Flux Passes Through Target Surface Patents (Class 204/298.17)
  • Patent number: 6454911
    Abstract: The invention includes an apparatus and method for determining the pass through flux of magnetic materials. The apparatus comprises one or more magnetic field sensors arranged in such a way as to collect field strength data in any or all the x, y, z directions. The apparatus also comprises a magnet field source or arrangement of magnet field sources which are placed beneath the material being characterized and includes a mechanism whereby the magnetic material can be mapped by the movement of any one or combination of: magnetic field source or sources, sensors and magnetic material. The invented method comprises the use of various configurations of magnetic sources in order to generate a magnetic field that emulates the open-loop condition found in magnetron sputtering.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: September 24, 2002
    Assignee: Honeywell International Inc.
    Inventors: Yun Xu, Wei Guo, Stephen Turner
  • Patent number: 6444104
    Abstract: A target for a magnetron plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated and has a width of preferably at least 5 cm and an aspect ratio of at least 1:2, preferably 1:1. Various types of magnetic means positioned around the walls of the vault, some of which may rotate along the vault, create a magnetic field in the vault to support a plasma extending over a large volume of the vault from its top to its bottom. The large plasma volume within the vault increases the probability that the sputtered metal atoms will become ionized and be accelerated towards an electrically biased wafer support electrode.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: September 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu
  • Patent number: 6444105
    Abstract: A novel hollow cathode magnetron source is disclosed. The source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: September 3, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok F. Lai, Andrew L. Nordquist, Kaihan A. Ashtiani, Larry D. Hartsough, Karl B. Levy
  • Patent number: 6440282
    Abstract: In a sputtering device which has a small rotatable magnetron (30) arranged opposite a target 16, the magnetron (30) has a first magnet band (44) and a second magnet opposite a target 16, the magnetron (30) has a first magnet band (44) and a second magnet a greater total magnetic flux. Some of the lines of magnetic flux from the second magnet band (42) pass through the first magnet band (44) and terminate at the second magnet band (42). The remaining lines of magnetic flux from the second magnet band (42) form a magnetic flux loop that encloses the first magnet band (44) and that terminates at the second magnet band (42). The outer band is preferably in an oval shape having a minor axis no smaller than 0.8 of the major axis, and more preferably in a circular shape.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Yuichi Wada, Hisashi Aida, Kihwan Yoon
  • Patent number: 6436251
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Preferably, the magnetron includes annular magnets of opposed polarities disposed behind the two vault sidewalls and a small closed unbalanced magnetron of nested magnets of opposed polarities scanned along the vault roof. The nested magnets are rotated along the vault. An integrated copper via filling process with the inventive reactor or other reactor includes a first step of highly ionized sputter deposition of copper, which can optionally be used to remove the barrier layer at the bottom of the via, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and a third step of electroplating copper into the hole to complete the metallization. The first two steps can be also used with barrier metals.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 20, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Wei Wang
  • Patent number: 6432285
    Abstract: A magnet assembly for magnetron sputtering includes a base pole member defining a plane and formed of magnetically permeable material. A center primary magnet is positioned on the base pole member and has its north-south magnetic orientation extending substantially perpendicular to the plane of the base pole member. An outer primary magnet is positioned on the pole member and has a north-south magnetic orientation extending substantially perpendicular to the plane of the base pole member and in a direction opposite to the magnetic orientation of the center primary magnet. A center secondary magnet is positioned between the center primary magnet and the outer primary magnet and has a north-south magnetic orientation extending substantially perpendicular to the plane of the base pole member and in a direction opposite to the magnetic orientation of the center primary magnet.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: August 13, 2002
    Assignee: Cierra Photonics, Inc.
    Inventors: William P. Kastanis, M. Elizabeth Wescott
  • Patent number: 6432286
    Abstract: A hollow cathode magnetron for sputtering target material from the inner surface of a target onto an off-spaced substrate. The magnetron is in the shape of a truncated cone, also known as a conical frustum. The target cone is backed by a conical cathode maintained at a predetermined voltage for attracting gas ions into the inner surface of the target cone to sputter material therefrom. The sputtering plasma is made uniform over the entire surface of the target by assuring that the magnitude of the component of the magnetic field tangent to the target surface is constant. The plasma is further confined to the vicinity of the target by using electrostatic elements. Sputter coatings on planar substrates can achieve areal thickness nonuniformities of less than +/−0.2%.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: August 13, 2002
    Inventor: David A. Glocker
  • Publication number: 20020104751
    Abstract: Ionized Physical Vapor Deposition (IPVD) is provided by a method of apparatus (500) particularly useful for sputtering conductive metal coating material from an annular magnetron sputtering target (10). The sputtered material is ionized in a processing space between the target (10) and a substrate (100) by generating a dense plasma in the space with energy coupled from a coil (39) located outside of the vacuum chamber (501) behind a dielectric window (33) in the chamber wall (502) at the center of the opening (421) in the sputtering target. A Faraday type shield (26) physically shields the window to prevent coating material from coating the window, while allowing the inductive coupling of energy from the coil into the processing space.
    Type: Application
    Filed: June 29, 2001
    Publication date: August 8, 2002
    Inventors: John Stephen Drewery, Glyn Reynolds, Derrek Andrew Russell, Jozef Brcka, Mirko Vukovic, Michael James Grapperhaus, Frank Michael Cerio, Bruce David Gittleman
  • Publication number: 20020096427
    Abstract: A PVD system comprises a hollow cathode magnetron with a capability of producing a high magnetic field for PVD and a low magnetic field for pasting. The high magnetic field is used for PVD and causes an optimal uniform film to form on a substrate but redeposits some metals onto a top portion of a target within the magnetron. The low magnetic field erodes redeposited materials from a top portion of a target within the magnetron.
    Type: Application
    Filed: January 23, 2001
    Publication date: July 25, 2002
    Inventors: Jean Qing Lu, Tom Yu, Jeffrey Tobin
  • Patent number: 6423192
    Abstract: A sputtering apparatus includes a process chamber for accommodating a semiconductor wafer. A susceptor is disposed on the bottom of the interior of the process chamber, and a sputter target is disposed at the top of the process chamber. A cylindrical ion reflecting plate is disposed along the inner wall of the process chamber. A lower grounded component, which forms a path along which electrons are released, is disposed below the ion reflecting plate so as to surround the susceptor. A magnet is disposed behind the target outside the process chamber. Negative potentials are applied to the target and semiconductor wafer, and a positive potential is applied to the ion reflecting plate. The magnet forms a closed magnetic field for trapping electrons in a plasma on the surface of the target, and a divergent magnetic field for directing the electrons in the plasma to the lower grounded component.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: July 23, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Wada, Hideto Matsuyama, Tomio Katata, Atsuko Sakata, Koichi Watanabe
  • Patent number: 6419800
    Abstract: There may be used a film-forming apparatus having a substrate 4 that is rotatable around the center of one rotating axis 10 in the vertical direction situated in an inner cylinder 12, and a plurality (four in FIG. 2) of target units each comprising the pair of targets 2A, 2B (2B is under 2A serially arranged in the vertical direction inside an outer cylinder 13 opposite the surface 4a of the substrate 4, which are arranged in parallel in the circumferential direction of the inner wall of the outer cylinder 13. By employing a method whereby voltage is applied while alternatively reversing the polarity to each of the targets 2A, 2B, it is possible to form a coating on the surface of a substrate by glow discharge sputtering, to accomplish destaticizing while the sputtering can be carried out using a small in-line or bell jar apparatus with small space.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 16, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Toshiaki Anzaki, Kenji Mori
  • Publication number: 20020088711
    Abstract: A PVD system comprises a hollow cathode magnetron with a downstream plasma control mechanism. The magnetron has a hollow cathode with a non-planar target and at least one electromagnetic coil to generate and maintain a plasma within the cathode. The magnetron also has an anode located between the cathode and a downstream plasma control mechanism. The control mechanism comprises a first, second and third electromagnetic coil beneath a mouth of the target, vertically spaced so as to form a tapered magnetic convergent lens between the target mouth and a pedestal of the magnetron.
    Type: Application
    Filed: January 9, 2001
    Publication date: July 11, 2002
    Inventors: Jean Qing Lu, Tom Yu, Linda Stenzel, Jeffrey Tobin
  • Patent number: 6413382
    Abstract: A magnetron sputter reactor having a target that is pulsed with a duty cycle of less than 10% and preferably less than 1% and further having a small magnetron of area less than 20% of the target area rotating about the target center, whereby a very high plasma density is produced during the pulse adjacent to the area of the magnetron. The power pulsing frequency needs to be desynchronized from the rotation frequency so that the magnetron does not overlie the same area of the magnetron during different pulses. Advantageously, the power pulses are delivered above a DC background level sufficient to continue to excite the plasma so that no ignition is required for each pulse.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Wei Wang, Praburam Gopalraja, Jianming Fu, Zheng Xu
  • Patent number: 6413392
    Abstract: A sputtering device that efficiently guides sputtering particles ejected from a target to a film deposition subject and prolongs the interval at which a stick preventive member requires replacement. The sputtering device 1 has a vacuum chamber in which a specified sputtering target is placed so as to face a substrate 4 that is also placed in the vacuum chamber 2, and deposits a film on a surface of the substrate 4 using sputtering particles 20 ejected from the sputtering target 6; and particle ejection sections 60 constructed so as to slope at a specified angle of 30° to 60° with respect to the surface of the substrate 4, and respectively facing each other in the shape of a funnel are provided on the sputtering target 6. Lines of magnetic force 13 run from an N pole of a magnet 7a arranged at a rear surface of the target 6 to an S pole of a magnet 7b arranged around the target 6.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: July 2, 2002
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventors: Tsuyoshi Sahoda, Toshimitsu Uehigashi, Yasushi Higuchi, Kuniaki Nakajima, Tomoyasu Kondo
  • Patent number: 6406599
    Abstract: A plasma sputter reactor including a target with an annular vault formed in a surface facing the wafer to be sputter coated and having inner and outer sidewalls and a roof thereover. A well is formed at the back of the target between the tubular inner sidewall. A magneton associated with the target includes a stationary annular magnet assembly of one vertical polarity disposed outside of the outer sidewall, a rotatable tubular magnet assembly of the other polarity positioned in the well behind the inner sidewall, and a small unbalanced magnetron rotatable over the roof about the central axis of the target. The lower frame supports the target while the upper frame supports the magnetron, including the magnets adjacent the lower frame. The inner magnet assembly has a cooling water passage passing to the bottom of the inner magnet to inject the cooling water to the bottom of the well.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 18, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Anantha Subramani, Umesh Kelkar, Jianming Fu, Praburam Gopalraja
  • Publication number: 20020066669
    Abstract: Disclosed is a facing-targets-type sputtering apparatus and method capable of forming a metal film under the conditions of low gas pressure and low discharge voltage. An opening is formed in each of two facing side faces of a vacuum chamber vessel or in each of two facing side faces of a box-type discharge unit attached to an opening portion of a vacuum chamber vessel. The two openings are covered by a pair of cooling blocks. Each cooling block holds a target facing a discharge space. Magnetic field generation means is disposed so as to surround each target and operative to generate a magnetic field that surrounds a discharge space provided between the paired targets. Electron reflection means is disposed above the exposed surface of each target along the periphery of the target. A DC power and a high-frequency power are applied between the vacuum chamber vessel and the targets.
    Type: Application
    Filed: December 3, 2001
    Publication date: June 6, 2002
    Applicant: FTS Corporation
    Inventor: Sadao Kadokura
  • Publication number: 20020050453
    Abstract: The invention relates to a vapor deposition coating apparatus. More particularly it relates to an apparatus in which the ion current density is carefully controlled to improve coating. This control enhances the versatility and enlarges the range of deposition conditions which can be achieved within a single apparatus, so that coatings with very different properties can be deposited in the same equipment. The vapor deposition apparatus includes a vacuum chamber (1), at least one coating means or ionisation source (3) disposed at or about the periphery of a coating zone (2), one or more internal magnetic means (6) positioned such that the magnetic field lines (7) are generated across the coating zone (2) and means for altering the strength or position of the magnetic field lines to aid confinement.
    Type: Application
    Filed: September 13, 1999
    Publication date: May 2, 2002
    Inventor: DERMOT PATRICK MONAGHAN
  • Publication number: 20020046945
    Abstract: A sputter deposition apparatus and method includes perimeter magnets oriented an angle relative to the plane of the sputter target, either by magnetizing or by physically orienting the magnets at the chosen angle. The resulting magnetic flux extends radially outward, away from the central axis of the target, toward and beyond the target perimeter. This causes the return path of the flux to pass over the target surface more parallel to the plane of its sputtering surface. This spreads sputter erosion over a greater area of the target surface and mitigates development of sputtering grooves. Since target erosion is more uniform, more target material is used for sputter deposition, deterring waste. Each target can be used longer before the target material is penetrated, resulting in fewer target replacement cycles for a given volume of workpiece coating, raising the deposition chamber capacity factor.
    Type: Application
    Filed: June 6, 2001
    Publication date: April 25, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Akihiro Hosokawa, Ravi Mullapudi
  • Patent number: 6372098
    Abstract: An arrangement of magnets and stacks of magnets has been developed for use in magnetron sputtering devices. The arrangement may include commercially available or easily manufactured magnets. The arrangement may also include magnetic shunts to tune the magnetic field. The arrangements may be potted to provide protection from the environment, and may be incorporated into a system for cooling the magnets and target. When used in a magnetron sputtering device, the arrangement provides a magnetic field that results in nearly uniform sputtering over most of the target area. Further, the magnet arrangement provides target utilization values that are significantly higher than those provided by prior art magnet systems. Thus, the present invention also provides a method of arranging magnets for optimal performance and a method for improving target utilization.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: April 16, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Richard L. Newcomb, Hans Peter Theodorus Ceelen
  • Patent number: 6361662
    Abstract: Disclosed is a magnetron sputtering system enabling formation of a film of a ferroelectric substance by suppressing occurrence of a magnetic field due to an eddy current. The magnetron sputtering system includes a flat target; magnetic field applying means (magnets), provided in the vicinity of a back surface of the target, for applying a magnetic field to a front surface of the target; and magnetic field rotating means (motor) for rotating the magnetic field applying means so as to rotate the magnetic field applied to the front surface of the target. The magnetic field rotating means is provided with rotational speed varying means (speed controller) for varying the rotational speed of the magnetic field applied by the magnetic field rotating means.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: March 26, 2002
    Assignee: Sony Corporation
    Inventors: Yasuhiro Chiba, Keiichi Maeda, Mitsuru Taguchi
  • Publication number: 20020023837
    Abstract: The present invention provides a method and apparatus for achieving conformal step coverage of one or more materials on a substrate using sputtered ionized material. In one embodiment, a chamber having one or more current return plates, a support member, an electromagnetic field generator and a support member is provided. The target provides a source of material to be sputtered by a plasma and then ionized by an inductive coil, thereby producing electrons and ions. During processing, a bias is applied to the support member by an RF power source. The return plates are selectively energized to provide a return path for the RF currents, thereby affecting the orientation of an electric field in the chamber.
    Type: Application
    Filed: May 1, 2001
    Publication date: February 28, 2002
    Applicant: Applied Materials, Inc.
    Inventor: Bradley O. Stimson
  • Publication number: 20010050226
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Various types of magnetic means positioned around the vault create a magnetic field supporting a plasma extending over a large volume of the vault. An integrated copper via filling process includes a first step of highly ionized sputter deposition of copper, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and electroplating copper into the hole to complete the metallization.
    Type: Application
    Filed: July 30, 2001
    Publication date: December 13, 2001
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Sankaram Athreya, Wei D. Wang, Ashok K. Sinha
  • Publication number: 20010050225
    Abstract: Apparatus for creating subatmospheric high plasma densities in the vicinity of a substrate in a work space for use in magnetron sputter deposition aided by ion bombardment of the substrate. Unbalanced flux lines emanating from cylindrical or frusto-conical targets cannot be captured across the work space, because the energizing magnets are cylindrical, and instead converge toward the axis of the apparatus to provide a high flux density, and therefore a high plasma density, in the vicinity of a substrate disposed in this region. The plasma profile and the coating material profile within the work space are both cylindrically symmetrical, resulting in a consistent and predictable coating on substrates.
    Type: Application
    Filed: March 13, 2001
    Publication date: December 13, 2001
    Inventors: David A. Glocker, Mark M. Romach
  • Patent number: 6319372
    Abstract: A linear microwave plasma source comprises a leaktight chamber (10) under negative pressure and a microwave injection guide (12) that ends in a 90° elbow (13) opening perpendicularly into the chamber, a leaktight microwave window (15) being placed between the microwave injection guide (12) and the 90° elbow (13) such that they cause ionization of the gas in a zone (35) of electron cyclotron resonance located a few centimeters inside the elbow (13) that is under negative pressure. First and second permanent magnets (13, 17) are disposed on either side of said window (15), said magnets (16, 17) being installed with alternating polarity. A sputtering target (21) is located inside the plasma stream and electrically insulated from the chamber and charged with a negative polarity, and means (27) for injecting gas for controlling the ionic species of the plasma stream are provided.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: November 20, 2001
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Marc Delaunay
  • Patent number: 6312574
    Abstract: A ferromagnetic magnetron target contains a pattern of blind holes with a circular cross-section distributed along a sputtering surface thereof. A process produces the target for a given magnetron source with a given tunnel field and includes determining and storing the tunnel field course when individual blind holes are provided in a new target surface, additively superimposing the determined tunnel field course of plural individual blind holes, comparing the resulting tunnel field course with a DESIRED tunnel field course; and changing, as a function of the comparison result, the relative parameter position of one or more of the individual blind holes, or the like to control the working of blind holes into the plane target sputtering surface.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: November 6, 2001
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Hans Quaderer, Juergen Weichart
  • Patent number: 6287435
    Abstract: Ionized physical vapor deposition (IPVD) is provided by a method of apparatus for sputtering conductive metal coating material from an annular magnetron sputtering target. The sputtered material is ionized in a processing space between the target and a substrate by generating a dense plasma in the space with energy coupled from a coil located outside of the vacuum chamber behind a dielectric window in the chamber wall at the center of the opening in the sputtering target. Faraday type shields physically shield the window to prevent coating material from coating the window, while allowing the inductive coupling of energy from the coil into the processing space. The location of the coil in the plane of the target or behind the target allows the target to wafer spacing to be chosen to optimize film deposition rate and uniformity, and also provides for the advantages of a ring-shaped source without the problems associated with unwanted deposition in the opening at the target center.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: September 11, 2001
    Assignee: Tokyo Electron Limited
    Inventors: John Stephen Drewery, Glyn Reynolds, Derrek Andrew Russell, Jozef Brcka, Mirko Vukovic, Michael James Grapperhaus, Frank Michael Cerio, Jr., Bruce David Gittleman
  • Patent number: 6277249
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular trough facing the wafer to be sputter coated. Various types of magnetic means positioned around the trough create a magnetic field supporting a plasma extending over a large volume of the trough. For example, the magnetic means may include magnets disposed on one side within a radially inner wall of the trough and on another side outside of a radially outer wall of the trough to create a magnetic field extending across the trough, to thereby support a high-density plasma extending from the top to the bottom of the trough. The large plasma volume increases the probability that the sputtered metal atoms will become ionized. The magnetic means may include a magnetic coil, may include additional magnets in back of the trough top wall to increase sputtering there, and may include confinement magnets near the bottom of the trough sidewalls.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: August 21, 2001
    Assignee: Applied Materials Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Sankaram Athreya, Wei D. Wang, Ashok K. Sinha
  • Patent number: 6274014
    Abstract: A method for forming a thin film of a metal compound is disclosed. Within a vacuum chamber, a metallic ultra-thin film of a metal or an incompletely-reacted metal is deposited on a substrate. The metallic ultra-thin film is brought in contact with the electrically neutral activated species of a reactive gas so as to convert the metallic ultra-thin film to an ultra-thin film of a metal compound through the reaction of the metallic ultra-thin film with the activated species of the reactive gas. The above-described steps are sequentially repeated so as to deposit on the substrate the ultra-thin film of the metal compound in layers until a thin film of the metal compound having a desired thickness is formed on the substrate.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: August 14, 2001
    Assignee: Shincron Co., Ltd.
    Inventors: Shigeharu Matsumoto, Kazuo Kikuchi
  • Patent number: 6270633
    Abstract: The present invention relates to an artificial latticed multi-layer film deposition apparatus for depositing on a substrate a gigantic magneto-resistive effect film (GMR film) having an artificial lattice structure formed of magnetic metal films and non-magnetic metal films alternately laminated one over the other and its object is to provide the artificial latticed multi-layer film deposition apparatus to enable easy and secure deposition of an artificial latticed multi-layer film having GMR characteristics.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: August 7, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhiro Onaka, Sumio Maekawa, Shigeru Yamamoto, Masafumi Okamoto
  • Patent number: 6267851
    Abstract: A sputter deposition apparatus and method having a sputtering target that is tilted and a shield that intercepts particles that may fall from the target so that the particles do not deposit on the workpiece. The invention permits the workpiece to be oriented horizontally. More specifically, the sputtering target is mounted higher than the workpiece position and is oriented at an angle of 30 to 60 degrees relative to the vertical axis. The shield occupies an area such that any vertical line extending vertically downward from the front surface of the target to a point on the workpiece intersects the shield above said point.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: July 31, 2001
    Assignee: Applied Komatsu Technology, Inc.
    Inventor: Akihiro Hosokawa
  • Patent number: 6251242
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular trough facing the wafer to be sputter coated. Various types of magnetic means positioned around the trough create a magnetic field supporting a plasma extending over a large volume of the trough. For example, the magnetic means may include magnets disposed on one side within a radially inner wall of the trough and on another side outside of a radially outer wall of the trough to create a magnetic field extending across the trough, to thereby support a high-density plasma extending from the top to the bottom of the trough. The large plasma volume increases the probability that the sputtered metal atoms will become ionized. The magnetic means may include a magnetic coil, may include additional magnets in back of the trough top wall to increase sputtering there, and may include confinement magnets near the bottom of the trough sidewalls.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: June 26, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jianming Fu, Praburam Gopalraja
  • Patent number: 6238528
    Abstract: A plasma chamber in a semiconductor fabrication system improves the uniformity of a high density plasma by optimizing a ratio of RF power from a first coil, surrounding and inductively coupled into the high density plasma, to RF power from a second coil, positioned above a central region and inductively coupled into the high density plasma. It has also been found that an increase in RF power supplied to the second coil positioned above the central region relative to RF power suppled to the first coil surrounding the high density plasma tends to increase the relative density of the plasma toward the center of the high density plasma. It is believed that RF power supplied to the second coil positioned above the central region substrate tends to add more electrons into the central region of the high density plasma to compensate for electrons recombining with plasma ions.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: May 29, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Zheng Xu, Fusen Chen, Jianming Fu
  • Patent number: 6238526
    Abstract: The invention provides a sputtering system which consists of an ion beam and a target of a sputterable material. A distinguishing feature of the system of the invention is that the sputtering target forms a guide channel for an ion beam and sputtered particles, so that a portion of the ions collides with the walls of the target inside a closed volume of the target and forms neutral sputterable particles impinging the object. The other part of the ions goes directly to the object and participates in an ion-assisted overcoating. Thus, the special form of the target improves efficiency of sputtering, prevents scattering and the loss of the sputterable material. The system can be realized in various embodiments. One of the embodiments provides a multiple-cell system in which each cell has an individual ion-emitting slit formed by the end of a cathode rod of one cathode plate and the opening in the second cathode plate.
    Type: Grant
    Filed: February 14, 1999
    Date of Patent: May 29, 2001
    Assignee: Advanced Ion Technology, Inc.
    Inventors: Yuri Maishev, James Ritter, Leonid Velikov, Alexander Shkolnik
  • Patent number: 6235170
    Abstract: A hollow cathode magnetron for sputtering target material from the inner surface of a target onto an off-spaced substrate. The magnetron is in the shape of a truncated cone, also known as a conical frustum. The target cone is backed by a conical cathode maintained at a predetermined voltage for attracting gas ions into the inner surface of the target cone to sputter material therefrom. The inner surface of the cone is bounded at its inner and outer edges by magnetic pole pieces orthogonal to and extending inwardly and outwardly of the cone surface. The magnetic path is completed by a conical magnet surrounding the target and conical electrode and magnetically connected to the pole pieces to form a magnetic cage. Lines of magnetic flux extending above the target surface between the pole pieces are substantially parallel with the target surface, providing uniform erosion over the entire surface.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: May 22, 2001
    Inventor: David A. Glocker
  • Patent number: 6231725
    Abstract: An apparatus for sputtering material onto a workpiece, composed of: a chamber; a first target disposed in the chamber for sputtering material onto the workpiece; a holder for holding the workpiece in the chamber; a plasma generation area between the target and the holder; a coil for inductively coupling energy into the plasma generation area for generating and sustaining a plasma in the plasma generation area; and a second target disposed in the chamber below the first target and above the coil for sputtering material onto the workpiece.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: May 15, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jaim Nulman, Zheng Xu
  • Patent number: 6228235
    Abstract: A method for controlling the operation of a magnetron source for sputtering a surface of a target in a vacuum chamber, the method including the steps of: during a low pressure phase of sputtering, causing a magnetic field generated by a the magnetron source to be confined primarily to an inner region of the surface of the target so as to reduce leakage of electrons away from the target during sputtering; and during a subsequent high pressure phase of sputtering, causing the magnetic field generated by the magnet assembly to extend into the outer region of the surface of the target so as to sputter material from the outer region of the surface of the target. The pressure of the high pressure phase of sputtering is higher than the pressure of the low pressure phase of sputtering.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: May 8, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Avi Tepman, James van Gogh
  • Patent number: 6224725
    Abstract: An improved unbalanced magnetron sputtering (UMS) apparatus in accordance with the invention having a conventional target and arrangement of magnets wherein a central portion of the target is backed by a first magnetic pole and the peripheral portion of the target is backed by a second magnetic pole, the poles carrying unequal numbers of lines of magnetic flux. One of the poles has a greater number of flux lines entering or leaving than does the other pole. The field lines extending from the higher flux pole which do not close in the lower flux pole extend into space in a range of directions and generally toward a substrate to be sputter coated. Adjacent the target and electrically isolated therefrom and overlying the higher flux pole is an independently-controllable auxiliary electrode, preferably a cathode, formed of a non-ferromagnetic material and having a surface facing in the same general direction as the sputterable surface of the target.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: May 1, 2001
    Assignee: Isoflux, Inc.
    Inventor: David A. Glocker
  • Patent number: 6217730
    Abstract: A sputtering device enabling a small incident angle. A plurality of shield plates provided with holes at the same positions as targets are arranged in a vacuum chamber. Sputtering particles ejected diagonally from the targets 51-59 become attached to the shield plates 21-23 and only particles ejected vertically reach the surface of a substrate 12. As a result, it is possible to uniformly form a thin film inside microscopic holes of high aspect ratio. If sputtering gas is introduced close to the targets 51-59, reactant gas is introduced close to the substrate 12 and evacuation carried out close to the substrate 12, reactant gas does not reach the targets 51-59 side. Consequently, it is possible to prevent deterioration of the surfaces of the targets 51-59.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: April 17, 2001
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventors: Kuniaki Nakajima, Tomoyasu Kondo, Tsuyoshi Sahoda, Yasushi Higuchi, Takashi Komatsu
  • Patent number: 6207026
    Abstract: The present invention generally provides a vacuum processing system with a process chamber and a rotating member, such as a magnetron in a PVD chamber, disposed in a cooling cavity of the process chamber, where the rotating member includes a deflection member for deflecting cooling fluid in the cooling cavity toward interior portions of the rotating member. In one embodiment, a base plate of the rotating member defines an upper surface of the rotating member and a magnet retainer defines a lower surface of the rotating member. Magnets are mounted between the base plate and the magnet retainer. The deflection member is mounted between the magnets and can be coupled to the magnets on one or both ends. One end of the deflection member is disposed toward the outer perimeter of the magnetron and the other end of the deflection member is disposed toward the interior portions of the rotating member.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: March 27, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Steven Charles Crocker
  • Patent number: 6193854
    Abstract: A hollow cathode magnetron (HCM) sputter source includes a main magnet positioned near the sidewall of the hollow cathode target and a pair of rotating magnet arrays that are positioned near the closed end of the hollow cathode target. One of the arrays produces a magnetic field that is aligned with (aids) the magnetic field produced by the main magnet; the other arrays produce a magnetic field that is aligned against (bucks) the magnetic field produced by the main magnet. Field lines produced by the magnet arrays contain an extension of the plasma that is controlled by the main magnet. Charged particles circulate between the two portions of the plasma. The extended plasma is thus formed over a very high percentage of the surface of the target, thereby creating an erosion profile that is highly uniform and encompasses essentially the entire face of the target. This maximizes the utilization of the target and minimizes the frequency at which the spent target must be replaced.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: February 27, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok Fai Lai, Larry Dowd Hartsough, Andrew L. Nordquist, Kaihan Abidi Ashtiani, Karl B. Levy, Maximilian A. Biberger
  • Patent number: 6190517
    Abstract: An electro-magnet array for use in a sputtering apparatus. The array has a magnetisable core member extending substantially horizontally and having magnetisable outward projections arranged as at least two pairs of symmetrically opposed projections projecting outwardly from the core member. A pole member is associated with each projection and vertically displaced with respect thereto. A magnetisable coupler is arranged to couple each pole piece magnetically to its respective projection. A magnetising coil around each projection is arranged for producing a magnetic field aligned substantially with a horizontal axis of symmetry of its respective projection in dependence upon the direction of flow of electric current through the magnetising coil.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: February 20, 2001
    Assignee: Nordiko Limited
    Inventors: Mervyn Howard Davis, David Ian Charles Pearson, Simon Richard Reeves, Barry Diver
  • Patent number: 6183612
    Abstract: A sputtering cathode with a flat plate-shaped target (8) and a tub-shaped yoke (3) arranged behind the target (8), with center ridge (5) and with magnets (7,7′) for generating an enclosed tunnel of arc-shaped curved field lines (15,15′) in front of the target surface, as well as with three sheet metal cutouts (9,10,11) or groups of partial cutouts inserted into the plane between the target (8) and the end faces (12) of the tub rim of the yoke (3) facing the target (8), all the sheet metal cutouts (9,10,11) together form two gaps (a,b) extending roughly parallel to the end faces (12,13), wherein the magnets (7,7′) are each incorporated or inserted into the yoke bottom and the side surfaces of the magnets (7,7′) facing towards and away from the target (8) run flush with the yoke bottom.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: February 6, 2001
    Assignee: Leybold Systems GmbH
    Inventors: Rolf Adam, Jörg Krempel-Hesse, Martin Bähr
  • Patent number: 6179973
    Abstract: A novel hollow cathode magnetron source is disclosed. The source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: January 30, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok F. Lai, Andrew L. Nordquist, Kaihan A. Ashtiani, Larry D. Hartsough, Karl B. Levy