Catalytic Patents (Class 208/113)
  • Patent number: 9663722
    Abstract: Methods and FCC apparatuses are provided for cracking hydrocarbons. An FCC apparatus includes a riser with a riser outlet positioned within a reactor catalyst collection area. A stripper is coupled to the reactor catalyst collection area, where the riser extends through the stripper, and where the stripper includes a stripper exterior wall. A sleeve is positioned within the stripper between the riser and the stripper exterior wall.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: May 30, 2017
    Assignee: UOP LLC
    Inventors: Sathit Kulprathipanja, Paolo Palmas
  • Patent number: 9605213
    Abstract: Embodiments of the invention provide a method for the fluid catalytic cracking of a heavy hydrocarbon feedstock. According to at least one embodiment, the method includes supplying the heavy hydrocarbon feedstock to a reaction zone having a catalyst, such that both the heavy hydrocarbon feedstock and the catalyst are in contact in a down-flow mode, wherein said contact between the heavy hydrocarbon feedstock and the catalyst takes place in a fluidized catalytic cracking apparatus having a separation zone, a stripping zone, and a regeneration zone. The method further includes maintaining the reaction zone at a temperature of between 500 and 600° C., such that the hydrocarbon feedstock converts into a cracked hydrocarbon effluent comprising light olefins, gasoline, and diesel.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: March 28, 2017
    Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Musaed Salem Al-Ghrami, Cemal Ercan, Sulaiman S. Al-Khattaf, Mohammed Abdul Bari Siddiqui, Abdullah M. Aitani
  • Patent number: 9580662
    Abstract: The present invention relates to quenching, during hydroprocessing of a hydrocarbon feed stream. More particularly, the present invention provides for quenching in hydroprocessing of a hydrocarbon feed stream through a hydroprocessing vessel. Liquid quenches (from high pressure hot separator) were installed to assist in cooling the reactor inter-bed, and to maintain good liquid irrigation of the catalyst. The soluble hydrogen in the stream, kinetically active and available for immediate reaction, is the final piece of the puzzle for why this unit runs so well.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: February 28, 2017
    Assignee: Marathon Petroleum Company LP
    Inventor: Howard F. Moore
  • Patent number: 9573865
    Abstract: A process for increasing the yield of C3 olefin in fluidized bed catalytic cracking of hydrocarbon feedstocks is disclosed. C4 fraction produced from the cracking of hydrocarbon feedstock in the primary reaction zone (riser), optionally with external source of C4 stream is fed into the stripper which acts as a secondary reaction zone at an elevated temperature and at an optimum WHSV. The elevated temperature is achieved by injecting a part of the regenerated catalyst from regenerator, which is at a higher temperature, directly into the stripper through a dedicated additional lift line. This raises the activity of catalyst inside the stripper. The direct injection of regenerated catalyst into the stripper, besides producing higher yields of propylene, improves the stripping efficiency leading to enhanced recovery of strippable hydrocarbons.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: February 21, 2017
    Assignee: INDIAN OIL CORPORATION LTD.
    Inventors: Manoj Kumar Bhuyan, Debasis Bhattacharyya, Gopinath Bhanuprasad Sayapaneni, Somnath Kukade, Satheesh Kumaran Vetterkunnel
  • Patent number: 9567267
    Abstract: A process provides oligomerization feed stream comprising C5 hydrocarbons and olefins along with C4 olefins to an oligomerization zone. The oligomerization feed stream may be obtained from cracked FCC products. Unreacted C5 hydrocarbons can be recycled to the oligomerization zone to maintain the liquid phase therein.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 14, 2017
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Christian D. Freet, Steven L. Krupa, Kurt M. Vanden Bussche, Todd M. Kruse
  • Patent number: 9527054
    Abstract: Methods and apparatuses are provided for cracking a hydrocarbon. The method includes contacting a first hydrocarbon stream with a first cracking catalyst at a first cracking temperature in a first riser to produce a first riser effluent and a first spent catalyst. A second hydrocarbon stream is contacted with a second cracking catalyst at a second cracking temperature in a second riser to produce a second riser effluent and a second spent catalyst, where the second cracking temperature is less than the first cracking temperature. The first riser effluent and the second riser effluent are combined to produce a mixed riser effluent, and the mixed riser effluent is fractionated in a fractionation zone to produce a light cycle oil. The first spent catalyst and the second spent catalyst are combined in a reactor to produce a mixed spent catalyst.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: December 27, 2016
    Assignee: UOP LLC
    Inventors: Trung Pham, Lev Davydov, Lance Awender Baird
  • Patent number: 9469815
    Abstract: A process for catalytic cracking of a pyrolysis oil derived from material comprising biomass. In one embodiment, the process comprises subjecting a feed comprising the pyrolysis oil to a hydrodeoxygenation step to prepare an at least partially deoxygenated pyrolysis oil; heating a hydrocarbon feed to a temperature in the range from equal to or more than 50° C. to equal to or less than 200° C. to prepare a preheated hydrocarbon feed; mixing the at least partially deoxygenated pyrolysis oil and the preheated hydrocarbon feed to prepare a feed mixture; and contacting the feed mixture with a catalytic cracking catalyst in a catalytic cracking reactor at a temperature of at least 400° C. to prepare a product stream containing one or more cracked products.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 18, 2016
    Assignee: Shell Oil Company
    Inventors: Gang Wang, Jinsen Gao, Yantao Bi
  • Patent number: 9446368
    Abstract: A mixing device used in a fluidized catalytic cracking apparatus which mixes feed and a catalyst includes a cylindrical reaction container which supplies a catalyst in a vertical direction; a plurality of feed injection nozzles arranged along an outer circumference of the reaction container; and a catalyst flow regulator which is provided in the reaction container and regulates a flow of the catalyst in the vicinity of the feed injection nozzles. The catalyst flow regulator has no feed supply function and forms a catalyst moving bed having a hollow tubular shape which is coaxial with the reaction container in the vicinity of the feed injection nozzles. The catalyst flow regulator can effectively prevent backward flow of injected fuel. Although the mixing device has a simple structure, it has a high cracking rate and maintenance of the fluidized catalytic cracking apparatus can be performed easier.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 20, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Koji Shimada, Naoya Saito
  • Patent number: 9434888
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: September 6, 2016
    Assignee: Ivanhoe HTL Petroleum Ltd.
    Inventors: Robert Graham, Barry Freel
  • Patent number: 9409137
    Abstract: A support grid for a chemical reactor fixed bed catalyst. The support grid is formed of (i) a center support cylinder, made in areas of a vertical cylinder, that is assembled within the vessel on the bottom closure head; (ii) a peripheral support skirt located at the outer circumference of the grid, assembled in sections inside the reactor pressure vessel, that sets without welding to bottom closure head of the reactor vessel; (iii) a set of radial support arms that extend from the center support structure to the support skirt to tie these sections into a rigid frame to support the catalyst bed support grid wedges; and (iv) a grid or disc formed of a plurality of catalyst bed support grid wedges or sections that are radial in orientation and are assembled inside the reactor pressure vessel to form a disc that is about 80% of the reactor vessel in outside diameter.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: August 9, 2016
    Assignee: Woven Metal Products, Inc.
    Inventors: Lawrence L. Williams, Gregorio Castillo
  • Patent number: 9387449
    Abstract: Disclosed are a catalytic cracking method and an apparatus for implementing the method.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: July 12, 2016
    Inventor: Baozhen Shi
  • Patent number: 9376633
    Abstract: A process and apparatus described is for distributing fluidizing gas to a riser. Fluidizing gas is delivered to a plenum below the riser. A first stream of fluidizing gas is distributed from the plenum into a chamber in a riser and a second stream of fluidizing gas is distributed from the plenum into the riser outside of the chamber. First nozzles in the plenum have a first outlet in the chamber and second nozzles in the plenum have a second outlet outside of the chamber. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around the chamber in a lower section of a riser.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: June 28, 2016
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Michael S. Sandacz, Michael A. Stine, Daniel R. Johnson
  • Patent number: 9376638
    Abstract: A process for the hydroconversion of a hydrocarbon feedstock. The process includes contacting the hydrocarbon feedstock with a catalyst in a first hydrocracking section to obtain a first hydrocarbon effluent stream which is separated into a gaseous stream, a light liquid stream and a heavy liquid stream. These liquid streams are fractioned into a number of fractions of hydrocarbons including a fraction of hydrocarbons having a boiling point above 350° C. This fraction of hydrocarbons is contacted with a catalyst in a second hydrocracking section to obtain a second hydrocarbon effluent stream that is separated to obtain a gaseous stream, a light liquid stream and a heavy liquid stream. These liquid streams are fractioned into a number of fractions of hydrocarbons including a heavy fraction of hydrocarbons having a boiling point above 350° C. This fraction of hydrocarbons is split into a major stream and a minor stream with the major stream being recycled and the minor stream is recovered.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 28, 2016
    Assignee: Shell Oil Company
    Inventor: Nicolaas Van Dijk
  • Patent number: 9278343
    Abstract: Provided is an improved catalyst for treating exhaust gas, particularly for selectively reducing NOx, and methods for using the same, wherein the catalyst includes a blend of a transition metal promoted zeolite and an un-promoted zeolite, wherein both zeolites have the same framework type.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 8, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Alexander Nicholas Michael Green, Guy Richard Chandler, Paul Richard Phillips
  • Patent number: 9266123
    Abstract: Integrated cyclone stabilizer assembly includes an upper annular ring to be disposed at an upper portion of the cyclone, a lower annular ring to be disposed at a lower portion of the cyclone, and a plurality of struts extending between the upper annular ring and the lower annular ring. The upper annular ring has a plurality of hinge members extending radially therein to support the upper portion of the cyclone therefrom. The lower annular ring has a plurality of hinge members extending radially therein to support the lower portion of the cyclone therefrom. Cyclone assembly include a primary cyclone, a primary cyclone assembly, a secondary cyclone and a secondary cyclone assembly. At least one connecting member couples at least one of the upper and lower rings of the primary stabilizer assembly to a corresponding annular ring of the secondary stabilizer assembly.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: February 23, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Robert Frank Tammera
  • Patent number: 9248444
    Abstract: A process for regenerating a coked catalytic cracking catalyst which the carbon-containing deposits on the catalyst contains at least 1 wt % bio-carbon, based on the total weight of carbon present in the carbon-containing deposits is provided. Such coked catalytic cracking catalyst is contacted with an oxygen containing gas at a temperature of equal to or more than 550° C. in a regenerator to produce a regenerated catalytic cracking catalyst, heat and carbon dioxide.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 2, 2016
    Assignee: Shell Oil Company
    Inventors: Andries Hendrik Janssen, Andries Quirin Maria Boon, John William Harris, Nicolaas Wilhelmus Joseph Way, Colin John Schaverien, Johan Willem Gosselink
  • Patent number: 9238209
    Abstract: An FCC process and apparatus may include injecting hydrocarbon feedstock at different radial positions while at the same elevation inside a riser. Multiple distributors may be used to position the tips for injecting feedstock at multiple radial positions. The distributors with tips more deeply positioned in the riser will penetrate a dense catalyst column we discovered generates in risers of larger diameter over 1.3 meters.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 19, 2016
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 9221724
    Abstract: A process for producing at least one light olefin, comprising converting three raw materials in the presence of at least one catalyst comprising at least one molecular sieve and regenerating said at least one catalyst into three separate product streams.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: December 29, 2015
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology, SINOPEC
    Inventors: Guozhen Qi, Songyuan Gu, Siqing Zhong, Yongming Jin
  • Patent number: 9205394
    Abstract: A process and apparatus described is for distributing fluidizing gas to a riser. Fluidizing gas is delivered to a plenum below the riser. A first stream of fluidizing gas is distributed from the plenum into a chamber in a riser and a second stream of fluidizing gas is distributed from the plenum into the riser outside of the chamber. First nozzles in the plenum have a first outlet in the chamber and second nozzles in the plenum have a second outlet outside of the chamber. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around the chamber in a lower section of a riser.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 8, 2015
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Michael S. Sandacz, Michael A. Stine, Daniel R. Johnson
  • Patent number: 9200217
    Abstract: The present invention provides a method for producing a gas oil composition which contains a cracked base gas oil with a poor oxidation stability but is enhanced in oxidation stability resulting in less sludge or deposit formation. The method comprises blending 0.5 to 15 percent by volume of a cracked reformed base oil having a total aromatic content of 80 to 100 percent by volume, a bicyclic aromatic content of 40 to 95 percent by volume, a 10 vol. % distillation temperature of 160 to 250° C. and a 90 vol. % distillation temperature of 260 to 330° C. and 10 to 70 percent by volume of a cracked base gas oil thereby producing a gas oil composition with an induction period of 60 minutes or longer, a sulfur content of 10 ppm by mass or less and a cetane number of 45 or greater.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 1, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shunta Sagawa, Yasuyuki Iwasa, Shinichiro Yanagawa
  • Patent number: 9188331
    Abstract: A method of gasification by introducing a feed material to be subjected to gasification into a dual fluidized bed gasifier comprising a pyrolyzer fluidly connected with a combustor such that a circulation stream comprising a heat transfer material can be continuously circulated between the pyrolyzer, in which the temperature of the circulation stream is reduced, and the combustor, in which the temperature of the circulation stream is increased, wherein the pyrolyzer is operable to convert at least a portion of the feed material into a gasifier product gas comprising hydrogen and carbon monoxide, and wherein the combustor is operable to increase the temperature of the circulation stream via combustion of char introduced thereto with the circulation stream and at least one supplemental fuel. A system for carrying out the method is also provided.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: November 17, 2015
    Assignee: RES USA, LLC
    Inventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark K. Robertson, Eric R. Elrod, Sim Weeks, Harold A. Wright
  • Patent number: 9181496
    Abstract: One exemplary embodiment can be a process for modifying a fluid catalytic cracking unit. The process can include adding a carbon monoxide boiler to the fluid catalytic cracking unit to receive a bypassed flue gas stream from a power recovery expander for increasing capacity of the fluid catalytic cracking unit.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 10, 2015
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Richard A. Johnson, II, Ronald Gatan
  • Patent number: 9096806
    Abstract: An integrated hydroprocessing and fluid catalytic cracking process is provided for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals. Crude oil and hydrogen are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity. The hydroprocessed effluent is separated into a low boiling fraction and a high boiling fraction. The low boiling fraction is cracked in a first downflow reactor of a fluid catalytic cracking unit in the presence of a predetermined amount of catalyst to produce cracked products and spent catalyst, and the high boiling fraction is cracked in a second downflow reactor of the fluid catalytic cracking unit in the presence of a predetermined amount of catalyst to produce cracked products and spent catalyst.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: August 4, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Ibrahim A. Abba, Raheel Shafi, Abdennour Bourane, Essam Sayed
  • Patent number: 9052703
    Abstract: A pressure and flow calculation technique can be used in a distributed process network simulation system that uses the sequential solving method to perform better or faster simulations of a process flow, especially with respect to process junction nodes at which flow either converges or diverges. The pressure and flow variable determination technique uses a grouped node identification technique that identifies a local set of nodes for each junction node of the process network to use when solving for the pressure at the junction node, a grouped node iteration technique that uses the grouped set of nodes at each junction node to perform iterative pressure calculations at the junction node, and a flow-based pressure calibration technique at each junction node to enable the system to perform highly accurate pressure and flow variable determination at each junction node in real-time.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 9, 2015
    Assignee: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Xu Cheng, Chengtao Wen
  • Patent number: 9028676
    Abstract: Integrating a biomass pyrolysis and upgrading process into a fluid catalytic cracking unit. The process uses conventional FCC feed and a mixture of a solvent and biomass to produce upgraded fuel products. A slurry stream composed of solid biomass particles and a solvent is fed into an FCC riser through a slurry pump to achieve biomass pyrolysis and in situ pyrolysis oil upgrading. The catalytic cracking of the conventional petroleum feed also occurs in the riser.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 12, 2015
    Assignee: Phillips 66 Company
    Inventors: Kening Gong, Alexandru Platon, Terry S. Cantu, Daren E. Daugaard
  • Publication number: 20150123039
    Abstract: The invention relates to a rotary disc device (1) in a rotary fluidised bed, the outer edge of said disc rotating inside, and faster than, the fluidised bed, thereby allowing: the rotation speed of the fluidised bed to be accelerated, solid particles and/or micro-droplets to be supplied to the fluidised bed or to the free central area, and different annular areas of the fluidised bed to be separated. The invention also relates to methods for transforming solid particles or micro-droplets on contact with the fluids flowing through the rotary fluidised bed or for transforming fluids on contact with solids in suspension in the rotary fluidised bed, using said device.
    Type: Application
    Filed: April 4, 2013
    Publication date: May 7, 2015
    Inventor: Axel De Broqueville
  • Publication number: 20150101960
    Abstract: Systems for loading catalyst and/or additives into a fluidized catalytic cracking unit are disclosed. Methods of making and using the systems are also disclosed.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 16, 2015
    Inventor: Lenny Lee ALBIN
  • Patent number: 9005430
    Abstract: The invention relates to the integration of a process for hydrotreatment of distillates (light and/or middle), that operates under a hydrogen partial pressure of 0.5 to 6.0 MPa, with a process for hydrotreatment/hydroconversion of middle and/or heavy distillates that operates at a hydrogen partial pressure that is at least 4.0 MPa higher than the hydrogen partial pressure of the process for hydrotreatment of distillates (light and/or middle). The integration resides in the use of the hydrogen-rich gas, obtained from the hydrotreatment/hydroconversion effluents, in the process for hydrotreatment of distillates (light and/or middle) and in the adjustment of the pressure level of this hydrogen-rich gas removed from the hydrotreatment/hydroconversion. This invention makes it possible to considerably reduce the net consumption of make-up hydrogen in the process for hydrotreatment of distillates (light and/or middle).
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 14, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Antoine Fournier, Jean Luc Nocca
  • Patent number: 9005431
    Abstract: A process and apparatus described is for distributing hydrocarbon feed to catalyst in a riser. Hydrocarbon feed is delivered to a plenum in the riser. Nozzles from the plenum inject feed into the riser to contact the catalyst. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around an insert in a lower section of a riser. The plenum may be located in the riser.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 14, 2015
    Assignee: UOP LLC
    Inventors: Roger L. Throndson, Paolo Palmas, Lev Davydov, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 8999146
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Publication number: 20150090636
    Abstract: Methods and apparatuses are provided for cracking a hydrocarbon. The method includes contacting a hydrocarbon feed stream with a cracking catalyst at cracking conditions to produce a reactor effluent and a spent catalyst. The spent catalyst is transferred to a regenerator, where it is regenerated by contact with an oxygen supply gas at regeneration conditions to produce a regenerated catalyst.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Thomas William Lorsbach, Paolo Palmas, Richard A. Johnson, II, Miladin Crnkovic
  • Patent number: 8993824
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process may include providing a first feed having a boiling point of about 180-about 800° C. to a first riser reactor, and providing a second feed having first and second parts to a second reactor. Typically, the first part includes one or more C5-C12 hydrocarbons and a second part includes one or more C4-C5 hydrocarbons. Generally, an effective amount of the second part is combined with the first part to maximize production of propene.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg
  • Patent number: 8978353
    Abstract: Systems and methods for rejecting waste heat generated by one or more operating systems installed on an aircraft employ an endothermic fuel that can participate in endothermic catalytic cracking at temperatures below about 80° C. when exposed to a cracking catalyst that contains a superacid operative to induce low-temperature catalytic cracking of the branched alkanes. The endothermic fuel contains an effective amount of the branched alkanes so that a net endothermic effect is realized when the fuel is exposed to the cracking catalyst. The low-temperature, heat-consuming cracking of the branched alkanes increases the heat sink capacity of the endothermic fuel.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 17, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel G. Norton, Robert J. Perry, John Osaheni, Patrick Pastecki, Paul Glaser, Ashish B. Mhadeshwar
  • Publication number: 20150068953
    Abstract: Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 12, 2015
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. ANTHONY, Gregory G. BORSINGER
  • Publication number: 20150053588
    Abstract: An apparatus which is an integral hardware consisting of an annular downer reactor and a concentric upflow riser regenerator for catalytic cracking of hydrocarbon feed to is disclosed. The annular downer reactor terminates in annular stripper which is also concentric with the regenerator. The regenerator, reactor and stripper are in fluid connection with each other. The apparatus is highly compact and provides efficient contact between circulating catalyst and hydrocarbon feed. The proposed hardware includes a novel radial distributor for providing improved control and radial distribution of catalyst inside the downflow reactor. The radial distributor has equal numbers of stationary and movable parts placed one after another to cover the entire annular opening at the bottom of the regenerated catalyst vessel. The radial distributor is concentric with regenerator and located between the catalyst holding vessel and the reactor. A process for catalytic cracking using the invented apparatus is also disclosed.
    Type: Application
    Filed: December 24, 2012
    Publication date: February 26, 2015
    Applicant: Indian Oil Corporation Ltd.
    Inventors: Mukthiyar Sadhullah, Satheesh Vetterkunnel Kumaran, Debasis Bhattacharyya, Gadari Saidulu, Somnath Kukade, Brijesh Kumar, Santanam Rajagopal
  • Patent number: 8956528
    Abstract: A system and process for conversion of heavy feedstocks in a slurry bed hydroprocessing reactor is provided in which (a) hydrogen gas is dissolved in the liquid feedstock by mixing and/or diffusion, (b) the mixture is flashed to remove and recover any light components and hydrogen, leaving a hydrogen-enriched feedstock. A homogenous and/or heterogeneous catalyst is added to the feedstock upstream of the inlet of the slurry bed hydroprocessing reactor.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: February 17, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8951406
    Abstract: A process for catalytically cracking a hydrocarbon oil containing sulfur and/or nitrogen hydrocarbon constituents by dissolving excess hydrogen in the liquid hydrocarbon feedstock in a mixing zone at a temperature of 420° C. to 500° C. and a hydrogen-to-feedstock oil volumetric ratio of 300:1 to 3000:1, flashing the mixture to remove remaining hydrogen and any light components in the feed, introducing the hydrogen saturated hydrocarbon feed into an FCC reactor for contact with a catalyst suspension in a riser or downflow reactor to produce lower boiling hydrocarbon components which can be more efficiently and economically separated into lower molecular weight hydrocarbon products, hydrogen sulfide and ammonia gas and unreacted hydrogen in a separation zone.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: February 10, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8940155
    Abstract: An improved system and method for processing feedstocks in an ebullated-bed hydroprocessing reactor is provided in which hydrogen gas is dissolved in the fresh and recycled liquid feedstock by mixing and/or diffusion of an excess of hydrogen, followed by flashing of the undissolved hydrogen upstream of the reactor inlet, introduction of the feed containing dissolved hydrogen into the ebullated-bed hydroprocessing reactor whereby the dissolved hydrogen eliminates or minimizes the prior art problems of gas hold-up and reduced operational efficiency of the recycle pump due to the presence of excess gas in the recycle stream when hydrogen gas was introduced as a separate phase into the reactor.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8940955
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone, in turn including a reactor receiving, a fluidizing stream, a fuel gas stream, a fluidizable catalyst, a stream having an effective amount of oxygen for combusting the fuel gas stream, and a feed.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg
  • Patent number: 8940154
    Abstract: A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 27, 2015
    Inventor: Ranfeng Ding
  • Patent number: 8940156
    Abstract: A catalyst particle which comprises a metallic oxide such as kaolin is provided with the unique structure by mixing small amounts of a polyphosphate structuring agent with the metallic oxide and heating the mixture of metallic oxide and polyphosphate to allow reaction of the structuring agent with the metallic oxide.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: January 27, 2015
    Assignee: BASF Corporation
    Inventors: Kenneth Folmar, Mitchell Willis
  • Patent number: 8936761
    Abstract: Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for fabricating such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. The sidewall has a groove formed therein disposed about the interior. A plurality of baffle sections is disposed in the groove. The baffle sections are configured to be packed together in the groove to define a packed condition and to be moved in the groove so as to spread out the baffle sections from the packed condition to define an expanded condition and form a baffle ring. The baffle ring extends inwardly in the interior.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Michael S. Sandacz, Robert L. Mehlberg
  • Patent number: 8932452
    Abstract: A method for removing catalyst, catalyst fines, and coke particulates from a slurry oil stream includes the steps of routing a first slurry oil stream from a first slurry oil source to at least one hydrocyclone, increasing at least one of a temperature and a pressure of the first slurry oil stream prior to it entering the at least one hydrocyclone; passing the first slurry oil stream through the at least one hydrocyclone; and routing a second slurry oil stream exiting an overflow end of the at least one hydrocyclone to a second slurry oil source. The first and second slurry oil sources may be one or more of the following: a main column of a fluid catalytic cracking fractionator, a steam generator, a heat exchanger, a decant slurry oil storage, and a slurry oil storage tank.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: January 13, 2015
    Assignee: Cameron International Corporation
    Inventor: Ronald D. Hypes
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8920632
    Abstract: The present invention describes a process for the production of gasoline and for the co-production of propylene employing a catalytic cracking unit having at least one principal reactor operating in riser mode or in downer mode, processing a conventional heavy feed, and in which the principal reactor further processes a feed primarily constituted by olefinic C4, C5 and C6 cuts introduced upstream or as a mixture with said heavy feed, said olefinic feed deriving from the inter-stage of the wet gas compressor, i.e. upstream of the separation section of the catalytic cracking unit.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 30, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Frederic Feugnet, Romain Roux
  • Patent number: 8921633
    Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Stephen M. Davis, Steven E. Silverberg
  • Patent number: 8920630
    Abstract: A system comprising a riser reactor comprising a gas oil feedstock and a first catalyst under catalytic cracking conditions to yield a riser reactor product comprising a cracked gas oil product and a first used catalyst; a intermediate reactor comprising at least a portion of the cracked gas oil product and a second catalyst under high severity conditions to yield a cracked intermediate reactor product and a second used catalyst; wherein the intermediate reactor feedstock comprises at least one of a fatty acid and a fatty acid ester.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 30, 2014
    Assignee: Shell Oil Company
    Inventors: George A. Hadjigeorge, Weijian Mo, Colin John Schaverien
  • Patent number: 8912380
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone, in turn including a reactor receiving, a fluidizing stream, a fuel gas stream, a fluidizable catalyst, a stream having an effective amount of oxygen for combusting the fuel gas stream, and a feed.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg
  • Publication number: 20140360919
    Abstract: The invention concerns a fluid distribution device (1) comprising: at least one inlet tube (2) comprising openings (7) and having a first and a second end (3, 4); a cap (5) comprising a principal body (6) with a lenticular shape and with a circular section elongated by a skirt (8) extending in the direction of the second end (4) towards the first end (3) of the inlet tube (2), said cap (5) having an outer surface and an inner surface, the cap being integral with the second end (4) of the tube via the inner surface and the principal body (6) being provided with a plurality of holes (10); and in which the cap (5) comprises at least one deflection means (14) disposed on its outer surface and configured to direct or maintain the gas towards or at the periphery of said cap (5).
    Type: Application
    Filed: June 10, 2014
    Publication date: December 11, 2014
    Applicant: AXENS
    Inventors: Jean Francois LE COZ, Daniel FERRE, Cyril COLLADO
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang