Hydrogenative Patents (Class 208/107)
  • Publication number: 20100065476
    Abstract: A process comprising: a) taking a sample from a continuous reactor process, b)measuring a content of a halide in the sample, and c) in response to the measured content of the halide, adjusting a flow of a halide containing additive comprising the halide to control the process. Also, an apparatus comprising: a) a reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of a product in the reactant mixture.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Publication number: 20100031572
    Abstract: A method of increasing the hydrogen/carbon monoxide (H2/CO) ratio in a syngas stream derived from a carbonaceous fuel including coal, brown coal, peat, and heavy residual oil fractions, preferably coal. The fuel-derived syngas stream is divided into at least two sub-streams, one of which undergoes a catalytic water shift conversion reaction. The so-obtained converted sub-stream is combined with the non-converted sub-stream(s) to form a second syngas stream with an increased H2/CO ratio. The method of the present invention can provide a syngas with a H2/CO ratio more suitable for efficient hydrocarbon synthesis carried out on a given catalyst, such as in one or more Fischer-Tropsch reactors, as well as being able to accommodate variation in the H2/CO ratio of syngas formed from different qualities of feedstock fuels.
    Type: Application
    Filed: December 29, 2005
    Publication date: February 11, 2010
    Inventors: Joachim Ansorge, Scott Bilton, Hendrik Jan Van Der Ploeg, Arold Marcel Albert Routier, Cornelis Jacobus Smit
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci
  • Patent number: 7651603
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: January 26, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr., Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 7641788
    Abstract: A process for hydrocracking a hydrocarbonaceous feedstock into a middle distillate utilising a hydrocarbon conversion catalyst comprising a modified beta zeolite and a modified Y zeolite, an amorphous inorganic oxide and a hydrogenation component, wherein the said middle distillate is characterised by having a low aromatics content and/or a low pour point.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 5, 2010
    Assignee: Haldor Topsoe A/S
    Inventors: Jens A. Hansen, Niels Jørgen Blom, Birgitte R. Byberg, John W. Ward
  • Patent number: 7638038
    Abstract: A method for controlling the pseudo-isothermicity of a chemical reaction in a respective reaction zone. (9) in which the use of heat exchangers (6) is foreseen having an operating heat exchange fluid flowing through them and in which heat exchange critical areas (9a) are identified, the method being distinguished by the fact that it reduces and controls, in the critical areas (9a) of the reaction zone, the value of the heat exchange coefficient between the operating fluid and the zone (9), through thermal insulation of the portions (6a, 6b) of such exchangers extending in such areas (9a).
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: December 29, 2009
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 7622034
    Abstract: A process is provided to produce high cetane quality and low or preferably ultra low sulfur diesel and a fluid catalytic cracker (FCC) quality feedstock from a processing unit including at least a hydrotreating zone and a hydrocracking zone. In one aspect, the processing unit includes reactor severity requirements in both the hydrotreating zone and the hydrocracking zone effective to produce the FCC feed quality and the diesel sulfur quality to permit a high quality hydrocracked product to be formed at lower pressures and conversion rates without overtreating the FCC quality feedstock stream. In another aspect, a portion of the hydrotreated effluent is selected for conversion in the hydrocracking and the remaining portion of the hydrotreated effluent is directed to subsequent processing, such as fluid catalytic cracking.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 24, 2009
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Douglas W. Kocher-Cowan
  • Patent number: 7615142
    Abstract: An expanded bed hydroprocessing system and related method includes at least one expanded bed reactor that employs a solid catalyst to catalyze hydroprocessing reactions involving hydrogen and a high molecular weight hydrocarbon feedstock (e.g., a Fischer-Tropsch wax) that is contaminated with solid particulates. Hydroprocessing the high molecular weight hydrocarbon feedstock in an expanded bed reactor results in formation of a hydroprocessed material from the hydrocarbon feedstock, while eliminating the risk of plugging of the supported catalyst bed by the solid particulates as compared to a reactor including a stationary catalyst bed.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 10, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Lap-Keung Lee, Lawrence M. Abrams
  • Patent number: 7601254
    Abstract: A process for the conversion of a hydrocarbon feedstock to produce olefins, aromatic compounds and ultra low sulfur diesel wherein the hydrocarbon feedstock is reacted in a fluid catalytic cracking (FCC) zone to produce olefins and light cycle oil. The effluent from the FCC is preferably separated to produce a stream comprising ethylene and propylene, a stream comprising higher boiling olefins and light cycle oil (LCO). The stream containing the higher boiling olefins is cracked to provide additional ethylene and propylene. The LCO is selectively hydrocracked to produce aromatic compounds and ultra low sulfur diesel.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventor: Christopher D. Gosling
  • Patent number: 7585406
    Abstract: A Process for hydroconverting of a heavy hydrocarbonaceous feedstock comprising a catalyst to produce lower boiling hydrocarbon products. The method can be used for the high- boiling point residues of oil refining (asphaltene, the residues of vacuum and under pressure distillation of oil, and the useless and heavy materials of thermo catalytic processes), heavy oil, natural bitumen, and bitumen-containing sands. It can also be used in oil refinery industries for the production of gas, gasoline fractions, distillation gas oil, concentrate of ash containing metals and chemical fertilizers.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: September 8, 2009
    Assignees: Research Institute of Petroleum Industry (RIPI), NTI Company
    Inventors: Salambek Naibovich Khadzhiev, Khusain Magamedovich Kadiev, Vahid Khumaidovich Mezhidov, Jamshid Zarkesh, Reza Hashemi, Seyed Kamal Masoudian Targhi
  • Publication number: 20090206006
    Abstract: Heavy hydrocarbons are upgraded more efficiently to lighter, more valuable, hydrocarbons with lower amounts of solid carbonaceous by-products in supercritical water using two heating stages, the first stage at a temperature up to about 775K and the second stage at a temperature from about 870K to about 1075K. The temperature is preferably raised from the first temperature to the second temperature by internal combustion using oxygen.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Rodney John Allam
  • Patent number: 7553405
    Abstract: A process to prepare a synthesis gas comprising hydrogen and carbon monoxide comprises performing a partial oxidation on a methane comprising feed using a multi-orifice burner provided with an arrangement of separate passages, wherein the gaseous hydrocarbon having an elevated temperature flows through a passage of the burner, an oxidizer gas flows through a separate passage of the burner and wherein the passage for gaseous hydrocarbon feed and the passage for oxidizer gas are separated by a passage through which a secondary gas flows, wherein the secondary gas comprises hydrogen, carbon monoxide and/or a hydrocarbon.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: June 30, 2009
    Assignee: Shell Oil Company
    Inventor: Franciscus Johanna Arnoldus Martens
  • Patent number: 7537686
    Abstract: A method for upgrading heavy oils by contacting the heavy oil with an inhibitor additive and then thermally treating the inhibitor additized heavy oil. The invention also relates to the upgraded product from the inhibitor enhanced thermal treatment process.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 26, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Varadaraj, Christopher P. Eppig, Douglas W. Hissong, Robert C. Welch
  • Patent number: 7534340
    Abstract: Process for the contemporaneous production of fuels and lubricating bases from synthetic paraffinic mixtures, which includes a hydrocracking step in the presence of a solid bi-functional catalyst comprising: (A) a support of an acidic nature consisting of a catalytically active porous solid, including silicon, aluminum, phosphorus and oxygen bonded to one another in such a way as to form a mixed amorphous solid characterized by an Si/Al atomic ratio of between 15 and 250, a P/Al ratio of at least 0.1, but lower than 5, a total pore volume ranging from 0.5 to 2.0 ml/g, with an average pore diameter ranging from 3 nm. to 40 nm, and a specific surface area ranging from 200 to 1000 M2/g; (B) at least one metal with a hydro-dehydrogenating activity selected from groups 6 to 10 of the periodic table of elements, dispersed on said support (A) in an amount of between 0.05 and 5% by weight with respect to the total weight of the catalyst.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 19, 2009
    Assignees: ENI S.p.A., Institute Francais du Petrole, Enitecnologie S.p.A.
    Inventors: Vincenzo Calemma, Cristina Flego, Luciano Cosimo Carluccio, Wallace Parker, Roberto Giardino, Giovanni Faraci
  • Patent number: 7531082
    Abstract: In the refining of crude oil, hydroprocessing units such as hydrotreaters and hydrocrackers are used to remove impurities such as sulfur, nitrogen, and metals from the crude oil. They are also used to convert the feed into valuable products such as naphtha, jet fuel, kerosene and diesel. The current invention provides very high to total conversion of heavy oils to products in a single high-pressure loop, using multiple reaction stages. A hot high pressure separator is located between the first and second reaction stages. Overhead from the separator is treated in a distillate upgrader, which may operate in co-current or countercurrent mode.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: May 12, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ujjal K. Mukherjee, Art Dahlberg
  • Publication number: 20090101542
    Abstract: The present invention relates to a composition comprising a Fischer-Tropsch derived white oil, wherein the Fischer-Tropsch derived white oil has a kinematic viscosity at 100° C. of from 1 to 25 mm2/s, as determined according to ISO 3014, and an active component selected from fertilizers, insecticides, herbicides, pesticides or food grade additives, and to a process for the preparation of such composition.
    Type: Application
    Filed: May 19, 2006
    Publication date: April 23, 2009
    Inventor: Volker Klaus Null
  • Patent number: 7513989
    Abstract: The invention relates to a hydrocracking process for hydrocracking petroleum and chemical feedstocks using bulk Group VIII/VIB catalysts. Preferred catalysts include those comprised of Ni—Mo—W.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 7, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Kenneth Lloyd Riley, Gary P. Schleicher, Richard A. Demmin, Darlene Schuette, legal representative, Ian Alfred Cody, William L. Schuette
  • Publication number: 20090071872
    Abstract: Aspects of the invention include methods to produce jet-fuel from biological oil sources. The method may be comprised of two steps: a hydrocracking and a reforming. The process may be self sufficient in heat and hydrogen.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Lucia M. Petkovic, David N. Thompson
  • Patent number: 7488459
    Abstract: An apparatus and process are provided for cracking hydrocarbonaceous feed, wherein the temperature of heated effluent directed to a vapor/liquid separator, e.g., flash drum, whose overhead is subsequently cracked, can be controlled within a range sufficient so the heated effluent is partially liquid, say, from about 260 to about 540° C. (500 to 1000° F.). This permits processing of a variety of feeds containing resid with greatly differing volatilities, e.g., atmospheric resid and crude at higher temperature and dirty liquid condensates, at lower temperatures. The temperature can be lowered as needed by: i) providing one or more additional downstream feed inlets to a convection section, ii) increasing the ratio of water/steam mixture added to the hydrocarbonaceous feed, iii) using a high pressure boiler feed water economizer to remove heat, iv) heating high pressure steam to remove heat, v) bypassing an intermediate portion of the convection section used, e.g.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: February 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, James N. McCoy
  • Patent number: 7470357
    Abstract: An integrated process for the upgrading of a vacuum gas oil feedstock and a light cycle oil feedstock. The vacuum gas oil feedstock is hydrodesulfurized and the light cycle oil feedstock is hydrocracked.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: December 30, 2008
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Vedula K. Murty
  • Patent number: 7417073
    Abstract: Supports for Fischer-Tropsch catalysts are formed by forming a particulate material from titania, alumina and optionally silica. A cobalt compound is incorporated into the particulate material which then is calcined to convert at least part of the alumina to cobalt aluminate.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: August 26, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Charles H. Mauldin, Louis F. Burns
  • Publication number: 20080173570
    Abstract: A hydrotreating method uses two catalyst beds with the introduction, on the last catalyst bed, of oils of animal or vegetable origin for co-treating a mixture made up of oils of vegetable or animal origin and of petroleum cuts (gas oil cuts (GO) and middle distillates) in order to produce gas oil effluents meeting specifications with an improved cetane number. The first catalyst bed is dedicated to only the deep desulfurization reactions (HDS1) of a petroleum type feed. The effluents of the first catalyst bed having an effluent sulfur content below or equal to 50 mg/kg are separated into two streams. The first stream, which is predominant, is sent to the gas oil pool. The second stream is mixed with oils of vegetable or animal origin. The resultant oil-petroleum cut mixture is then subjected to a milder hydrotreatment (HDT2). The effluents obtained at the outlet of the second catalyst bed can optionally be mixed with the predominant stream from the first bed.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 24, 2008
    Inventors: Karin Marchand, Fabrice Bertoncini
  • Patent number: 7384539
    Abstract: An improved and simplified hydrocarbon processing system is provided which has a mixing section for mixing of hydrogen and hydrocarbon to form combined, two-phase streams, as well as an indirect heat exchange section having a plurality of double-pass shell-and-tube heat exchangers designed to simultaneously receive and heat respective combined streams while maintaining separation of the streams. The use of the specialized double-pass exchangers results in significantly reduced capital and maintenance costs.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: June 10, 2008
    Assignee: ConocoPhillips Company
    Inventor: Gregory M. Witte
  • Patent number: 7384542
    Abstract: A process for the production of low sulfur diesel and high octane naphtha.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 10, 2008
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Richard K. Hoehn
  • Publication number: 20080116111
    Abstract: The present invention relates generally to processes for upgrading (cracking and hydrogenation) of high molecular weight hydrocarbons using a catalytic composition at moderate temperatures, methods for stabilizing the upgraded product, and methods for reducing carbon oxides using a catalytic composition.
    Type: Application
    Filed: September 18, 2007
    Publication date: May 22, 2008
    Inventor: Jeffrey P. Newton
  • Patent number: 7374657
    Abstract: The present invention relates to distillate fuels or distillate fuel blend stocks comprising a blend of a Fischer-Tropsch derived product and a petroleum derived product that is hydrocracked under conditions to preserve aromatics. The resulting distillate fuel product is a low sulfur, moderately aromatic distillate fuel. The resulting distillate fuel or distillate fuel blend stock exhibits excellent properties, including good seal swell, density, and thermal stability. The present invention also relates to processes for making these distillate fuels or distillate fuel blend stocks.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: May 20, 2008
    Assignee: Chevron USA Inc.
    Inventors: Stephen J. Miller, Dennis J. O'Rear
  • Publication number: 20080093262
    Abstract: This invention relates to a process and an installation for treatment of a heavy petroleum feedstock, of which at least 80% by weight has a boiling point of greater than 340° C., whereby the process comprises the following stages: (a) Hydroconversion in a fixed-bed reactor operating with an upward flow of liquid and gas, whereby the net conversion in products boiling below 360° C.
    Type: Application
    Filed: October 24, 2006
    Publication date: April 24, 2008
    Inventors: Andrea Gragnani, Frederick Morel
  • Patent number: 7279090
    Abstract: This invention relates to a novel integrated method for economically processing vacuum residue from heavy crude oils. This is accomplished by utilizing a solvent deasphalter (SDA) in the first step of the process with a C3/C4/C5 solvent such that the DAO product can thereafter be processed in a classic fixed-bed hydrotreater or hydrocracker. The SDA feed also includes recycled stripper bottoms containing unconverted residue/asphaltenes from a downstream steam stripper unit. The asphaltenes from the SDA are sent to an ebullated-bed reactor for conversion of the residue and asphaltenes. Residue conversion in the range of 60-80% is achieved and asphaltene conversion is in the range of 50-70%. The overall residue conversion, with the DAO product considered non-residue, is in the range of 80 W %-90 W % and significantly higher than could be achieved without utilizing the present invention.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: October 9, 2007
    Assignee: Institut Francais du Pe'trole
    Inventors: James J. Colyar, Stéphane Kressmann, Christophe Gueret
  • Publication number: 20070144940
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 28, 2007
    Inventors: Frank Hershkowitz, Jeffrey W. Frederick
  • Patent number: 7232848
    Abstract: An apparatus for converting a gaseous and/or liquid feed fluid to gaseous and/or liquid products using a solid catalyst comprises a reactor, a liquid phase disposed within the reactor volume, a fixed catalyst at least partially disposed in the liquid phase, a cooling system having a cooling element in thermal contact with the liquid phase, a feed inlet positioned to feed the feed fluid into the reactor volume, and a fluid outlet in fluid communication with the liquid phase. The catalyst is contained in a catalyst container and the container may be adjacent to said cooling element, extend through said cooling element, or may surround the catalyst container. The catalyst may be a Fischer-Tropsch catalyst.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 19, 2007
    Assignee: ConocoPhillips Company
    Inventors: Sergio R. Mohedas, Rafael L. Espinoza, Jianping Zhang
  • Patent number: 7214308
    Abstract: This invention relates to a novel method for economically processing vacuum residue from heavy crude oils by selectively processing the difficult and easy components in reactors whose design and operating conditions are optimized for the specific feed. The process utilizes an integrated solvent deasphalting (SDA)/ebullated-bed design wherein the heavy vacuum residue feedstock is initially sent to an SDA unit operated with C4/C5 solvent to achieve a high deasphalted oil (DAO) yield. The resulting SDA products, namely asphaltenes and DAO are separately treated in ebullated-bed reactor(s) systems whose design and operating conditions are optimized for a particular feedstock. The resulting net conversion, associated distillate yield and product qualities are greatly improved relative to treatment of the entire residue feedstock in a common ebullated-bed reactor system.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: May 8, 2007
    Assignee: Institut Francais du Petrole
    Inventor: James J. Colyar
  • Patent number: 7173160
    Abstract: Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 6, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theo Maesen, Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu, Hye Kyung C. Timken, Waqar R. Qureshi
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7067053
    Abstract: A process for upgrading a heavy crude oil includes the steps of providing a heavy crude oil; and exposing the heavy crude oil to residue conversion conditions in the presence of a free radical generator and a hydrogen donor, whereby the free radical generator enhances reactions to form distillates, and the hydrogen donor inhibits reactions to form coke.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: June 27, 2006
    Assignee: Intevep, S.A.
    Inventors: Edgar A Cotte, Ivan C. Machin
  • Patent number: 6908602
    Abstract: Method for producing hydrogen and a hydroprocessed product from a hydrocarbonaceous feedstock by subjecting it to a catalytic hydrocracking treatment using hydrogen which has been at least partly produced from hydrocracked feedstock and subjecting at least pan of the hydrocracked feedstock, after having subjected it to a separation treatment in the event that hydroprocessed product is to be recovered, to a treatment to produce hydrogen in a single operation which hydrogen is at least partly recovered as product.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: June 21, 2005
    Assignee: Shell Oil Company
    Inventors: Johan Willem Gosselink, Michiel Jan Groeneveld, Andreas Karl Nowak, Antonius Adrianus Maria Roovers
  • Patent number: 6887369
    Abstract: A process for treating a carbonaceous material includes reacting the carbonaceous material and a process gas in supercritical water to at least one of hydrotreat and hydrocrack the carbonaceous material to form a treated carbonaceous material. The process is preferably carried out in a deep well reactor, but can be carried out in conventional surface-based reactors at a temperature of at least 705° F. and a pressure of at least 2500 psi.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: May 3, 2005
    Assignee: Southwest Research Institute
    Inventors: David S. Moulton, Jimell Erwin
  • Patent number: 6873672
    Abstract: The method involves measuring hydrogen permeation in the tubes by mass spectrometry, wherein the tube is inserted into a high or ultrahigh vacuum device in which a mass spectrometer and a total pressure gauge are located. H2 or H2 and inert gas mixtures are circulated inside the tube at the required partial pressure. The tube is then heated and the appearance of H2 outside the tube is observed. The flow thereof inside the tube and emergence time, called permeation time, are determined based on permeation curves. The emergence time of the first microcrack is also determined.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: March 29, 2005
    Assignees: Consejo Superior de Investigaciones Cientificas, Iberdrola
    Inventors: José Luis Sacedón Adelantado, Eduardo Santamera Gago, Marcos Díaz Muñoz, José Serafin Moya Corral, Elisa Román García, Angel Samuel Pérez Ramírez, Begoña Remartínez Zato
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6858128
    Abstract: A catalytic hydrocracking process wherein a hydrocarbonaceous feedstock and a liquid recycle stream is contacted with hydrogen in a hydrocracking reaction zone at elevated temperature and pressure to obtain conversion to lower boiling hydrocarbons. A liquid hydrocarbonaceous stream produced from the effluent of the hydrocracking reaction zone is fractionated in a first zone of a divided-wall fractionation zone to produce at least one liquid hydrocarbonaceous product stream and a liquid hydrocarbonaceous stream containing hydrocarbons boiling at a temperature in the boiling range of the feedstock and heavy polynuclear aromatic compounds. At least a portion of the liquid hydrocarbonaceous stream containing heavy polynuclear aromatic compounds is introduced into a second zone of the divided-wall fractionation zone to produce a stream rich in polynuclear aromatic compounds.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Bradford L. Bjorklund
  • Patent number: 6858127
    Abstract: A process for the preparation of one or more hydrocarbon fuel products boiling in the kero/diesel range from a stream of hydrocarbons produced in a Fischer-Tropsch process, in which process synthesis gas is converted into liquid hydrocarbons, at least a part of the hydrocarbons boiling above the kero/diesel range, having the following steps: (1) hydrocracking/hydroisomerizing at least a part of the Fischer-Tropsch hydrocarbons stream at a conversion per pass of at most 80 wt % of the material boiling above 370° C. into material boiling below 370° C.; (2) separating the product stream obtained in step (1) into one or more light fractions boiling below the kero/diesel boiling range, one or more fractions boiling in the kero/diesel boiling range and a heavy fraction boiling above the kero/diesel boiling range; (3) hydrocracking/hydroisomerizing the major part of the heavy fraction obtained in step (2) at a conversion per pass of at most 80 wt % of the material boiling above 370° C.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: February 22, 2005
    Assignee: Shell Oil Company
    Inventors: Arend Hoek, Matthijs Maria Gerardus Senden
  • Patent number: 6852215
    Abstract: A method for upgrading a hydrocarbon in which an oxygen source and a hydrogen source are ignited and the resulting synthetic gas is used to initiate a predominantly gas phase heavy oil upgrade reaction. The upgrade reaction is quenched with an additional source of un-upgraded hydrocarbon.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: February 8, 2005
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael Y. Wen, Eric D. Nelson
  • Publication number: 20040232046
    Abstract: An apparatus as a suitable embodiment, wherein a reactor (102) has a nozzle (means for supplying a raw material, an oxidizing agent and water) (103), a high temperature and high pressure gas formed by reacting the raw material with oxygen or the like in an oxidizing agent under a water-containing atmosphere is introduced to a heat exchanger (104) which is provided between a pressure vessel (101) and the reactor (102), the pressure vessel (101) has a water inlet (114) connected with a water supply line (106) and an opening (117) for a discharge line (105) for a formed gas which is connected with the heat exchanger (104), and the nozzle (103) has a flow route for supplying water present between the pressure vessel (101) and the reactor (102) to the inside of the reactor(102); and a method for pyrolysis and gasification using the apparatus.
    Type: Application
    Filed: February 19, 2004
    Publication date: November 25, 2004
    Inventors: Hiroshi Tanaka, Kazuaki Ota, Wenbin Dai, Wataru Saiki, Gang Bai, Ryouhei Mori
  • Publication number: 20040104147
    Abstract: A method and reactor for upgrading a hydrocarbon in which an oxygen source and a hydrocarbon source are ignited and the resulting synthetic gas is used to initiate a gas phase heavy oil upgrade reaction. The upgrade reaction is quenched quickly after initiation of the gas phase reaction.
    Type: Application
    Filed: September 8, 2003
    Publication date: June 3, 2004
    Inventor: Michael Y. Wen
  • Patent number: 6740226
    Abstract: In a hydrocracking unit, the flash gases from the high-pressure separator are fed to the bottom of an absorption zone where the entering gases are counter-currently contacted with a lean solvent. The lean solvent absorbs away the contained methane, ethane, propane, butanes and pentanes (C1+) from the contained hydrogen. The overhead gas stream from the absorption zone typically contains hydrogen at a purity of 90 to 98 mol %, or even higher, which is fed to the recycle gas stream to provide hydrogen purity in the range of 96 to 99 mol %, thereby providing an increase in the overall efficiency of the hydroprocessor unit. The process can also be employed with hydrotreating, hydrodesulfurization, hydrodenitrogenation and hydrodealkylation reactors.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 25, 2004
    Assignee: Saudi Arabian Oil Company
    Inventors: Yuv Raj Mehra, Ali Hassan Al-Abdulal
  • Publication number: 20040079678
    Abstract: Process to prepare two or more lubricating base oil grades and a gas oil by (a) hydrocracking/hydroisomerisating a Fischer-Tropsch product, wherein weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.2 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms, (b) separating the product of step (a) into one or more gas oil fractions and a base oil precursor fraction, (c) performing a pour point reducing step to the base oil precursor fraction obtained in step (b), and (d) separating the effluent of step (c) in two or more base oil grades.
    Type: Application
    Filed: September 4, 2003
    Publication date: April 29, 2004
    Inventor: Gilbert Robert Bernard Germaine
  • Patent number: 6726833
    Abstract: The present invention discloses a process for hydroconverting a heavy hydrocarbon chargestock, wherein said chargestock oil is first contacted with a highly active homogeneous hydrogenation catalyst to effect the hydrogenation reaction so that macromolecular radicals of the residue (the precursor of coke) form as less as possible, thereby decreasing the output of coke in the hydrocracking of the residue; when the reaction proceeds to a certain extent, a solid powder is added to adsorb the macromolecular radicals of the residue formed during the reaction and lower their reaction activity, thereby preventing them from further condensing to coke and/or depositing due to polymerization. The synergetic action of the two sorts of substances makes it possible to produce substantively no coke or less coke during the hydrogenation of residue in a suspension bed and prolong the operation lifetime of the unit.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: April 27, 2004
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum & Petrochemicals, SINOPEC Corporation
    Inventors: Baoping Han, Lijing Jiang, Youliang Shi, Pai Peng, Mei Jin, Zhaoming Han
  • Patent number: 6709569
    Abstract: Embodiments of the present invention are directed to methods for hydroprocessing Fischer-Tropsch products. The embodiments in particular are related to integrated methods for producing liquid fuels from a hydrocarbon stream provided by a Fischer-Tropsch synthesis process. The methods involves separating the Fischer-Tropsch products into a light fraction and a heavy fraction. The light fraction is pre-conditioned to remove contaminants such as CO2 prior to being subjected to hydroprocessing, either separately, or after having been being recombined with the heavy fraction. Any of the hydroprocessing steps may be accomplished in a single reactor.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 23, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Paul D. Cambern
  • Patent number: 6702935
    Abstract: A VGO stream is initially hydrocracked in a hydrocracking reaction zone within an integrated hydroconversion process. Effluent from the hydrocracking reaction zone is combined with a light aromatic-containing feed stream, and the blended stream hydrotreated in a hydrotreating reaction zone. Heat exchange occurs between the hydrocracking reaction zone and the hydrotreating reaction zone, permitting the temperature control of the initial hydrocracking zone. The integrated reaction system provides a single hydrogen supply and recirculation system for use in two reaction processes.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: March 9, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis R. Cash, Arthur J. Dahlberg
  • Publication number: 20040031726
    Abstract: A process for upgrading a heavy crude oil includes the steps of providing a heavy crude oil; and exposing the heavy crude oil to residue conversion conditions in the presence of a free radical generator and a hydrogen donor, whereby the free radical generator enhances reactions to form distillates, and the hydrogen donor inhibits reactions to form coke.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Inventors: Edgar A. Cotte, Ivan C. Machin
  • Patent number: 6635681
    Abstract: A process is disclosed for preparing a finished fuel product from a stabilized product mixture, which is produced from the effluent of a Fischer-Tropsch synthesis process. In the process, a Fischer-Tropsch synthesis process is conducted at a site which is remote from the market site where the products from the process are ultimately marketed. The Fischer-Tropsch effluent product is hydroprocessed, and the hydroprocessed effluent separated to remove a C4− fraction and to yield a stabilized product mixture which can be exported to the market site. At the market site, the stabilized product mixture is fractionated into at least one finished fuel product. A heavy fraction may also be recovered at the market site for separation into at least one lubricating oil base stock and then conversion at hydroisomerization conditions to form a lubricating base oil.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: October 21, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Mark Schnell