Using Laser Patents (Class 219/121.6)
  • Publication number: 20140353293
    Abstract: A laser processing device for processing workpieces such as by welding includes a laser processing head and a workpiece clamping claw defining an opening through which the laser beam is focused on the workpiece. Each of the laser processing head and the clamping claw have respective shielding portions and movable relative to each other to selectively form a light-tight housing about a portion of the beam extending between the laser head and the clamping claw.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventor: Martin Huonker
  • Patent number: 8901452
    Abstract: A system and method for precision cutting using multiple laser beams is described, The system and method includes a combination of optical components that split the output of a single laser into multiple beams, with the power, polarization status and spot size of each split beam being individually controllable, while providing a circularly polarized beam at the surface of a work piece to be cut by the laser beam. A system and method for tracking manufacture of individual stents is also provided.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 2, 2014
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventors: Li Chen, Randolf Von Oepen
  • Patent number: 8884181
    Abstract: The present disclosure relates to a method and a system for generating low-energy electrons in a biological material. The biological material is held in position by a support. Laser beam pulses are directed by a focusing mechanism toward a region of interest within the biological material. This generates filaments of low-energy electrons within the region of interest. The method and system may be used for radiotherapy, radiochemistry, sterilization, nanoparticle coating, nanoparticle generation, and like uses.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: November 11, 2014
    Assignee: SOCPRA-Sciences Sante et Humaines S.E.C.
    Inventors: Daniel Houde, Ridthee Meesat, Jean-François Allard, Tiberius Brastaviceanu
  • Patent number: 8884182
    Abstract: A method of modifying an end wall contour is provided. The method includes creating a weld pool using a laser, adding a metal or a ceramic powder or a wire filler to the melt pool and modifying the part of the turbine in a manner that results in a change of about 0.005 to about 50 volume percent in the part of the turbine. The weld pool is created on a turbine component and contains molten metal or ceramic derived as a result of a heat interaction between the laser and the turbine component.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Hsin-Pang Wang, Ronald Scott Bunker, Sudhir Kumar Tewari, Magdi Naim Azer
  • Patent number: 8872058
    Abstract: An improved laser shock hardening method and apparatus which can eliminate spattering of a liquid and waving of the liquid surface upon laser irradiation, and can stably irradiate a workpiece with a laser beam. In a laser shock hardening method for carrying out surface processing of a workpiece in contact with a liquid by irradiating through the liquid the surface of the workpiece with a pulsed laser beam intermittently emitted from a laser irradiation device, the disclosed method provides a solid transparent to the wavelength of the laser, serving as an entrance window to the liquid surface; allowing the liquid to be present in the light path of the laser beam between the solid and the surface of the workpiece; and allowing the laser beam to enter through the solid and irradiating through the liquid the surface of the workpiece with the laser beam.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuji Sano, Naruhiko Mukai, Masaki Yoda, Yoshiaki Ono, Ryoichi Saeki, Hideki Naito
  • Patent number: 8870047
    Abstract: In a wafer dicing press for reducing time and cost for wafer dicing and for evenly applying a dicing pressure to a whole wafer, a wafer dicing press includes a support unit supporting a first side of a wafer; and a pressurization device applying a pressure, by dispersing the pressure, to a second side of the wafer so that a laser-scribed layer of the wafer operates as a division starting point. Accordingly, the wafer dicing press reduces laser radiation and pressure-application times for dividing a wafer into semiconductor devices. This increased efficiency is achieved without increasing the likelihood of damaging the wafer.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-chul Lim
  • Patent number: 8872446
    Abstract: A welding method of welding a cylindrical stiffening member to an outer circumference of a superconducting accelerator tube body uses a laser beam in a process of manufacturing a superconducting accelerator tube. The laser beam is configured such that a distribution profile of energy density on an irradiated face to which the laser beam is irradiated is a Gaussian distribution profile having a peak section, and the energy density of the peak section is 5.8×105 W/cm2 or more.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shuho Tsubota, Katsuya Sennyu, Fumiaki Inoue
  • Publication number: 20140312017
    Abstract: A system and method are provided for marking valuable articles, particularly precious stones and here in particular cut diamonds (brilliants) and uncut diamonds. An identification marking that is invisible to the naked eye is applied to the article, and data associated with the identification marking is stored for subsequent use in determining the authenticity of the marking. The marking is applied by irradiating a surface of the article with laser light having a wavelength of less than 400 nm and applying ultrasonic oscillations during laser irradiation. A further laser light having a wavelength of more than 500 nm may also be applied to the surface. At least two interference images are generated using at least two different sounding radiation wavelengths for storage, along with an incidence angle of the sounding radiation. The stored data may subsequently be compared to authenticity-checking interference images to determine the authenticity of the identification marking.
    Type: Application
    Filed: July 27, 2011
    Publication date: October 23, 2014
    Inventors: Alexander Potemkin, Petr Nikolaevich Luskinovich, Vladimir Alexandrovich Zhabotinsky
  • Patent number: 8866041
    Abstract: A manufacturing method of laser diode unit of the present invention includes steps: placing a laser diode on top of a solder member formed on a mounting surface of a submount, applying a pressing load to the laser diode and pressing the laser diode against the solder member, next, melting the solder member by heating the solder member at a temperature higher than a melting point of the solder member while the pressing load is being applied, and thereafter, bonding the laser diode to the submount by cooling and solidifying the solder member, thereafter, removing the pressing load, and softening the solidified solder member by heating the solder member at a temperature lower than the melting point of the solder member after the pressing load has been removed, and thereafter cooling and re-solidifying the solder member.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 21, 2014
    Assignees: TDK Corporation, Rohm Co., Ltd, SAE Magnetics (H.K.) Ltd.
    Inventors: Koji Shimazawa, Osamu Shindo, Yoshihiro Tsuchiya, Yasuhiro Ito, Kenji Sakai
  • Patent number: 8858676
    Abstract: A method for generating nanoparticles in a liquid comprises generating groups of ultrafast laser pulses, each pulse in a group having a pulse duration of from 10 femtoseconds to 200 picoseconds, and each group containing a plurality of pulses with a pulse separation of 1 to 100 nanoseconds and directing the groups of pulses at a target material in a liquid to ablate it. The multiple pulse group ablation produces nanoparticles with a reduced average size, a narrow size distribution, and improved production efficiency compared to prior pulsed ablation systems.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 14, 2014
    Assignee: IMRA America, Inc.
    Inventors: Bing Liu, Zhendong Hu, Yong Che, Makoto Murakami
  • Patent number: 8853590
    Abstract: A device for irradiating a laser beam onto an amorphous silicon thin film formed on a substrate. The device includes: a stage mounting the substrate; a laser oscillator for generating a laser beam; a projection lens for focusing and guiding the laser beam onto the thin film; a reflector for reflecting the laser beam guided onto the thin film; a controller for controlling a position of the reflector; and an absorber for absorbing the laser beam reflected by the reflector.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Jae Kim, Myung-Koo Kang
  • Patent number: 8853594
    Abstract: Methods and apparatus for welding a component to fill a groove therein. The method entails simultaneously projecting an electric arc and at least first and second laser beams into the groove. The electric arc melts and deposits a filler material in the groove while the first and second laser beams are projected onto opposite first and second walls, respectively, of the groove. The axis of each of the first and second laser beams is oriented at an acute angle relative to the respective wall thereof.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Dechao Lin, Jamison William Janawitz, David Vincent Bucci, Matthew James O'Connell, Srikanth Chandrudu Kottilingam, Ronald Lee Souther
  • Patent number: 8847105
    Abstract: A laser welding pressure unit comprises a housing, a rotating element, and a foot. The housing may attach to a laser head. The rotating element may include an outer ring rotatably coupled to an inner ring, wherein the outer ring is coupled to the housing. The foot may couple to the inner ring such that the foot rotates with respect to the housing. The foot may also be configured to contact an upper surface of a metal sheet and may be oriented such that while the metal sheet is being welded, the foot rotates about a central vertical axis and the laser welding pressure unit is able to move in any direction without the foot breaking contact with the surface.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: September 30, 2014
    Assignee: Benecor, Inc.
    Inventor: Jeffrey Don Johnson
  • Patent number: 8845077
    Abstract: A pattern forming method includes: a modification treatment step of, in accordance with a pattern to be formed on a pattern forming surface of a base body, applying a light beam having a width smaller than a diameter of each of dots to constitute the pattern, onto a treatment target region including at least outer edges on both sides in a width direction of a region where the pattern is to be formed in the pattern forming surface, thereby carrying out modification treatment on the treatment target region; and a droplet deposition step of ejecting and depositing droplets of a functional liquid by an inkjet method onto the region where the pattern is to be formed including the treatment target region where the modification treatment has been carried out.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 30, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Jun Kodama
  • Patent number: 8847104
    Abstract: A method for cutting a semiconductor wafer by generating a crack within the wafer, and a system thereof, are provided. The method comprises irradiating a laser beam towards a surface of the wafer and converging the laser beam to form a focal point so that a focal volume defined by the focal point and a boundary of the laser beam within the wafer is formed. Energy encompassed within the focal volume causes the wafer located at the periphery of the focal volume to contract faster than the wafer located within the focal volume, thereby generating a crack within the wafer.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 30, 2014
    Assignee: Agency for Science Technology and Research
    Inventors: Zhongke Wang, Tao Chen, Hongyu Zheng
  • Publication number: 20140263200
    Abstract: A system and method is provided where a coated work piece is welded at high speeds with minimal porosity and spatter. The coating on the work piece is removed or ablated by a high energy heat source prior to being welded in a welding operation, such that high welding speeds are attained. The high energy heat source is positioned upstream of the welding operation to vaporize any surface coatings on a work piece.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: LINCOLN GLOBAL, INC.
    Inventor: Paul Edward DENNEY
  • Patent number: 8835813
    Abstract: A light-emission output of a flash lamp for performing a light-irradiation heat treatment on a substrate in which impurities are implanted is increased up to a target value L1 over a period of time from 1 to 100 milliseconds, is kept for 5 to 100 milliseconds within a fluctuation range of plus or minus 30% from the target value L1, and is then attenuated from the target value L1 to zero over a period of time from 1 to 100 milliseconds. That is, compared with conventional flash lamp annealing, the light-emission output of the flash lamp is increased more gradually, is kept to be constant for a certain period of time, and is then decreased more gradually. As a result, a total heat amount of a surface of the substrate increases compared with the conventional case, but a surface temperature thereof rises more gradually and then drops more gradually compared with the conventional case.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 16, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd
    Inventor: Shinichi Kato
  • Patent number: 8829391
    Abstract: A laser processing method of processing an object to be processed. The object to be processed has a modified portion and a non-modified portion. A modified layer forming step forms a modified layer of the object to be processed by scanning an inner portion of the object with a condensing point of first laser light. The modified layer (i) has a processing speed with second laser light that is lower than a processing speed of a non-modified portion and (ii) is formed below the non-modified portion. A removing step removes a portion of the non-modified portion. The portion of the non-modified portion ranges from a surface of the object to the modified layer. The removing step includes irradiating the portion of the non-modified portion with the second laser light.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kosuke Kurachi, Masahiko Kubota, Akihiko Okano, Atsushi Hiramoto
  • Patent number: 8829889
    Abstract: A laser protective wall element for a housing in laser machining stations with which increased protection, in particular for the eyes of living beings, can be achieved. In a laser protective wall element for a housing at laser machining stations, an intermediate layer is present which has hot conductor properties. The intermediate layer can be formed between electrically conductive plate-like elements, an electrically conductive plate-like element and an electrically conductive coating or also two electrically conductive layers or can be arranged there. The electrically conductive plate-like elements, the coating and/or the layers are connected to an electrical voltage source as well as a measuring instrument which detects electrical current, electrical resistance and/or electrical capacity and whose measured signal change can be used for the condition monitoring of the laser protective wall element.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 9, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Jan Hannweber, Stefan Kuehn, Sven Bretschneider, Michael Melde
  • Patent number: 8826525
    Abstract: A coaxial connector for interconnection with a coaxial cable with a solid outer conductor by laser welding is provided with a monolithic connector body with a bore. A sidewall of the bore is provided with an inward annular projection angled toward a cable end of the bore. A sidewall of the inward annular projection and the sidewall of the bore form an annular laser groove open to a cable end of the bore. The annular laser groove is dimensioned with a taper at a connector end of the laser groove less than a thickness of a leading end of the outer conductor. The taper provides an annular material chamber between the leading end of the outer conductor, when seated in the laser groove, and the connector end of the laser groove.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 9, 2014
    Assignee: Andrew LLC
    Inventors: Ronald A. Vaccaro, Kendrick Van Swearingen, James J. Wlos, James P. Fleming, Nahid Islam
  • Patent number: 8822880
    Abstract: In accordance with said control method, the transmission of the laser beam is periodically interrupted with the aid of means for masking the laser beam placed between the reference point and a source of the laser beam. Moreover, the transmission power of the source of the laser beam is varied between the minimum and maximum values, such that the emission times of the source of the laser beam at the minimum power substantially coincide with the masking times of the laser beam via the masking means. Preferably, the minimum value is at least equal to 10% and the maximum value at most equal to 90% of a maximum emission power of the source of the laser beam.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 2, 2014
    Assignee: Valeo Etudes Electroniques
    Inventors: Jean-Michel Morelle, Laurent Vivet
  • Patent number: 8822878
    Abstract: A system and process for production of nanometric or sub-micrometric powders in continuous flux under the action of laser pyrolysis in at least one interaction zone between a beam emitted by a laser and a flux of reagents emitted by an injector, in which the laser is followed by optical means for distributing the energy of the beam emitted by the latter according to an axis perpendicular to the axis of each flux of reagents, in an elongated cross-section having adjustable dimensions at the level of this at least one interaction zone.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: September 2, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Francois Tenegal, Benoit Guizard, Nathalie Herlin-Boime, Dominique Porterat
  • Publication number: 20140238960
    Abstract: An upper housing assembly includes a pivot arm having an upper cam surface adjacent a distal end. A cam follower is coupled to a laser head to move up and down with a laser head. The cam follower exerts a downward force on the upper cam surface during normal operation. Thus, as the pivot arm rotates back and forth, the laser head moves up and down. A assist gas hose can be coupled between the upper housing and the laser head which has a spiral configuration permitting relative axial movement between the upper housing and the laser head. Upon an upward axial force being exerted on the laser head, the cam follower moves upwardly away from the upper cam surface.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Inventors: Scott Swartzinski, William G. Fredrick, Michael Lee
  • Publication number: 20140238958
    Abstract: Systems and methods for processing a material layer supported by a substrate using a light-source assembly that includes LED light sources each formed from an array of LEDs. The material layer is capable of undergoing a photo-process having a temperature-dependent reaction rate. Some of the LEDs emit light of a first wavelength that initiate the photo-process while some of the LEDs emit light of a second wavelength that heats the substrate. The heat from the substrate then heats the material layer, which increases the temperature-dependent reaction rate of the photo-process.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: Ultratech, Inc.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk
  • Publication number: 20140238959
    Abstract: A processing system includes a rotary stage, at least one shaft, a rotation driver, a plurality of loading platforms, and a plurality of processing devices. The rotary stage includes two opposite end surfaces and a plurality of loading surfaces between the end surfaces. The shaft connects the end surfaces of the rotary stage. The rotation driver connects the shaft. The loading platforms are respectively disposed on the loading surfaces of the rotary stage. The processing devices are respectively disposed corresponding to the loading platforms.
    Type: Application
    Filed: November 13, 2013
    Publication date: August 28, 2014
    Applicant: AU Optronics Corporation
    Inventors: Yu-Hung TAI, Meng-Chuan WEN, Yi-Jung CHIU, Chung-Wei LEE, Shan-Lung CHU
  • Publication number: 20140241707
    Abstract: Apparatus for providing pulsed or continuous energy in a process chamber, and methods of fabricated said apparatus, are provided herein. The apparatus may include a substrate having a plurality of electrical terminals disposed on one or more surfaces of the substrate, a plurality of solid state sources grown on top of the plurality of electrical terminals, the plurality of solid state sources providing pulsed or continuous energy when electrically powered, and one or more cooling channels formed in one or more areas of the substrate.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JOSEPH JOHNSON, JOSEPH M. RANISH
  • Patent number: 8816248
    Abstract: A lid (2) for closing a cup (1) along a peripheral sealing edge (10) and a method for producing such a lid. The lid includes at least one aluminum film and an optionally multi-layered plastic layer which is co-extruded onto the aluminum film and has a closed predetermined tearing line (3). The plastic layer is made of plastic based on polyethylene (PE) or plastic based on polypropylene (PP), and the predetermined tearing line is introduced into the plastic layer preferably by means of a CO2 laser. The predetermined tearing line (3) may be provided directly in the region of the sealing edge (10).
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: August 26, 2014
    Assignee: Constantia Teich GmbH
    Inventors: Martin Kornfeld, Lambert Nekula, Alfred Wegenberger, Adolf Schedl, Franz Reiterer
  • Patent number: 8809729
    Abstract: A system for determining accessibility of a tool to an object is provided. The system provides for selecting one or more sections on the object to be laser shock peened, selecting a region of interest on the one or more sections and determining a set of feasible solutions to access the selected region of interest on each of the one or more sections via use of an accessibility system.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: August 19, 2014
    Assignee: General Electric Company
    Inventors: Mark Samuel Bailey, Michelle Rene Bezdecny, Stefan Andreas Moser
  • Patent number: 8803026
    Abstract: Provided are: a table on which a workpiece is placed, a laser oscillator emitting a laser beam; a light-guide optical system deflecting the beam emitted from the oscillator; a cylindrical extensible bellows surrounding an optical path of the beam after the light-guide optical system deflects the beam; a bend mirror moving in an axial direction of the bellows while extending/contracting the bellows and deflecting the beam having passed through the bellows toward the table; a machining head irradiating the workpiece with the beam deflected by the mirror; an abnormality detector including a beam-sensor light-emitting unit emitting a beam advancing parallel with an axis of the bellows and a beam-sensor light-receiving unit measuring the amount of received light of the beam; and a control device bringing down the laser oscillator when the amount of received light of the beam in the beam-sensor light-receiving unit falls below a first threshold.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shigeru Yokoi
  • Patent number: 8802580
    Abstract: Crystallization of thin films using pulsed irradiation The method includes continuously irradiating a film having an x-axis and a y-axis, in a first scan in the x-direction of the film with a plurality of line beam laser pulses to form a first set of irradiated regions, translating the film a distance in the y-direction of the film, wherein the distance is less than the length of the line beam, and continuously irradiating the film in a second scan in the negative x-direction of the film with a sequence of line beam laser pulses to form a second set of irradiated regions, wherein each of the second set of irradiated regions overlaps with a portion of the first set of irradiated regions, and wherein each of the first and the second set of irradiated regions upon cooling forms one or more crystallized regions.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 12, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 8796769
    Abstract: A method including introducing a species into a substrate including semiconductor material; and translating linearly focused electromagnetic radiation across a surface of the substrate, the electromagnetic radiation being sufficient to thermally influence the species. An apparatus including an electromagnetic radiation source; a stage having dimensions suitable for accommodating a semiconductor substrate within a chamber; an optical element disposed between the electromagnetic radiation source and the stage to focus radiation from the electromagnetic radiation source into a line having a length determined by the diameter of a substrate to be placed on the stage; and a controller coupled to the electromagnetic radiation source including machine readable program instructions that allow the controller to control the depth into which a substrate is exposed to the radiation.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Applied Matierials, Inc.
    Inventors: Dean C. Jennings, Amir Al-Bayati
  • Patent number: 8796582
    Abstract: A laser welding apparatus includes a laser welding unit including a first lens adapted to focus a laser beam; a second lens adapted to diffuse the laser beam to the first lens; and a third lens adapted to guide the laser beam to the second lens. The relative positions of the first lens, the second lens, and the third lens, are adjusted to adjust a diffusion angle and a beam width of the laser beam entering the first lens. The laser welding apparatus performs: actuating the laser welding unit to travel at a predetermined speed along a predetermined trajectory; directing the laser beam at a first welding spot; adjusting the focal length to focus the laser beam at the first welding spot; holding the laser focal spot size substantially constant; and directing the laser beam at a second welding spot after completion of welding for the first welding spot.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 5, 2014
    Assignees: Nissan Motor Co., Ltd., Showa Optronics Co., Ltd.
    Inventors: Hitoshi Kawai, Yuji Hamaguchi, Tatsuya Sakurai
  • Publication number: 20140209585
    Abstract: The invention relates to a machine for material processing with a laser beam, in particular laser welding. It is comprised of a machine guided protective housing with an outlet opening surrounding the laser beam that is pointed at the material during processing. To create a machine for laser beam welding which ensures improved operator and personal safety without completely enclosing the machine, it is suggested that the protective housing contains at least one sensor which measures certain chemical or physical properties. The sensor is connected to the machines control unit which compares the current values with reference values for a measure and, depending on current/reference value comparison, interrupts the laser beam or prevents laser beam activation. In addition a method and arrangement for improved operator and personal safety for operation of such a machine is presented.
    Type: Application
    Filed: September 16, 2013
    Publication date: July 31, 2014
    Applicant: IPG Photonics Corporation
    Inventors: Andreas Siewert, Manfred Barz, Jörg Thieme, Artjom Fuchs, Ingo Schramm
  • Patent number: 8791387
    Abstract: To provide a laser cutting method that is capable of cutting the substrates high accurately with high throughput at a low cost. It is a laser cutting method for cutting a laminated substrate that is formed by laminating at least a pair of substrates. The method comprises the steps of: providing a pattern member with a characteristic of absorbing light of a wavelength that transmits each of the substrates, between each of the substrates along a cutting position of the laminated substrate; and irradiating a laser of the wavelength that transmits the substrates along the pattern member, whereby the laminated substrate is cut along the pattern member.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 29, 2014
    Assignee: NLT Technologies, Ltd.
    Inventors: Tsutomu Hiroya, Kouji Shigemura
  • Publication number: 20140202994
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN
  • Patent number: 8772669
    Abstract: The present invention aims to rapidly and easily create processed data for scan controlling a laser light beam, and to create the processed data for the laser processing apparatus at high precision. A setting plane corresponding to a scanning region of a laser marker is displayed on a processed data generating device. A user operates the processed data generating device to arrange the processing pattern on the setting plane. Here, a marker head coincides an optical axis of the laser light beam L on a position corresponding to the reference point of the processing pattern, and photographs a work W with a camera which light receiving axis is coaxial with the optical axis of the laser light beam L. A photographed image monitor displays the photographed image along with a symbol indicating the position of the light receiving axis of the camera.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: July 8, 2014
    Assignee: Keyence Corporation
    Inventors: Mamoru Idaka, Akio Takeuchi, Hideki Yamakawa
  • Patent number: 8767786
    Abstract: To provide a conveying unit that holds a workpiece and conveys the workpiece at a constant rate in one direction, a laser oscillator that emits a pulsed laser beam, a splitter that splits a pulsed laser beam into a pattern having a predetermined geometric pitch, a first deflector that scans the split pulsed laser beam in the other direction substantially orthogonal to the one direction, a second deflector that adjusts and deflects the split pulsed laser beam deflected by the first deflector on the surface to be processed in the one direction so as to scan the resultant pulsed laser beam onto the surface to be processed at a constant rate equal to a rate at which the workpiece is conveyed, and a condenser that condenses the split pulsed laser beam deflected by the second deflector onto the surface to be processed.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: July 1, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomotaka Katsura, Tatsuki Okamoto, Kunihiko Nishimura
  • Patent number: 8767782
    Abstract: An object of the present invention is to provide a method and a device for constantly setting the energy distribution of a laser beam on an irradiating face, and uniformly irradiating the laser beam to the entire irradiating face. Further, another object of the present invention is to provide a manufacturing method of a semiconductor device including this laser irradiating method in a process. Therefore, the present invention is characterized in that the shapes of plural laser beams on the irradiating face are formed by an optical system in an elliptical shape or a rectangular shape, and the plural laser beams are irradiated while the irradiating face is moved in a first direction, and the plural laser beams are irradiated while the irradiating face is moved in a second direction and is moved in a direction reverse to the first direction.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 8759710
    Abstract: A process is described for form locking joining of two components through plastic deformation of one of the two components. In order for the tool for forming the form locking connection not to get in direct contact with the plasticized area of the joining partners, a third component between the tool and the two components to be joined through form locking is being used, which simultaneously enters into an adhesive bond with one of the two components to be joined through form locking. The thermal energy for creating the plastic state of one of the joining partners and for developing the adhesive bond is applied through electromagnetic radiation through the third component.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: June 24, 2014
    Assignee: LPKF Laser & Electronics AG
    Inventors: Frank Brunnecker, Alexander Hofmann
  • Patent number: 8759679
    Abstract: A laser welding structure that is formed by joining a stranded wire (wire) of a signal line and a welding portion (conductive metal plate) by locally applying a laser beam and thereby melting and solidifying the stranded wire of the signal line and the welding portion has the following features. That is, the melting point of the stranded wire of the signal line and the melting point of the welding portion are different. The laser welding structure is obtained by applying a laser beam to one of the stranded wire of the signal line and the welding portion that has a higher melting point, i.e., to the welding portion having a higher melting point.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 24, 2014
    Assignee: Japan Aviation Electronics Industry, Ltd.
    Inventors: Takushi Yoshida, Tomoki Inudo, Hiroshi Akimoto
  • Publication number: 20140151344
    Abstract: A movable microchamber system with a gas curtain is disclosed. The microchamber system has a top member with a light-access feature and a stage assembly that supports a substrate to be processed. The stage assembly is disposed relative to the top member to define a microchamber and a peripheral microchamber gap. An inert gas is flowed into the peripheral microchamber gap to form the gas curtain just outside of the microchamber. The gas curtain substantially prevents reactive gas in the ambient environment from entering the microchamber when the stage assembly moves relative to the top member.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Ultratech, Inc.
    Inventors: Digby PUN, Ali SHAJII, Andrew B. COWE, Raymond ELLIS, James T. McWHIRTER
  • Patent number: 8735771
    Abstract: A laser processing method which can reduce the chipping generated when a plate-like object to be processed formed with a modified region is turned into small pieces in steps other than its dividing step. In a part extending along a line to cut in an object to be processed, laser light is oscillated in a pulsing fashion in an intermediate portion including an effective part, and is continuously oscillated in one end portion and the other end portion on both sides of the intermediate portion. Since the laser light intensity becomes lower in continuous oscillation than in pulse oscillation, modified regions can be formed in the intermediate portion but not in one end portion and the other end portion. This keeps the modified regions from reaching the outer face of the substrate, thus making it possible to prevent particles from occurring when forming the modified regions.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 27, 2014
    Assignee: Hamamatsu Photonicks K.K.
    Inventors: Koji Kuno, Tatsuya Suzuki
  • Patent number: 8729424
    Abstract: A method of welding a joint includes directing a first output from a high energy density heat source, such as a laser, against a first side of the joint. The method further includes directing a second output from an arc welding heat source, such as a gas metal arc welding torch, against a second side of the joint. The first output produces a keyhole surrounded by a molten metal pool which extends from the first side of the joint toward the second side of the joint. In some embodiments a third output from a second arc welding heat source may also be directed at the first side of the joint. A second molten metal pool produced by the arc welding heat source joins with the first molten metal pool and the third molten metal pool to form a common molten metal pool which solidifies to form the weld.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 20, 2014
    Assignee: The ESAB Group, Inc.
    Inventor: Dechao Lin
  • Patent number: 8716621
    Abstract: A head for the continuous precision machining on three-dimensional bodies includes a fastening means to a flange of a machining equipment, having a first mechanical rotation axis, an intermediate means having a second mechanical rotation axis in series to the first mechanical rotation axis. The second mechanical rotation axis is orthogonal to the first mechanical rotation axis which intersects at a point of intersection. A terminal processing means has in series with the first and second mechanical rotation axes a third mechanical translating axis. The intermediate means has an arc configuration of a circumference with its centre at the point of intersection. The first mechanical rotation axis and the third mechanical translating axis are radially oriented to the arc.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: May 6, 2014
    Inventors: Fabrizio Grassi, Graziano Rolando
  • Patent number: 8716620
    Abstract: An upper housing assembly includes a pivot arm having an upper cam surface adjacent a distal end. A cam follower is coupled to a laser head to move up and down with a laser head. The cam follower exerts a downward force on the upper cam surface during normal operation. Thus, as the pivot arm rotates back and forth, the laser head moves up and down. A assist gas hose can be coupled between the upper housing and the laser head which has a spiral configuration permitting relative axial movement between the upper housing and the laser head. Upon an upward axial force being exerted on the laser head, the cam follower moves upwardly away from the upper cam surface.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: May 6, 2014
    Assignee: Laser Mechanisms, Inc.
    Inventors: Scott Swartzinski, William G. Fredrick, Michael Lee
  • Publication number: 20140116995
    Abstract: Gradient-index (GRIN) lens fabrication employing laser pulse width duration control, and related components, systems, and methods are disclosed. GRIN lenses can be fabricated from GRIN rods by controlling the pulse width emission duration of a laser beam emitted by a laser to laser cut the GRIN rod, as the GRIN rod is disposed in rotational relation to the laser beam. Controlling laser pulse width emission duration can prevent or reduce heat accumulation in the GRIN rod during GRIN lens fabrication. It is desired that the end faces of GRIN lenses are planar to facilitate light collimation, easy bonding or fusing of the GRIN lens to optical fibers to reduce optical losses, polishing to avoid spherical aberrations, and/or cleaning the end faces when disposed in a fiber optic connector, as non-limiting examples.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Inventors: David Matthew Berg, Jeffrey Dean Danley, Jeffery Alan DeMeritt, Robert Stephen Wagner, James Joseph Watkins
  • Patent number: 8710507
    Abstract: A method for manufacturing a semiconductor thin film is provided which can form its crystal grains having a uniform direction of crystal growth and being large in size and a manufacturing equipment using the above method, and a method for manufacturing a thin film transistor. In the above method, by applying an energy beam partially intercepted by a light shielding element, melt and re-crystallization occur with a light-shielded region as a starting point. The irradiation of the beam gives energy to the light-shielded region of the silicon thin film so that melt and re-crystallization occur with the light-shielded region as the starting point and so that a local temperature gradient in the light-shielded region is made to be 1200° C./?m or more. In the manufacturing method, a resolution of an optical system used to apply the energy beam is preferably 4 ?m or less.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 29, 2014
    Assignee: Getner Foundation LLC
    Inventor: Hiroshi Tanabe
  • Patent number: 8704125
    Abstract: A laser processing machine has an expanded operating space so that larger workpieces can be processed and/or the spatial requirement for the laser processing machine is reduced.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: April 22, 2014
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventor: Andreas Kettner-Reich
  • Patent number: 8704122
    Abstract: A connecting piece for a tool of a multi-axis machining center has a support on the machining center side, a holder at the tool side and a pushing device which elastically pushes the holder into a defined position against the support. The pushing force of the pushing device can be varied during the operation of the machining center.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 22, 2014
    Assignee: Sauer GmbH LASERTEC
    Inventors: Christian Vogt, Waldemar Kargus, Martin Reisacher
  • Patent number: 8698040
    Abstract: A laser energy delivery system includes a relay imaging system. Input optics arranged to receive the laser energy, a transmitting mirror having adjustable angle of incidence relative to the input optics, and a robot mounted optical assembly are configured to direct laser energy toward the movable target image plane. The laser energy follows an optical path including an essentially straight segment from the transmitting mirror to the receiving mirror, having a variable length and a variable angle relative to the input optics through air. Diagnostics on the processing head facilitate operation.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 15, 2014
    Assignee: Metal Improvement Company LLC
    Inventors: C. Brent Dane, Fritz B. Harris, Joseph T. Taranowski, Steven L Honett, Stewart B. Brown