Sputter Etching Patents (Class 204/192.32)
  • Patent number: 7901545
    Abstract: An iPVD system is programmed to deposit uniform material, such as barrier material, into high aspect ratio nano-size features on semiconductor substrates using a process which enhances the sidewall coverage compared to the field and bottom coverage(s) while minimizing or eliminating overhang within a vacuum chamber. The iPVD system is operated at low target power and high pressure >50 mT to sputter material from the target. RF energy is coupled into the chamber to form a high density plasma. A small RF bias (less than a few volts) can be applied to aid in enhancing the coverage, especially at the bottom.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: March 8, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Frank M. Cerio, Jr., Jacques Faguet, Bruce D. Gittleman, Rodney L. Robison
  • Patent number: 7892406
    Abstract: An iPVD system is programmed to deposit uniform material, such as barrier material, into high aspect ratio nano-size features on semiconductor substrates using a process which enhances the sidewall coverage compared to the field and bottom coverage(s) while minimizing or eliminating overhang within a vacuum chamber. The iPVD system is operated at low target power and high pressure >50 mT to sputter material from the target. RF energy is coupled into the chamber to form a high density plasma. A small RF bias (less than a few volts) can be applied to aid in enhancing the coverage, especially at the bottom.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: February 22, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Frank M. Cerio, Jr.
  • Patent number: 7883607
    Abstract: A method according to one embodiment includes ion milling at a first angle of greater than about 25 degrees from normal relative to a media facing side of a thin film region of a magnetic head or component thereof for recessing the thin film region at about a constant rate for films of interest of the thin film region, planes of deposition of the films being oriented about perpendicular to the media facing side; and ion milling or plasma sputtering at a second angle of less than about 25 degrees from normal relative to the media facing side of the thin film region for recessing magnetic films therein faster than insulating films therein, the second angle being smaller than the first angle.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Cherngye Hwang, Calvin Shyhjong Lo, Andrew C. Ting
  • Patent number: 7879201
    Abstract: Method and apparatus for processing a substrate with a beam of energetic particles. The beam is directed from a source through a rectangular aperture in a shield positioned between the source and substrate to a treatment zone in a plane of substrate movement. Features on the substrate are aligned parallel to a major dimension of the rectangular aperture and the substrate is moved orthogonally to the aperture's major dimension. The beam impinges the substrate through the aperture during movement. The substrate may be periodically rotated by approximately 180° to reorient the features relative to the major dimension of the rectangular aperture. The resulting treatment profile is symmetrical about the sides of the features oriented toward the major dimension of the rectangular aperture.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 1, 2011
    Assignee: Veeco Instruments Inc.
    Inventors: Boris Druz, Viktor Kanarov, Hariharakeshave S. Hegde, Alan V. Hayes, Emmanuel Lakios
  • Patent number: 7875199
    Abstract: The method for generating radicals comprises: feeding F2 gas or a mixed gas of F2 gas and an inert gas into a chamber of which the inside is provided with a carbon material, supplying a carbon atom from the carbon material by applying a target bias voltage to the carbon material, and thereby generating high density radicals, wherein the ratio of CF3 radical, CF2 radical and CF radical is arbitrarily regulated by controlling the target bias voltage applied to the carbon material while measuring the infrared absorption spectrum of radicals generated inside the chamber.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 25, 2011
    Assignee: Showa Denko K.K.
    Inventors: Toshio Goto, Masaru Hori, Mikio Nagai
  • Patent number: 7846305
    Abstract: A method for increasing etch depth uniformity in ion milling process in a wafer manufacturing process encompasses loading designated regions of a production pallet with carriers containing wafers to be ion milled. These designated regions have been predetermined to exhibit similar and preferred depths of etching. Non-designated regions of the production pallet are then loaded with dummy carriers and the wafers are ion milled.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies, Netherlands, B.V.
    Inventors: Pei Cheh Chen, Omar Eduardo Montero Camacho, Laurence Scott Samuelson, Yongjian Sun
  • Publication number: 20100243430
    Abstract: In an apparatus and method for magnetic field assisted electrochemical discharge machining (ECDM), the magneto hydrodynamic (MHD) effect is utilized to improve the thickness of bubble film and the electrolyte circulation so as to enhance the machining accuracy and efficiency. Since charged ions in a magnetic field are induced by Lorenz force to move, and the electrolysis bubbles generated in the ECDM process are suffused with electrification ions on their surfaces, the electrolysis bubbles can be forced to move in the direction of the magnetic field without the need of mechanical disturbance. The present invention can be widely applied in the micro-machining of non-conductive brittle materials of different dimensions and shapes, comprising the forming of microchannels and microholes on a biochip, and in the micro-opto-electro-mechanical system (MOEMS) and various kinds of micro-machining fields. The machined surface is smooth and does not require a second time machining.
    Type: Application
    Filed: July 27, 2009
    Publication date: September 30, 2010
    Inventors: Biing-Hwa Yan, Chih-Ping Cheng, Kun-Ling Wu, Yu-Shan Hsu
  • Publication number: 20100230275
    Abstract: In a method in which two anodes are operated alternately opposite each other as plasma discharge anodes and as cathodes for self-cleaning, and the cathodes of the plasma discharge are recurrently briefly reversed in polarity, and an arrangement comprising a cathode and a first and a second anode supplied with voltage by an H-bridge circuit, pole reversal of cathode voltage is effected by a pulse current supply, at least one anode is maintained at positive potential at all times and the other anode intermittently at negative potential during an etching time, and the H-bridge circuit is operationally connected to the pulse current supply, such that at least one anode is at positive potential at all times.
    Type: Application
    Filed: September 25, 2008
    Publication date: September 16, 2010
    Applicant: VON ARDENNE ANLAGENTECHNIK GMBH
    Inventors: Goetz Teschner, Enno Mirring, Johannes Struempfel, Andreas Heisig
  • Publication number: 20100230385
    Abstract: A method (and apparatus) of imprint lithography, includes imprinting, via a patterned mask, a pattern into a resist layer on a substrate, and overlaying a cladding layer over the imprinted resist layer. A portion of the cladding layer is used as a hard mask for a subsequent processing.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Matthew E. Colburn, Theodore G. Van Kessel, Yves C. Martin, Dirk Pfeiffer
  • Patent number: 7788798
    Abstract: A method for manufacturing a magnetic write head having a wrap around magnetic shield. The method allows a highly accurate short wavelength such as 193 mm photolithography to be used to accurately define the placement and critical dimension of wrap around magnetic shield. The method includes the formation of a magnetic write pole, top gap, and side gap and the deposition of a RIEable fill layer thereover, and CMP to planarization. A 193 nm photolithography and ion milling is used to form a mask over the RIEable layer and one or more reactive ion etching processes are performed to pattern the RIEable layer through 193 nm photolithography mask. A wrap around shield can then be electroplated into the opening formed in the RIEable layer.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hung-Chin Guthrie, Ming Jiang, Changqing Shi, Sue Siyang Zhang
  • Publication number: 20100213161
    Abstract: Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
    Type: Application
    Filed: May 6, 2010
    Publication date: August 26, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Thomas Hantschel, David K. Fork, Eugene M. Chow, Dirk De Bruyker, Michel A. Rosa
  • Publication number: 20100206720
    Abstract: A method of producing inorganic nanoparticles includes: (a) providing a layered structure including a substrate and an inorganic layer; (b) disposing the layered structure in a vacuum chamber, vacuuming the vacuum chamber, and introducing a gas into the vacuum chamber; and (c) applying microwave energy to the gas to produce a microwave plasma of the gas within the vacuum chamber so that the inorganic layer is acted by the microwave plasma and formed into a plurality of inorganic nanoparticles on the substrate. A system for producing the nanoparticles is also disclosed.
    Type: Application
    Filed: May 22, 2009
    Publication date: August 19, 2010
    Inventors: Kuan-Jiuh Lin, Chuen-Yuan Hsu
  • Patent number: 7770281
    Abstract: A method of forming a perpendicular magnetic recording write head having a trailing shield (TS) with a precisely defined throat height (TH) on an air-bearing slider includes depositing an electrical lapping guide (ELG) layer on the substrate adjacent to and spaced from the write pole (WP) layer. A nonmagnetic TS pad layer is deposited on both the gap layer and the ELG layer, with the TS pad layer patterned to have a front edge extending across the both the ELG layer and the gap layer and recessed from the line where the substrate will be later cut to form the slider. An ELG protection layer is patterned on the ELG layer, the TS pad layer material is removed from the ELG layer in the region recessed from the TS pad layer front edge, and the ELG layer is removed in regions not covered by the ELG protection layer.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: August 10, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Aron Pentek
  • Publication number: 20100187101
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, lower electrodes having cylindrical shapes are provided to be arranged repeatedly on a substrate. Upper surfaces of the lower electrodes are flat so that the lower electrodes have uniform heights. Supporting structures are provided between the lower electrodes to support the lower electrode, the supporting structure partially contacting outer surfaces of sidewalls of the lower electrodes that are arranged in a line. A dielectric layer is formed on surfaces of the lower electrodes and the supporting structures. An upper electrode is provided on the dielectric layer. The semiconductor device includes a capacitor having an improved capacitance. Further, the capacitor includes the support structure between the lower electrodes to prevent the adjacent lower electrodes from being short each other.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 29, 2010
    Inventors: Gil-Sub Kim, Won-Mo Park, Seong-Ho Kim, Dong-Kwan Yang, Ho-Ju Song
  • Publication number: 20100104450
    Abstract: There are described dispensers (10; 20; 30; 40; 50; 60) of alkali or alkaline-earth metals, comprising deposits of getter materials (13; 23; 33; 43; 53; 63) and alkali or alkaline-earth metal sources (12, 22; 32; 42; 53; 63), in which the sources of alkali or alkaline-earth metal are protected from environmental gases by said deposits of getter materials.
    Type: Application
    Filed: February 12, 2008
    Publication date: April 29, 2010
    Applicant: SAES GETTERS S.P.A.
    Inventors: Giorgio Longoni, Marco Amiotti
  • Patent number: 7662264
    Abstract: A method for producing a magnetic recording medium, includes: forming an SOG film on a surface of a magnetic layer; forming a concavo-convex structure in the SOG film comprising one selected from a group consisting of silica glass, alkylsiloxane polymer, methyl silsesquioxane polymer, hydrogen silsesquioxane polymer and hydro alkylsiloxane polymer; etching the SOG film to expose the surface of the magnetic layer; etching the exposed surface of the magnetic layer by ion milling; and forming a filling layer on the surface of the magnetic layer while leaving a portion of the magnetic layer having been subjected to the ion milling.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Shirotori, Yoshiyuki Kamata, Masatoshi Sakurai
  • Publication number: 20100032581
    Abstract: A method is described for producing a micro-gripper, which comprises a base body and a gripping body connected integrally to the base body, which projects beyond the base body and provides a receptacle slot on a free end area in such a way that a micrometer-scale or sub-micrometer-scale object may be clamped in the receptacle slot for gripping and holding, as well as a micro-gripper according to the species.
    Type: Application
    Filed: March 9, 2007
    Publication date: February 11, 2010
    Inventors: Christian Grosse, Frank Altmann, Michél Simon, Hilmar Hoffmeister, Detlef Riemer
  • Publication number: 20100025231
    Abstract: A method for cleaning an optical element of an extreme ultraviolet light source device for removing, from the optical element in a chamber, scattered matter generated together with extreme ultraviolet light by plasma formed through laser beam excitation of a target in the chamber, the method which comprises: making the scattered matter generated by the plasma no larger than nanosize by using solid tin as the target and using a CO2 laser as an excitation source of the solid tin; and imparting, to the scattered matter no larger than the nanosize adhered to the optical element, an effect of overcoming the adherence of the scattered matter.
    Type: Application
    Filed: April 24, 2008
    Publication date: February 4, 2010
    Applicant: KOMATSU LTD.
    Inventors: Masato Moriya, Yoshifumi Ueno, Tamotsu Abe, Akira Sumitani
  • Publication number: 20100022030
    Abstract: The present invention relates generally to semiconductor fabrication and particularly to fabricating magnetic tunnel junction devices. In particular, this invention relates to a method for using the dielectric layer in tunnel junctions as an etch stop layer to eliminate electrical shorting that can result from the patterning process.
    Type: Application
    Filed: September 2, 2009
    Publication date: January 28, 2010
    Applicant: TEGAL CORPORATION
    Inventor: Robert Anthony Ditizio
  • Publication number: 20100011550
    Abstract: Controlled corrosion processes in the production of lead acid batteries, wherein the processes utilize one atmospheric glow discharge plasma (OAGDP) to generate etched and chemically altered grids to increase the development of electrically conductive lead dioxide. The process involves placing pasted or unpasted lead or lead alloy grids in a chamber having two plasma-generating electrodes therein. A feed stream is directed into the chamber and passes between the electrodes to develop a plasma at atmospheric pressure. In the plasma, the components of the feed stream break down into atomic and reactive species to create a reactive environment.
    Type: Application
    Filed: April 3, 2009
    Publication date: January 21, 2010
    Inventor: Battle Glascock
  • Publication number: 20100006142
    Abstract: Deposition apparatus for uniformly forming material on a substrate in accordance with an exemplary embodiment is provided. The deposition apparatus includes an energy source, an electrode in a facing, spaced relationship with respect to the substrate, and interface structure joined to the electrode. The interface structure is configured to electrically couple energy from the energy source through and about the interface structure to the electrode for formation of a substantially uniform electric field between the electrode and a predetermined area of the substrate when the interface structure is supplied with energy from the energy source.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 14, 2010
    Inventors: Yang Li, Scott Jones, Vin Cannella, Arun Kumar, Joachim Doehler, Kais Younan
  • Publication number: 20100006427
    Abstract: A reactor for carrying out an etching method for a stack of masked wafers, using an etching gas, preferably chlorotrifluoride (ClF3), wherein the reactor includes a device for carrying out a plasma process. An etching method for masked wafers, using an etching gas, preferably chlorotrifluoride (ClF3), the wafer being pretreated in a plasma process before an etching process, wherein the wafer pretreatment and the etching process for a stack of wafers take place in a reactor chamber.
    Type: Application
    Filed: May 29, 2006
    Publication date: January 14, 2010
    Inventors: Joachim Rudhard, Christina Leinenbach
  • Patent number: 7641998
    Abstract: An electrically conductive separator element and assembly for a fuel cell which comprises an electrically conductive substrate having a monoatomic layer coating overlying the substrate. The monatomic layer coating may comprise an electrically conductive material, for example, a noble metal, desirably Ru, Rh, Pd, Ag, Ir, Os and preferably Au. Methods of making such separator elements and assemblies are also provided.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: January 5, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gayatri Vyas, Mahmoud H. Abd Elhamid, Youssef M. Mikhail
  • Publication number: 20090314635
    Abstract: An organic film and a metal electrode (a cathode film) are formed on an indium tin oxide (ITO) of a substrate. The plasma processing apparatus supplies at least one of a predetermined processing gas for chemically reacting with the organic film and a predetermined inert gas for sputtering the organic film from a gas supply source into a processing container, wherein the metal electrode is used as a mask. The plasma processing gas also supplies microwaves from a microwave generator as energy for exciting the at least one of the predetermined processing gas and the predetermined inert gas. The plasma processing apparatus generates plasma from the at least one of the predetermined processing gas and the predetermined inert gas supplied to the processing container by using electric field energy of the microwaves, and etches the organic film by using the generated plasma.
    Type: Application
    Filed: March 20, 2009
    Publication date: December 24, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kazuki MOYAMA, Tomohiko EDURA
  • Patent number: 7628897
    Abstract: A film is deposited on a substrate disposed in a substrate processing chamber. The substrate has a trench formed between adjacent raised surfaces. A first portion of the film is deposited over the substrate from a first gaseous mixture flowed into the process chamber by chemical-vapor deposition. Thereafter, the first portion is etched by flowing an etchant gas having a halogen precursor, a hydrogen precursor, and an oxygen precursor into the process chamber. Thereafter, a second portion of the film is deposited over the substrate from a second gaseous mixture flowed into the processing chamber by chemical-vapor deposition.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: December 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Hemant P. Mungekar, Anjana M. Patel, Manoj Vellaikal, Anchuan Wang, Bikram Kapoor
  • Patent number: 7611610
    Abstract: An improved method of controlling topographical variations when milling a cross-section of a structure, which can be used to reduce topographical variation on a cross-section of a write-head in order to improve the accuracy of metrology applications. Topographical variation is reduced by using a protective layer that comprises a material having mill rates at higher incidence angles that closely approximate the mill rates of the structure at those higher incidence angles. Topographical variation can be intentionally introduced by using a protective layer that comprises a material having mill rates at higher incidence angles that do not closely approximate the mill rates of the structure at those higher incidence angles.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: November 3, 2009
    Assignee: Fei Company
    Inventors: James P. Nadeau, Pei Zou, Jason H. Arjavac
  • Publication number: 20090266705
    Abstract: The method of manufacturing a vertical magnetic head comprises the steps of: forming a resist pattern including a concave section on a wafer substrate; laminating a plurality of films in the concave section until forming a prescribed multilayer structure of the main magnetic pole; and removing the resist pattern. Inner faces of the concave section are perpendicular to a surface of the wafer substrate. The laminating step includes the sub-steps of: (a) performing a sputtering process, in which particles are perpendicularly sputtered with respect to the surface of the wafer substrate, a plurality of times so as to laminate a plurality of sputtered films in the concave section; and (b) removing the sputtered films, which have been stuck on the resist pattern in the sub-step (a), from the resist pattern. The sub-steps (a) and (b) are repeated until the prescribed multilayer structure is formed.
    Type: Application
    Filed: December 11, 2008
    Publication date: October 29, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Kentaro Suzuki, Kazuaki Satoh
  • Patent number: 7601246
    Abstract: Methods of depositing a protective coating of a silicon-containing or metallic material onto a semiconductor substrate include sputtering such material from an electrode onto a semiconductor substrate in a plasma processing chamber. The protective material can be deposited onto a multi-layer mask overlying a low-k material and/or onto the low-k material. The methods can be used in dual damascene processes to protect the mask and enhance etch selectivity, to protect the low-k material from carbon depletion during resist strip processes, and/or protect the low-k material from absorption of moisture.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: October 13, 2009
    Assignee: Lam Research Corporation
    Inventors: Jisoo Kim, Jong Shon, Biming Yen, Peter Loewenhardt
  • Publication number: 20090229972
    Abstract: An apparatus for producing features having a surface roughness in a substrate includes, according to one embodiment, a conductive first electrode disposed in opposition to a conductive second electrode, where the first and second electrodes are spaced apart from each other by a distance adapted for generating a microplasma therebetween. The second electrode is a substrate, and the first electrode and the substrate are configured for relative motion in at least two opposing directions. A feature comprising a surface roughness of greater than about 10 nm is formed in the substrate when the microplasma is generated. Preferably the feature has a width of about 300 nm or less. A plurality of the features (e.g., an ordered array of features) may be produced in the substrate, if desired. The substrate may be a silver-coated glass substrate used for surface-enhanced Raman scattering (SERS) analysis of biochemical molecules.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Inventors: R. Mohan Sankaran, R. Craig Virnelson
  • Patent number: 7582490
    Abstract: A method for controlling a gap in an electrically conducting solid state structure provided with a gap. The structure is exposed to a fabrication process environment conditions of which are selected to alter an extent of the gap. During exposure of the structure to the process environment, a voltage bias is applied across the gap. Electron tunneling current across the gap is measured during the process environment exposure and the process environment is controlled during process environment exposure based on tunneling current measurement. A method for controlling the gap between electrically conducting electrodes provided on a support structure. Each electrode has an electrode tip separated from other electrode tips by a gap. The electrodes are exposed to a flux of ions causing transport of material of the electrodes to corresponding electrode tips, locally adding material of the electrodes to electrode tips in the gap.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 1, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Gregor M. Schürmann, Gavin M. King, Daniel Branton
  • Publication number: 20090200269
    Abstract: A flexible polymer or elastomer coated RF return strap to be used in a plasma chamber to protect the RF strap from plasma generated radicals such as fluorine and oxygen radicals, and a method of processing a semiconductor substrate with reduced particle contamination in a plasma processing apparatus. The coated RF strap minimizes particle generation and exhibits lower erosion rates than an uncoated base component. Such a coated member having a flexible coating on a conductive flexible base component provides an RF ground return configured to allow movement of one or more electrodes in an adjustable gap capacitively coupled plasma reactor chamber.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 13, 2009
    Applicant: Lam Research Corporation
    Inventors: Bobby Kadkhodayan, Jon McChesney, Eric Pape, Rajinder Dhindsa
  • Patent number: 7560658
    Abstract: Here is presented a versatile technique for machining of nanometer-scale features using tightly-focused ultrashort laser pulses. By the invention, the size of features can be reduced far below the wavelength of light, thus enabling nanomachining of a wide range of materials. The features may be extremely small (<20 nm) and are highly reproducible.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: July 14, 2009
    Assignee: The Regents Of The University Of Michigan
    Inventors: Alan J. Hunt, Gerald Mourou, Ajit P. Joglekar, Edgar Meyhofer, John A. Nees, Greg Spooner
  • Publication number: 20090176120
    Abstract: A method is described that can be used in electrodes for electrochemical devices and includes disposing a precious metal on a top surface of a corrosion-resistant metal substrate. The precious metal can be thermally sprayed onto the surface of the corrosion-resistant metal substrate to produce multiple metal splats. The thermal spraying can be based on a salt solution or on a metal particle suspension. A separate bonding process can be used after the metal splats are deposited to enhance the adhesion of the metal splats to the corrosion-resistant metal substrate. The surface area associated with the splats of the precious metal is less than the surface area associated with the top surface of the corrosion-resistant metal substrate. The thermal spraying rate can be controlled to achieve a desired ratio of the surface area of the metal splats to the surface area of the corrosion-resistant metal substrate.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 9, 2009
    Applicant: TREADSTONE TECHNOLOGIES, INC.
    Inventor: Conghua Wang
  • Patent number: 7550174
    Abstract: A separator assembly for use in a stack of electrochemical cells is provided, having a first conductive metallic substrate with a first surface and a second conductive metallic substrate with a second surface, wherein each of the first and second surfaces are overlaid with an ultra-thin electrically conductive metal coating. The first and second surfaces form electrically conductive paths at regions where the metal coating of the first and second layer contact one another. The contact of the surfaces overlaid with metal coating is sufficient to join the first and second substrates to one another. Preferred metal coatings comprise gold (Au). Methods of making such separator assemblies are also provided.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 23, 2009
    Assignee: GM Global Technologies Operations, Inc.
    Inventors: Gayatri Vyas, Michael Budinski, Brian K Brady, Michael K Lukitsch, Harald Schlag
  • Publication number: 20090145747
    Abstract: A magnetron sputtering method for vacuum coloring a metal strip passing above at least one conductive counter electrode in a vacuum chamber. The method creates a plasma in a gas close to the metal strip, such as to generate radicals and/or ions that act on the strip, a magnetic confinement circuit being positioned above the strip. The counter electrode includes a mobile surface that can move in rotation and/or translation in relation to the metal strip, the surface being moved during the coloring process and being continuously cleaned by a cleaning device that is obscured from the plasma before being exposed once again to the plasma. A coloring installation can implement the method.
    Type: Application
    Filed: January 22, 2009
    Publication date: June 11, 2009
    Applicant: AcrelorMittal France
    Inventors: Hugues CORNIL, Benoit Deweer, Claude Maboge
  • Patent number: 7509729
    Abstract: A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 31, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Amanda Baer, Michael Feldbaum, Hung-Chin Guthrie, Aron Pentek
  • Patent number: 7494575
    Abstract: A method of manufacturing a split probe tip on a cantilever comprises providing a cantilever having a surface on which is formed a probe that projects outwardly from the surface at one end of the cantilever, irradiating and scanning a tip of the probe with a focused particle beam directed in a direction that is inclined relative to the surface of the cantilever to obtain an image of the probe tip, and determining the center of the probe tip from the image of the probe tip. Then a first channel is formed in the probe tip at the center thereof by irradiating and scanning the center of the probe tip with a focused particle beam to form a split probe tip having two spaced-apart probe tip parts.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: February 24, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Shoji Sadayama, Yoshiharu Shirakawabe, Kazutaka Takahashi
  • Publication number: 20080271991
    Abstract: A continuous-flow supercritical fluid (SCF) apparatus and method for the deposition of thin films onto microelectronic devices or the removal of unwanted layers, particles and/or residues from microelectronic devices having same thereon. The SCF apparatus preferably includes a dynamic mixer to ensure homogeneous mixing of the SCF and other chemical components.
    Type: Application
    Filed: April 17, 2006
    Publication date: November 6, 2008
    Applicant: Advanced Technology Materials , Inc.
    Inventors: Michael B. Korzenski, Eliodor G. Ghenciu, Chongying Xu, Thomas H. Baum, Pamela M. Visintin
  • Patent number: 7423957
    Abstract: The present invention provides an optical information recording medium of excellent signal quality in high density recording onto a semitransparent information layer, its manufacturing method and a manufacturing apparatus. The optical information recording medium of the present invention includes at least a semitransparent information layer disposed between a circular transparent substrate and a protective substrate, in which the information layer has spiral grooves for guiding a light beam, and also includes a recording film capable of recording/reproducing information thereon/therefrom by changing at least in two states detectable optically by irradiation of the light beam from the transparent substrate side, and the difference in film thickness of slope portions of the inner circumferential side and outer circumferential side of the groove is within ±10% in the entire region for recording/reproducing information.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: September 9, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideo Kusada, Ken'ichi Nagata, Hideki Kitaura, Kenichi Nishiuchi, Noboru Yamada, Rie Kojima
  • Publication number: 20080211605
    Abstract: A coupling conductor for a YIG filter or YIG oscillator, which may be produced from a metallic foil by eroding, laser cutting and/or etching of a metallic foil. The coupling conductor includes at least one curved section, which at least partially surrounds a YIG element and at least one conductor section.
    Type: Application
    Filed: November 7, 2005
    Publication date: September 4, 2008
    Applicant: ROHDSE & SCHWARZ GMBH & CO. KG
    Inventors: Wilhelm Hohenester, Claus Tremmel
  • Publication number: 20080178444
    Abstract: A piezoelectric thin film resonator which can reduce variations in resonant frequency and resonant resistance by uniformly planarizing a structural film, and a method of manufacturing the piezoelectric thin film resonator. The piezoelectric thin film resonator has a substrate having at least one flat major surface; a dielectric film having two support portions supported by the major surface of the substrate and a floating portion which is connected to the support portions and which is disposed over the major surface of the substrate with an airspace layer provided therebetween; and a vibration portion which is formed of a pair of electrodes and a piezoelectric thin film provided therebetween and which is provided on the floating portion of the dielectric film at a side opposite to the airspace layer. A surface of the dielectric film at a side opposite to the substrate is planarized by a plasma treatment using an inert gas or a gas containing an element forming a dielectric film.
    Type: Application
    Filed: March 24, 2008
    Publication date: July 31, 2008
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Hidetoshi Fujii, Ryuichi Kubo
  • Publication number: 20080179183
    Abstract: A non-axisymmetric electromagnet coil used in plasma processing in which at least one electromagnet coil is not symmetric with the central axis of the plasma processing chamber with which it is used but is symmetric with an axis offset from the central axis. When placed radially outside of an RF coil, it may reduce the azimuthal asymmetry in the plasma produced by the RF coil. Axisymmetric magnet arrays may include additional axisymmetric electromagnet coils. One axisymmetric coil is advantageously placed radially inside of the non-axisymmetric coil to carry opposed currents. The multiple electromagnet coils may be embedded in a molded encapsulant having a central bore about a central axis providing the axisymmetry of the coils.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Applicant: Applied Materials, Inc.
    Inventors: CHRISTOPHER BOITNOTT, KEITH A. MILLER
  • Publication number: 20080181810
    Abstract: A magnetic film of an oxide-containing cobalt base alloy has a smaller coercivity difference than conventional magnetic films. A target material and a sputtering target of the invention are capable of forming the magnetic film. A manufacturing method of the target material is also disclosed. The magnetic film of an oxide-containing cobalt base alloy and the oxide-containing cobalt base alloy target material each have a Fe content of 100 ppm or less. The sputtering target includes the target material bonded to a backing plate. The manufacturing method of the oxide-containing cobalt base alloy target material includes preparing a Co—Cr alloy by melting Cr ingot and at least one Co source selected from Co ingot and Co powder, preparing Co—Cr alloy powder by atomizing the Co—Cr alloy, preparing a mixed powder by mixing the Co—Cr alloy powder, Pt powder and oxide powder, and sintering the mixed powder after forming or simultaneously with forming.
    Type: Application
    Filed: September 18, 2007
    Publication date: July 31, 2008
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Kazuteru Kato
  • Publication number: 20080173538
    Abstract: A sputtering apparatus includes a target electrode and a bias source electrically coupled to the target electrode. A wafer chuck is spaced from the target electrode. The wafer chuck is partitioned into a plurality of zones, each zone being coupled to receive an AC signal having an amplitude that can vary by zone. At least one RF coil is positioned adjacent a space between the target electrode and the wafer chuck.
    Type: Application
    Filed: January 19, 2007
    Publication date: July 24, 2008
    Inventors: Sun-Oo Kim, Bum Ki Moon, Erdom Kaltalioglu
  • Patent number: 7403095
    Abstract: A thin film resistor structure and a method of fabricating a thin film resistor structure is provided. The thin film resistor structure includes an electrical interface layer or head layer that is a combination of a Titanium (Ti) layer and a Titanium Nitride (TiN) layer. The combination of the Ti layer and the TiN layer mitigates resistance associated with the electrical interface layers.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Brian Vialpando, Eric William Beach, Philipp Steinmann
  • Patent number: 7386934
    Abstract: Double photolithography is used to produce an under-layer of protective and filtering photoresist over a substrate that will have channels milled with a FIB. Secondary layers are applied with precision on top of the first layer in order to define the precise patterns to be milled and to provide targeting and alignment fiducials.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 17, 2008
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Joseph Tersteeg
  • Publication number: 20080121620
    Abstract: A processing system includes a chamber. A plurality of processing stations in a center region in the chamber can be sequentially positioned when viewed in a first direction. The plurality of processing stations is configured to provide at least one processing step selected from the group consisting of thermal evaporation, thermal sublimation, sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), ion etching, or sputter etching. A plurality of substrates in the chamber can be sequentially positioned when viewed in the first direction. At least one of the plurality of substrate comprises a receiving surface configured to receive the at least one processing step from the plurality of processing stations.
    Type: Application
    Filed: November 24, 2006
    Publication date: May 29, 2008
    Inventors: G. X. Guo, K. A. Wang
  • Patent number: 7378003
    Abstract: A focused particle beam system, according to one embodiment of the invention, precisely shapes a pole-tip assembly formed by a multi-layer device having a first layer with a first structural element, a second layer with a second structural element, and a shielding layer with a shielding element, the shielding element being located between the first layer and the second layer. The focused particle beam system mills the second structural element without irradiating a first structural element. The system images a selected portion of the multi-layer device to locate the shielding element and thereby avoids irradiating the first structural element. The shielding element separates the first structural element from the second structural element. Based on the location of the shielding element, the system images and mills the second structural element without irradiating the first structural element.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: May 27, 2008
    Assignee: FEI Company
    Inventors: Gregory J. Athas, Russel Mello
  • Patent number: 7367999
    Abstract: A method of producing ultrafine particles by vaporization comprising: vaporizing a target by sputtering; causing particles that fly from the target by vaporization to be deposited on an oil surface; and recovering the oil on which the flown particles have deposited to obtain individually dispersed ultrafine particles.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: May 6, 2008
    Assignee: Fujifilm Corporation
    Inventor: Hiroshi Fujimoto
  • Patent number: RE40264
    Abstract: The present invention provides a technique, including a method and apparatus, for etching a substrate in the manufacture of a device. The apparatus includes a chamber and a substrate holder disposed in the chamber. The substrate holder has a selected thermal mass to facilitate changing the temperature of the substrate to be etched during etching processes. That is, the selected thermal mass of the substrate holder allows for a change from a first temperature to a second temperature within a characteristic time period to process a film. The present technique can, for example, provide different processing temperatures during an etching process or the like.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: April 29, 2008
    Inventor: Daniel L. Flamm