Winter months enables significant reduction in the absolute pressure of a vacuum distillation column. Operation of a vacuum distillation tower at lower absolute pressures results in increased yield of desirable vacuum distillation products.
    Type: Application
    Filed: March 26, 2003
    Publication date: September 30, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventor: Thomas Hugh Musial
  • Publication number: 20040055866
    Abstract: A sub-atmospheric pressure desalinating still employs a closed top, opened bottom tank filled with seawater, having a height greater than the height of a column of seawater that can be supported by the pressure at the bottom tank so that a vacuum is formed at the top. A compressor draws vapor from the evacuated area, compresses it and passes it through a heat exchanger within the tank volume to condense the vapor in the tank to generate purified water. Replenishing water is drawn in through the bottom of the tank, passes through a heat exchanger, and is pumped through a heat exchanger coil surrounding the compressor, with the outlet feeding a spray head within the vacuum volume. The compressor and the pump for the intake flow are powered by a wind turbine or wave power.
    Type: Application
    Filed: September 19, 2003
    Publication date: March 25, 2004
    Inventor: Michael R. Levine
  • Patent number: 6695951
    Abstract: The present water reclamation system includes a series of concentric thin shells. The shells mount within a housing that can be maintained under vacuum or low pressure. The shells rotate at high velocity. Contaminated liquid from outside the housing is injected into the space between half the shells. The centrifugal force causes the liquid to form a thin film along the inward facing surface of the shell. A compressor lowers the pressure adjacent the thin film causing the liquid to boil. The compressor carries the vapor to the other side of those shells at a slightly higher temperature. There the vapor encounters the wall, which is cooler because its heat was transferred to boil the contaminated liquid. The vapor condenses, and rotation throws the condensate against the adjacent wall where it is collected. When condensing, the heat of condensation transfers to the shell for boiling the incoming contaminated liquid.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: February 24, 2004
    Inventors: Jack G. Bitterly, Steven E. Bitterly
  • Patent number: 6689251
    Abstract: A distiller (10) that employs a rotary heat exchanger (32) introduces water to be evaporated into evaporation chambers (56). During most of its operation, it collects the water that has passed through the evaporation chamber (56) without evaporating, and it reintroduces the thus-collected liquid back into the evaporation chamber, where it also adds a minor amount of unrecirculated feed liquid to make up for evaporation and concentrate removal. Simultaneously, a minor amount of feed liquid is fed into one side of a transfer pump (116). During this mode of operation, the impurities concentration in the recirculating liquid tends to increase as a result of the evaporation of pure water vapor. Periodically, the erstwhile recirculating liquid is redirected to the other side of the transfer pump (116), where it causes the feed liquid stored in the transfer pump's first side to be fed without accompanying recirculant liquid into the rotary heat exchanger's evaporation chambers.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 10, 2004
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Patent number: 6641700
    Abstract: A purifying apparatus characterized by being equipped with a vapor dispersing device possessing in a vapor inlet part owned by the apparatus on the lateral inside thereof an opening part facing downward from the horizontal direction and a horizontal projected cross section area in the range of 10-40% of the cross section area of said apparatus. In consequence of the incorporation of the vapor dispersing device according to this invention, the drift of the gas is repressed, the efficiency of separation is improved, and the possible polymerization of a compound under treatment in the lower part of the column is prevented.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: November 4, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hajime Matsumoto, Takeshi Nishimura, Yukihiro Matsumoto
  • Publication number: 20030188962
    Abstract: A distillation system is provided having an evaporation conduit and a condensing conduit connected by a transfer system for transferring distillate vapour from the evaporation conduit to the condensing conduit to condense the distillate. The evaporation and condensing conduits operate under vacuum pressure. An intake conduit and a return conduit communicate in an unrestricted manner between a source of solution and the evaporation conduit. A distillate conduit communicates with the condensing conduit for dispensing condensed distillate therefrom. A radiant heat capturing system is provided for capturing and using heat radiated from the distillate conduit to generate power.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 9, 2003
    Inventor: George Atwell
  • Publication number: 20030178294
    Abstract: The inventive device for distilling a medium comprises at least one reservoir (11, 51) or accommodating the medium (15, 55) to be distilled, a heating element (12, 52) for vaporizing the medium (55), and comprises at least one collecting vessel (20, 60), which is situated downstream and which is provided with a cooling element for condensing the produced distillation vapor. In addition, a pipe (19, 59) or the like is provided on the top side of the reservoir (11, 51). Said pipe leads into the collecting vessel (20, 60) and connects the vapor space (14, 54) located inside the reservoir (51) to that which is located inside the collecting vessel (20, 60). To this end, means are provided, which, for the most part, completely remove foreign gases from the vapor spaces (14, 24; 54, 64) before or at the beginning of the distillation process.
    Type: Application
    Filed: May 12, 2003
    Publication date: September 25, 2003
    Inventors: Mark Braendli, Markus Lehmann
  • Patent number: 6616769
    Abstract: A process and system for conditioning a bulk container for ultra-high purity liquefied gas. Vapor is generated in the container from a conditioning quantity of the ultra-high purity liquefied gas by imposing a temperature difference on the container so that the vapor condenses when a temperature difference is achieved. The resulting liquid reflux, e.g., the condensed liquid drips or flows back to the conditioning quantity of the liquified gas, washes or removes contaminants, e.g., particles, metal and moisture, from the interior surface of the container. A portion of the vapor is vented from the container for reclamation. The used conditioning liquid may also be reclaimed.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Anthony J. Lachawiec, Jr., Vladimir Yliy Gershtein, Ronald Martin Pearlstein, Robert William Ford
  • Patent number: 5238964
    Abstract: A method for the treatment of cerebrovascular contraction in mammals involving administration of a pharmaceutical composition containing as an effective ingredient a p-guanidinobenzoic acid derivative represented by the formula ##STR1## wherein R denotes a group represented by the formula ##STR2## or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: February 13, 1992
    Date of Patent: August 24, 1993
    Assignee: Torii & Co., Ltd.
    Inventors: Haruhiko Kikuchi, Hiroji Yanamoto