Depositing Predominantly Single Metal Coating Patents (Class 205/261)
  • Publication number: 20110226630
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20110230689
    Abstract: The present invention relates to a method for disposing electrical and electronic equipment comprising plastic and metal components, the method comprising: melt processing the equipment and/or comminuted parts thereof to form a melt processed product; transferring the melt processed product into a vessel and heating the product using far infrared radiation such that it liberates volatile hydrocarbons and leaves behind non-volatile residue comprising metal; and collecting one or both of the volatile hydrocarbons and the non-volatile residue for subsequent use.
    Type: Application
    Filed: August 18, 2009
    Publication date: September 22, 2011
    Applicant: P-FUEL LTD
    Inventor: John Scheirs
  • Publication number: 20110214992
    Abstract: The present invention is directed to an electrodepositable coating composition comprising a bismuth salt and a stabilizing agent, and wherein the molar ratio of elemental bismuth to the stabilizing agent is not greater than 1:0.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 8, 2011
    Inventors: Alan J. Kaylo, Kevin J. Dufford, Steven D. Perrine, Michael J. Pawlik
  • Patent number: 8012334
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 6, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Publication number: 20110200893
    Abstract: The present invention relates to an electrochemical cell for generating electrical power that includes an anode, a cathode, a charging electrode and an ionically conductive medium containing at least metal fuel ions and poly(ethylene glycol)tetrahydrofurfuryl. The present invention also relates to a method for charging the cell by electrodeposition of metal fuel on the anode thereof.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 18, 2011
    Applicant: Fluidic, Inc.
    Inventors: Cody A. Friesen, Todd Trimble
  • Publication number: 20110195278
    Abstract: The present invention is directed to the fabrication of rigid memory disks, including a metal plating composition which impedes deposition of non-metallic particles during a plating process. The plating composition includes at least one sulfated fatty acid ester additive, or mixtures or salts thereof, of formula: wherein R1 is selected from the group consisting of OH, OCH2, OCH2CH3, C1-C7 alkyl, linear or branched; R2 selected from H and C1-C7 alkyl, linear or branched; m=1 to about 5; n=2 to about 30; o=0 to about 10; M+ is a metal or pseudo metal ion or H+. The additive has a zeta potential which impedes deposit of non-metallic particles. The invention is further directed to a method for electroless plating utilizing the additive composition in a bath with at least a stabilizing agent, complexing agent and reducing agent and source of metal ions.
    Type: Application
    Filed: October 16, 2009
    Publication date: August 11, 2011
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Kevin Schell, Grant Keers, Shakeel Akhtar
  • Publication number: 20110183156
    Abstract: Elemental magnesium coatings and methods of applying them to surfaces of magnesium-based alloy articles of manufacture are described. Such coatings may be chosen to be anodic to magnesium and may thus, when applied to magnesium articles, be sacrificial and afford corrosion protection to the articles. The utility of such coatings may be enhanced by supplementing them with a barrier coating such as a passive magnesium-containing alloy, a conversion or anodic coating or paint overlying the sacrificial coating. Methods of applying sacrificial coatings to a magnesium-based alloy article are described and include physical vapor deposition on the article, electrodeposition on the article and dipping the article in molten alloy.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Guangling Song
  • Publication number: 20110155581
    Abstract: A metal film-forming method is capable of forming a metal film on a surface of a base metal film, formed on a surface of a substrate, with sufficient adhesion to the base metal film even when a natural oxide film is formed on the surface of the base metal film. The metal film-forming method includes: preparing a substrate having a base metal film formed on a surface; and carrying out electroplating of the substrate using the base metal film as a cathode and another metal as an anode while immersing the substrate in a solution containing a metal complex and a reducing material, both dissolved in a solvent, to form a metal film, deriving from a metal contained in the metal complex, on the surface of the base metal film.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 30, 2011
    Inventors: Akira SUSAKI, Tsutomu Nakada, Hideki Tateishi
  • Publication number: 20110143220
    Abstract: The present invention relates to an electrolyte solution comprising at least one solvent as component A, at least one electrolyte as component B and from 0.1 to 20% by weight, based on the total electrolyte solution, of at least one heteroaromatic compound of the general formula (I) as component C, the use of such a compound in electrolyte solutions, the use of such an electrolyte solution in an electrochemical cell or for metal plating, and also electrochemical cells comprising a corresponding electrolyte solution.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 16, 2011
    Applicant: BASF SE
    Inventors: Xiao STEIMLE, Itamar Michael Malkowsky, Klaus Leitner
  • Patent number: 7951280
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 31, 2011
    Assignee: SoloPower, Inc.
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20110125050
    Abstract: Provided are probes featuring multiple electrodes, which probes have diameters in the nanometer range and may be inserted into cells or other subjects so as to monitor an electrical characteristic of the subject. The probes may also include a conductive coating on at least one probe element to improve the probes' performance. The probes may also be used to inject a fluid or other agent into the subject and simultaneously monitor changes in the subject's electrical characteristics in response to the injection. Related methods of fabricating and of using the inventive probes are also provided.
    Type: Application
    Filed: October 4, 2010
    Publication date: May 26, 2011
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Haim H. Bau, Michael G. Schrlau, Rui Zhang
  • Patent number: 7943020
    Abstract: The invention relates to a cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis, consisting of a nickel substrate provided with a coating comprising a protective zone containing palladium and a physically distinct catalytic activation containing platinum or ruthenium optionally mixed with a highly oxidizing metal oxide, preferably chromium or praseodymium oxide.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Industries de Nora S.p.A.
    Inventors: Antonio Lorenzo Antozzi, Claudia Jennifer Bargioni, Alice Calderara, Luciano Iacopetti, Gian Nicola Martelli, Christian Urgeghe
  • Patent number: 7938950
    Abstract: A method of treating surfaces of a steel plate by forming an inorganic film on the surfaces of the steel plate by cathodic electrolytic treatment in an aqueous solution containing Zr and F and not containing phosphoric acid ions. Also disclosed is a method of treating surfaces of a steel plate by cathodic electrolytic treatment in aqueous solution containing Zr, F and P, and having a phosphoric acid ion concentration in a range of larger than 0 to smaller than 0.003 mols/liter calculated as PO4.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 10, 2011
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Wataru Kurokawa, Mitsuhide Aihara
  • Publication number: 20110103022
    Abstract: Indium compositions including hydrogen suppressor compounds and methods of electrochemically depositing indium metal from the compositions onto substrates are disclosed. Articles made with the indium compositions are also disclosed.
    Type: Application
    Filed: December 13, 2007
    Publication date: May 5, 2011
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Edit Szocs, Felix J. Schwager, Thomas Gaethke, Nathaniel E. Brese, Michael P. Toben
  • Publication number: 20110090621
    Abstract: A capacitor with an anode, a dielectric on the anode and a cathode on the dielectric. A blocking layer is on the cathode. A metal filled layer is on said blocking layer and a plated layer is on the metal filled layer.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Inventors: Antony Chacko, Randy Hahn
  • Publication number: 20110062030
    Abstract: The electrolyte composition is used in a method of depositing metals, in particular, onto substrates, especially solar cells. The electrolyte composition is particularly suitable for the deposition of metals, in particular silver, onto solar cells. The electrolyte composition is preferably free of cyanides and contains at least one metal, preferably silver, and an iminodisuccinate derivative, preferably a sodium or postassium iminodisuccinate.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 17, 2011
    Inventors: Lothar Lippert, Stefan Dauwe
  • Patent number: 7897200
    Abstract: The present invention provides a ferromagnetic/antiferromagnetic coupling film structure and a fabrication method thereof. The structure includes an antiferromagnetic layer of cobalt oxide having a thickness of 2 to 15 monolayers and formed on a substrate at a temperature ranging from 700K to 900K; and a ferromagnetic layer of cobalt having a thickness of at least one monolayer for being formed on the antiferromagnetic layer of cobalt oxide.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 1, 2011
    Assignee: National Chung Cheng University
    Inventors: Jyh-Shen Tsay, Chi-Wei Lee, Gung Chern
  • Patent number: 7897437
    Abstract: Layered interface materials described herein include at least one pulse-plated thermally conductive material, such as an interconnect material, and at least one heat spreader component coupled to the at least one pulse-plated thermally conductive material. A plated layered interface material having a migration component is also described herein and includes at least one pulse-plated thermally conductive material; and at least one heat spreader component, wherein the migration component of the plated layered interface material is reduced by at least 51% as compared to the migration component of a reference layered interface material. Another layered interface material described herein includes: a) a thermal conductor; b) a protective layer; c) a layer of material to accept solder and prevent the formation of oxides; and d) a layer of solder material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Honeywell International Inc.
    Inventors: Mark Fery, Jai Subramanian
  • Publication number: 20110042222
    Abstract: A cathodic electrodeposition coating material comprising (A) at least one water-dispersible organic binder containing cationic groups, where the cathodic electrodeposition coating material has been admixed with 0.005%-0.5% by weight, based on the solids content of the cathodic electrodeposition coating material, of (B) an organic, tetravalent titanium, zirconium or hafnium complex having one or more oxygen-containing ligands.
    Type: Application
    Filed: February 27, 2009
    Publication date: February 24, 2011
    Applicant: BASF Coatings GmbH
    Inventors: Verena Peters, Hubert Baumgart, Michael Dornbusch, SR.
  • Publication number: 20110045351
    Abstract: A method, including placing a substrate of a battery in a bath consisting of a metal M chosen from a metal group consisting of Fe, Ni, Co, Cu, W, V, and Mn, an oxidant selected from an oxidant group consisting of oxygen and sulfur, and a polymer. The method also includes applying an electrical current so as to form on the substrate a metal M compound cathode having a nanoscale grain structure.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 24, 2011
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Diana Golodnitsky, Hadar Mazor-Shafir, Kathrin Freedman, Tania Ripenbein
  • Publication number: 20110026187
    Abstract: The present invention provides an improved electrostatic chuck for a substrate processing system. The electrostatic chuck comprising a main body having a top surface configured to support the substrate, a power supply to apply a voltage to the main body and a sealing ring disposed between the main body and the substrate wherein the sealing ring has a conductive layer.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 3, 2011
    Inventor: Glyn J. Reynolds
  • Publication number: 20110014492
    Abstract: The process for the application of a metal layer on a substrate by deposition of a metal from a metal salt solution comprises the presence of exfoliated graphite in the substrate surface.
    Type: Application
    Filed: March 13, 2009
    Publication date: January 20, 2011
    Inventors: Ketan Joshi, Stephan Hermes, Norbert Wagner, Christoffer Kieburg
  • Publication number: 20100330365
    Abstract: A strand-like material is formed of CNT yarns that are embedded in a metal matrix. The embedding in a common matrix has the advantage in that the material composite exhibits an improved electrical conductivity. This lies in the ability for electrons to switch from the CNT to the matrix and back again. The strand-like material composite is therefore suitable for use as an electrical conductor. Further proposed is a method for producing the strand-like material composite.
    Type: Application
    Filed: February 24, 2009
    Publication date: December 30, 2010
    Inventors: Jörg Hassel, Hans-Richard Kretschmer, Daniel Reznik, Arno Steckenborn
  • Publication number: 20100297904
    Abstract: A method of producing a ultrahydrophobic substrate provided on its surface with metallic nanoparticles comprising the steps of furnishing a ultrahydrophobic substrate, applying a precursor layer on said substrate with deposition of metallic nanoparticles from the precursor layer on the substrate. The precursor layer is preferably free of electronic conductive particles and the particles are preferably deposited electrochemically from the precursor layer.
    Type: Application
    Filed: July 18, 2008
    Publication date: November 25, 2010
    Inventors: Rolf Hempelmann, Harald Natter, Vivien Keller
  • Patent number: 7833401
    Abstract: A method of forming a component capable of being exposed to a plasma in a process chamber comprises forming a structure comprising a surface and electroplating yttrium, and optionally aluminum or zirconium, onto the surface. Thereafter, the electroplated layer can be annealed to oxide the yttrium and other electroplated species.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Nianci Han, Li Xu, Hong Shih, Yang Zhang, Danny Lu, Jennifer Y. Sun
  • Patent number: 7833402
    Abstract: A porous catalyst structure with a high specific surface area comprising a porous substrate with a catalyst layer thereon is provided. The porous catalyst structure can be prepared by a process comprising depositing a metallic layer onto the surface of a porous, metallic substrate by electroplating, and optionally oxidizing the metallic layer into the metal oxide layer. Any conductive porous metallic substrate can be used as the substrate of the subject invention, and the metallic layer may comprise any suitable metal(s) and/or metal oxide(s) with desired catalytic function(s).
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 16, 2010
    Assignee: Green Hydrotec Inc.
    Inventors: Min Hon Rei, Shih Chung Chen, Yu Ling Kao, Chia Yeh Hung
  • Publication number: 20100247774
    Abstract: Partially aromatic polyamide compositions containing an aliphatic polyamide and an alkaline earth metal carbonate have excellent adhesion to metal coatings which are produced by electroless and/or electrolytic plating. Also described is a process for the electroless and/or electrolytic coating of these compositions. The resulting articles are useful as parts in automotive and industrial applications.
    Type: Application
    Filed: November 24, 2008
    Publication date: September 30, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Andri E. Elia, Claudio Pierdomenico
  • Publication number: 20100243456
    Abstract: A molten salt bath contains tungsten and has a water content of 100 ppm or less and an iron content of 500 ppm or less. The molten salt bath from which high-quality tungsten can be stably deposited, a method for preparing the molten salt bath, and a tungsten film are provided.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 30, 2010
    Inventors: Koji NITTA, Masatoshi Majima, Shinji Inazawa
  • Publication number: 20100231338
    Abstract: First, an R—Fe—B based rare-earth sintered magnet body including, as a main phase, crystal grains of an R2Fe14B type compound that includes a light rare-earth element RL, which is at least one of Nd and Pr, as a major rare-earth element R is provided. Next, an M layer, including a metallic element M that is at least one element selected from the group consisting of Al, Ga, In, Sn, Pb, Bi, Zn and Ag, is deposited on the surface of the sintered magnet body and then an RH layer, including a heavy rare-earth element RH that is at least one element selected from the group consisting of Dy, Ho and Tb, is deposited on the M layer. Thereafter, the sintered magnet body is heated, thereby diffusing the metallic element M and the heavy rare-earth element RH from the surface of the magnet body deeper inside the magnet.
    Type: Application
    Filed: January 12, 2007
    Publication date: September 16, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Hideyuki Morimoto, Tomoori Odaka, Masao Noumi
  • Publication number: 20100219738
    Abstract: The disclosure relates to processes for the electrochemical modification of electron emitting materials such as carbon nanotubes. The processes improve the oxidation resistance of the electron emitting materials when they are fired in an oxygen-containing atmosphere such as air. The disclosure also relates to the preparation of cathodes or cathode assemblies, for use in a field emission device, wherein are contained an electron field emitter made from such electron emitting material.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 2, 2010
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven Dale Ittel, Gillian Althea Maria Reynolds, Ming Zheng
  • Patent number: 7781731
    Abstract: Disclosed herein is a method of qualitatively analyzing high-molecular additives in a metal plating solution, including: removing sulfate ions and metal ions from a metal plating solution; and qualitatively analyzing the metal plating solution, from which sulfate ions and metal ions are removed, using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectroscopy (MALDI-TOF MS). The method is advantageous in that the structure and molecular weight of high-molecular additives present in very small amounts in a plating solution can be accurately measured while maintaining the specific structure and molecular weight thereof without degrading the high-molecular additives.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yun Hee Kim, Bae Kyun Kim, Dong Hyun Cho
  • Patent number: 7767072
    Abstract: A method for forming a modified platinum aluminide coating on a turbine engine component surface includes the step of forming a platinum layer on the turbine engine component surface. A bath is then prepared, including a mixture of a primary alcohol and a tertiary alcohol, and an electrolyte including an yttrium salt. Then, yttrium from the yttrium salt is electrodeposited onto the platinum layer. The component is heated to diffuse the yttrium into the platinum layer to form a modified platinum layer. Aluminum is then deposited onto the modified platinum layer, and the component is heated to diffuse the aluminum into the modified platinum layer to form a modified platinum aluminide layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 3, 2010
    Assignee: Honeywell International Inc.
    Inventor: Devlin M. Gualtieri
  • Patent number: 7749582
    Abstract: A surface-treated metal material is obtained by forming an inorganic surface-treating layer containing at least Zr, O and F as chief components but without containing phosphoric acid ions on the surfaces of a metal by the cathodic electrolysis or by forming an inorganic surface-treating layer containing at least Zr, O and F as chief components and having an atomic ratio of P and Zr of 0?P/Zr<0.6 in the uppermost surface on the surfaces of the metal by the cathodic electrolysis at a low cost featuring high productivity, environmental friendliness, scar resistance, adhesion, workability and intimate fitting. By using a metal material obtained by coating the surface-treated metal material with an organic resin and, particularly, with a polyester resin, a metal can or a can lid exhibits excellent adhesion and corrosion resistance even at portions that are worked to a high degree. Further, the can lid exhibits excellent opening performance even after the sterilization by heating.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 6, 2010
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Wataru Kurokawa, Mitsuhide Aihara
  • Publication number: 20100167084
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
    Type: Application
    Filed: August 1, 2005
    Publication date: July 1, 2010
    Applicant: Midwest Research Institute
    Inventors: Raghu N. Bhattacharya, Sovannary Phok, Priscila Spagnol, Tapas Chaudhuri
  • Publication number: 20100135466
    Abstract: A bonded assembly includes a member, and a substrate comprising beryllium, the substrate configured to be bonded to the member. The bonded assembly includes a first barrier applied to a surface of the substrate, a second barrier applied to a surface of the first barrier, a bonding material disposed between the second barrier and the member, and wherein the second barrier is configured to prevent dissolution of the first barrier into the bonding material.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Inventors: Gregory Alan Steinlage, Thomas C. Tiearney, Donald Robert Allen
  • Publication number: 20100116678
    Abstract: An electrochemical deposition method and electrolyte to plate uniform, defect free and smooth gallium films are provided. In a preferred embodiment, the electrolyte may include a solvent that comprises water and at least one monohydroxyl alcohol, a gallium salt, and an acid to control the solution pH and conductivity. The method electrodeposits a gallium film possessing sub-micron thickness on a conductive surface. Such gallium layers are used in fabrication of semiconductor and electronic devices such as thin film solar cells.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 13, 2010
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20100101831
    Abstract: The present invention relates to an electrical contact material having a surface layer made of a noble metal or an alloy having the noble metal as its main component, a method for manufacturing the same and an electrical contact using the same. Recently, electrical contact materials having excellent abrasion resistance are used for sliding electrical contacts such as a connector terminal of an automobile harness, a contact switch mounted in a cellular phone and terminals of a memory card. Although there have been known ones having an organic coating film composed of either aliphatic amine or mercaptan or a mixture of the both provided on the electrical contact material described above as the electrical contact materials having excellent abrasion resistance, they have had problems that even though they are effective with a low load of 0.5 N or below, abrasion accelerates when the load exceeds 0.5 N and sliding characteristics drop under a high-temperature environment.
    Type: Application
    Filed: March 28, 2008
    Publication date: April 29, 2010
    Inventor: Yoshiaki KOBAYASHI
  • Patent number: 7704368
    Abstract: A method of electroplating conductive material on semiconductor wafers controls undesirable surface defects by reducing the electroplating current as the wafer is being initially immersed in a plating bath. Further defect reduction and improved bottom up plating of vias is achieved by applying a static charge on the wafer before it is immersed in the bath, in order to enhance bath accelerators used to control the plating rate. The static charge is applied to the wafer using a supplemental electrode disposed outside the plating bath.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chung-Liang Chang, Shau-Lin Shue
  • Publication number: 20100062164
    Abstract: Methods and solutions for preventing the formation of metal particulate defect matter upon a substrate after plating processes are provided. In particular, solutions are provided which are free of oxidizing agents and include a non-metal pH adjusting agent in sufficient concentration such that the solution has a pH between approximately 7.5 and approximately 12.0. In some cases, a solution may include a chelating agent. In addition or alternatively, a solution may include at least two different types of complexing agents each offering a single point of attachment for binding metal ions via respectively different functional groups. In any case, at least one of the complexing agents or the chelating agent includes a non-amine or non-imine functional group. An embodiment of a method for processing a substrate includes plating a metal layer upon the substrate and subsequently exposing the substrate to a solution comprising the aforementioned make-up.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 11, 2010
    Applicant: Lam Research
    Inventors: Shijian Li, Artur K. Kolics, Tiruchirapalli N. Arunagiri
  • Publication number: 20100044240
    Abstract: When depositing a metal or a compound of the metal from a liquid crystal phase comprising a metal compound, e.g. a metal salt, by electrochemical means, high concentrations of the salt may be employed by using an ionic surfactant in place of the commonly used non-ionic surfactant.
    Type: Application
    Filed: September 7, 2007
    Publication date: February 25, 2010
    Inventors: Jennifer Kimber, Daniel Peat
  • Publication number: 20100032310
    Abstract: An apparatus for electroplating a layer of metal on the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer (preferably within 5 mm of the wafer surface) which serves to modulate ionic current at the wafer surface, and a second cathode configured to divert a portion of current from the wafer surface. The ionically resistive ionically permeable element in a preferred embodiment is a disk made of a resistive material having a plurality of perforations formed therein, such that perforations do not form communicating channels within the body of the disk. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.
    Type: Application
    Filed: November 7, 2008
    Publication date: February 11, 2010
    Inventors: Jonathan Reid, Bryan Buckalew, Zhian He, Seyang Park, Seshasayee Varadarajan, Bryan Pennington, Thomas Ponnuswamy, Patrick Breiling, Glenn Ibarreta, Steven Mayer
  • Patent number: 7659008
    Abstract: The invention relates to a lubricating metal coating and to a process for its preparation. The material constituting the coating in a composite material comprising a metal matrix within which talc particles are distributed as lamellae, the metal matrix being composed of a metal chosen from Fe, Co, Ni, Mn, Cr, Cu, W, Mo, Zn, Au, Ag, Pb or Sn or of an alloy of these metals or of a metal/semimetal alloy. The coating is obtained by a process consisting in carrying out an electrolytic deposition using a solution of precursors of the metal matrix of the coating which additionally comprises talc particles in suspension, which particles are modified at the surface by irreversible adsorption of a cellulose-derived compound by replacement of all or part of the hydroxyl groups.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: February 9, 2010
    Assignee: Centre National de la Recherche Scientifique
    Inventors: François Martin, Jean-Pierre Bonino, Patrice Bacchin, Stéphane Vaillant, Eric Ferrage, William Vautrin, Philippe Barthes
  • Patent number: 7651784
    Abstract: The invention describes a sliding element, in particular a sliding bearing, with a support element and a sliding layer, between which a bearing metal layer is arranged, wherein the sliding layer is made from bismuth or a bismuth alloy, and wherein the crystallites of the bismuth or the bismuth alloy in the sliding layer adopt a preferred direction with respect to their orientation, expressed by the Miller index of the lattice plane (012), wherein the X-ray diffraction intensity of the lattice plane (012) is the greatest compared to the X-ray diffraction intensities of other lattice planes. The X-ray diffraction intensity of the lattice plane with the second-largest X-ray diffraction intensity is a maximum of 10% of the X-ray diffraction intensity of the lattice plane (012).
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: January 26, 2010
    Assignee: Miba Gleitlager GmbH
    Inventor: Thomas Rumpf
  • Publication number: 20100006445
    Abstract: An apparatus and method is disclosed for simultaneously electroplating at least two parts in a series electrical configuration in an electroplating system using a shared electrolyte with excellent consistency in thickness profiles, coating weights and coating microstructure. Parts in high volume and at low capital and operating cost are produced as coatings or in free-standing form.
    Type: Application
    Filed: April 18, 2008
    Publication date: January 14, 2010
    Applicant: Integran Technologies Inc.
    Inventor: Klaus Tomantschger
  • Patent number: 7645371
    Abstract: A process of ceramic coatings on silver or silver-plated articles is developed in order to prevent surface tarnish, which is employed as ornaments on bags, garments or accessories such as necklaces, earrings, etc. The process comprises the steps of: forming a beryllium film on the surface of the article by fixing a stainless steel plate to an anode, fixing the silver or silver-plated article to a cathode and plating the surface of the silver or silver-plated article with beryllium in an electrolyte containing beryllium sulfate (BeSO4.4H2O) by an electroplating method; buffing the article coated with the beryllium film; washing and drying the buffed article using a surfactant; forming the resultant ceramic coating by dipping the dried article in ceramic coating solution which includes 20 to 80 cc of glass water No. 1 (liquid sodium silicate), 5 to 60 g of sodium metasilicate, 5 to 30 g of sodium tungstate, 5 to 10 g of molybdic acid in 1 liter of water; and drying the wetted article.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 12, 2010
    Assignee: HANA Co. Ltd.
    Inventor: Bok Jin Sa
  • Publication number: 20090301886
    Abstract: A plating film is provided with enough hardness before anodic oxidation, which is hard to be damaged during handling, and also the production method of the plating film. This problem can be solved by an aluminum plating film with aluminum concentration of 98 wt. % or lower, and with a Vickers hardness of 250 or higher. Here, by containing oxygen, carbon, sulfur, and a halogen element as impurities, the hardness becomes higher. The impurity concentration is controlled by adjusting the current density, the plating temperature, or the plating bath composition.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 10, 2009
    Applicant: Hitachi Metals, Ltd.
    Inventors: Hiroyuki Hoshi, Atsushi Okamoto, Setsuo Andou
  • Publication number: 20090283416
    Abstract: Disclosed is a method of treating the surface of an electrically conducting substrate surface wherein a tool comprising an ion-conducting solid material is brought into contact at least in some areas with the substrate surface, the tool is able to conduct the metal ions of the substrate and an electric potential is applied so that an electric potential gradient is applied between the substrate surface and the tool in such a manner that metal ions are drawn from the substrate surface or deposited onto the substrate surface by means of the tool.
    Type: Application
    Filed: April 20, 2007
    Publication date: November 19, 2009
    Inventors: Hans-Joachim Quenzer, Gerfried Zwicker
  • Publication number: 20090266599
    Abstract: A circuit board having high thermal conductivity comprises a substrate, a plurality of thermal conductive insulating layers, a patterned electrical conductive layer, a plurality of through-holes and a soldering layer. The substrate has an upper surface and a lower surface; the thermal conductive insulating layers are respectively formed on the upper surface and the lower surface of the substrate. The patterned electrical conductive layer is disposed on the surfaces of the thermal conductive insulating layers. The plurality of through-holes are extended through the substrate and electrically connected to the patterned electrical conductive layer, and the soldering layer is partially formed on the patterned electric conductive layer. The present invention also discloses a method for manufacturing the circuit board as above-mentioned.
    Type: Application
    Filed: August 5, 2008
    Publication date: October 29, 2009
    Applicant: Kinik Company
    Inventors: Ming-Chi Kan, Shao-Chung Hu
  • Publication number: 20090242414
    Abstract: The invention relates to a process for the electrochemical deposition of tantalum and/or copper on a substrate in an ionic liquid comprising at least one tetraalkylammonium, tetraalkylphosphonium, 1,1-dialkylpyrrolidinium, 1-hydroxyalkyl-1-alkylpyrrolidinium, 1-hydroxyalkyl-3-alkylimidazolium or 1,3-bis(hydroxyalkyl)imidazolium cation, where the alkyl groups or the alkylene chain of the hydroxyalkyl group may each, independently of one another, have 1 to 10 C atoms.
    Type: Application
    Filed: November 15, 2005
    Publication date: October 1, 2009
    Inventors: Urs Welz-Biermann, Frank Endres, El Abedin Zein
  • Publication number: 20090224422
    Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.
    Type: Application
    Filed: January 9, 2009
    Publication date: September 10, 2009
    Inventor: Valery M. Dubin