Enhancement Mode (e.g., So-called Sits) Patents (Class 257/136)
  • Patent number: 11735644
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a second barrier layer on the first barrier layer; forming a first hard mask on the second barrier layer; removing the first hard mask and the second barrier layer to form a recess; and forming a p-type semiconductor layer in the recess.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: August 22, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ming Chang, Che-Hung Huang, Wen-Jung Liao, Chun-Liang Hou, Chih-Tung Yeh
  • Patent number: 11139374
    Abstract: Field-effect transistors (FETs) are described that comprise a semiconducting gate (SG) layer, referred to herein as SG-FETs. In one or more embodiments, the FETs can include a channel layer and a SG layer capacitively coupled to the channel layer. The SG layer has an embedded voltage-clamping function that provides internal gate over voltage protection without an additional protection circuit. The embedded voltage-clamping function is based on the SG layer having a maximum effective gate voltage that is clamped to the depletion threshold of the SG layer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: October 5, 2021
    Assignee: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jing Chen, Qingkai Qian
  • Patent number: 11101137
    Abstract: A process is applied to develop a plurality of reverse conducting insulated gate bipolar transistors (RCIGBTs). The process comprises the steps of providing a wafer, applying a first grinding process, patterning a mask, applying an etching process, removing the mask, implanting N++ type dopant, applying a second grinding process forming a TAIKO ring, implanting P+ type dopant, annealing and depositing TiNiAg or TiNiVAg, removing the TAIKO ring, attaching a tape, and applying a singulation process. The mask can be a soft mask or a hard mask. The etching process can be a wet etching only; a wet etching followed by a dry etching; or a dry etching only.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: August 24, 2021
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INTERNATIONAL LP
    Inventors: Zhiqiang Niu, Long-Ching Wang, Yueh-Se Ho, Lingpeng Guan, Wenjun Li
  • Patent number: 11031473
    Abstract: A power semiconductor device includes a semiconductor wafer having a first main side surface and a second main side surface. The semiconductor wafer includes a first semiconductor layer having a first conductivity type and a plurality of columnar or plate-shaped first semiconductor regions extending in the first semiconductor layer between the first main side surface and the second main side surface in a vertical direction perpendicular to the first main side surface and the second main side surface. The first semiconductor regions have a second conductivity type, which is different from the first conductivity type. Therein, the first semiconductor is a layer of hexagonal silicon carbide. The first semiconductor regions are regions of 3C polytype silicon carbide.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 8, 2021
    Assignee: ABB POWER GRIDS SWITZERLAND AG
    Inventors: Friedhelm Bauer, Lars Knoll, Marco Bellini, Renato Minamisawa, Umamaheswara Vemulapati
  • Patent number: 11004970
    Abstract: A MOSFET includes a substrate having a body region of a first conductivity type. A main field effect transistor (mainFET) and a mirror device are formed in the substrate. The mainFET includes first gate trenches, first source regions of a second conductivity type adjacent to the first gate trenches, and first body implant regions of the first conductivity type extending into the body region adjacent to and interposed between the first source regions. The mirror device includes second gate trenches, second source regions of the second conductivity type adjacent to the second gate trenches, second body implant regions of the first conductivity type extending into the body region adjacent to and interposed between the second source regions, and link elements of the first conductivity type interconnecting pairs of the second body implant regions.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: May 11, 2021
    Assignee: NXP USA, Inc.
    Inventors: Ganming Qin, Feng Li, Vishnu Khemka, Moaniss Zitouni, Tanuj Saxena
  • Patent number: 10930647
    Abstract: A semiconductor device that allows easy hole extraction is provided. The semiconductor device includes: a semiconductor substrate having drift and base regions; a transistor portion formed in the semiconductor substrate; and a diode portion formed adjacent to the transistor portion and in the semiconductor substrate. In the transistor portion and the diode portion: a plurality of trench portions each arrayed along a predetermined array direction; and a plurality of mesa portions formed between respective trench portions are formed, among the plurality of mesa portions, at least one boundary mesa portion at a boundary between the transistor portion and the diode portion includes a contact region at an upper surface of the semiconductor substrate and having a concentration higher than that of the base region, and an area of the contact region at the boundary mesa portion is greater than an area of the contact region at another mesa portion.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: February 23, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 10811406
    Abstract: A semiconductor device has a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a first conductive layer disposed on a main surface of the first semiconductor region, and a second conductive layer disposed on a main surface of the second semiconductor region. The first conductive layer has a first diffusion layer of the first conductivity type, a plurality of second diffusion layers of the first conductivity type, the second diffusion layers having higher impurity concentration than the first diffusion layer, and a plurality of third diffusion layers of the first conductivity type that are included in the first semiconductor region, or are arranged apart from one another to contact the first and second semiconductor regions, the third diffusion layers being arranged apart from the plurality of second diffusion layers and having higher impurity concentration than the first diffusion layer.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 20, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Kenichi Matsushita
  • Patent number: 10770506
    Abstract: In at least one embodiment, the method is designed for producing a light-emitting diode display (1). The method comprises the following steps: •A) providing a growth substrate (2); •B) applying a buffer layer (4) directly or indirectly onto a substrate surface (20); •C) producing a plurality of separate growth points (45) on or at the buffer layer (4); •D) producing individual radiation-active islands (5), originating from the growth points (45), wherein the islands (5) each comprise an inorganic semiconductor layer sequence (50) with at least one active zone (55) and have a mean diameter, when viewed from above onto the substrate surface (20), between 50 nm and 20 ?m inclusive; and •E) connecting the islands (5) to transistors (6) for electrically controlling the islands (5).
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: September 8, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Norwin Von Malm, Martin Mandl, Alexander F. Pfeuffer, Britta Goeoetz
  • Patent number: 10686051
    Abstract: A method of manufacturing a power semiconductor device includes forming trenches in a substrate, wherein the substrate includes a first surface and a second surface opposite to the first surface, forming a gate insulating layer and a gate electrode in each of the trenches, forming a P-type base region between the trenches in the substrate, performing a first implantation process using P-type dopants implanted onto the P-type base region, forming an N+ source region in the substrate, forming an interlayer insulating layer on the N+ source region, performing a second implantation process using P-type dopants to form a P+ doped region on the P-type base region, forming an emitter electrode in contact with the N+ source region and the P+ doped region, forming a P-type collector region on the second surface of the substrate, and forming a drain electrode on the P-type collector region.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 16, 2020
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jeong Hwan Park, Seung Sik Park, Ha Yong Yang
  • Patent number: 10651169
    Abstract: A semiconductor device has a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a first conductive layer disposed on a main surface of the first semiconductor region, and a second conductive layer disposed on a main surface of the second semiconductor region. The first conductive layer has a first diffusion layer of the first conductivity type, a plurality of second diffusion layers of the first conductivity type, the second diffusion layers having higher impurity concentration than the first diffusion layer, and a plurality of third diffusion layers of the first conductivity type that are included in the first semiconductor region, or are arranged apart from one another to contact the first and second semiconductor regions, the third diffusion layers being arranged apart from the plurality of second diffusion layers and having higher impurity concentration than the first diffusion layer.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 12, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Kenichi Matsushita
  • Patent number: 10477635
    Abstract: A light emitting device includes plural transfer elements to be sequentially turned on, plural setting elements that are respectively connected to the plural transfer elements and are capable of shifting to an on-state by the transfer element being turned on, plural driving elements that are respectively connected to the plural setting elements and are capable of shifting to the on-state by the setting element being turned on; and plural light emitting elements that are respectively connected to the plural driving elements and have increased light-emission or an increased light-emission intensity by the driving element being turned on, in which plural pairs of the driving element and the light emitting element are connected to at least one of the plural setting elements and the plural light emitting elements are arranged in a two-dimensional shape.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: November 12, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventor: Takashi Kondo
  • Patent number: 10431653
    Abstract: A semiconductor system including a planar anode contact, a planar cathode contact, and a volume of n-conductive semiconductor material, which has an anode-side end and a cathode-side end and extends between the anode contact and the cathode contact. A p-conductive area extends from the anode-side end of the volume toward the cathode-side end of the volume without reaching the cathode-side end. The p-conductive area has two sub-areas which are separated from one another in a cross section lying transversely with respect to the anode contact and the cathode contact, which delimit a sub-volume of the volume filled with n-conductive semiconductor material. The sub-volume is open toward the cathode contact, and is delimited by cathode-side ends of the sub-areas. A distance of the two sub-areas defining the opening is smaller than a distance between the two sub-areas prevailing outside of the opening and lying between anode side ends of the sub-areas.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: October 1, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Alfred Goerlach
  • Patent number: 10424654
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate including an active cell areas and a termination area. The semiconductor power device further comprises a plurality of gate trenches formed at a top portion of the semiconductor substrate in the active cell area wherein each of the gate trenches is partially filled with a conductive gate material with a top portion of the trenches filled by a high density plasma (HDP) insulation layer. The semiconductor power device further comprises mesa areas of the semiconductor substrate disposed between the gate trenches wherein the mesa areas are recessed and having a top mesa surface disposed vertically below a top surface of the HDP insulation layer wherein the HDP insulation layer covering over the conductive gate material constituting a stick-out boundary-defining layer surrounding the recessed mesa areas in the active cell areas between the gate trenches.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 24, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Wenjun Li, Paul Thorup, Hong Chang, Yeeheng Lee, Yang Xiang, Jowei Dun, Hongyong Xue, Yiming Gu
  • Patent number: 10396215
    Abstract: Trench JFETs may be created by etching trenches into the topside of a substrate of a first doping type to form mesas. The substrate is made up of a backside drain layer, a middle drift layer, and topside source layer. The etching goes through the source layer and partly into the drift layer. Gate regions are formed on the sides and bottoms of the trenches using doping of a second type. Vertical channel regions are formed behind the vertical gate segments via angled implantation using a doping of the first kind, providing improved threshold voltage control. Optionally the substrate may include a lightly doped channel layer between the drift and source layers, such that the mesas include a lightly doped channel region that more strongly contrasts with the implanted vertical channel regions.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 27, 2019
    Assignee: United Silicon Carbide, Inc.
    Inventors: Anup Bhalla, Peter Alexandrov
  • Patent number: 10340385
    Abstract: A method for manufacturing a semiconductor device includes providing a substrate structure having PMOS and NMOS regions. The PMOS region includes a first region, a first gate structure on the first region, and first source and drain regions on opposite sides of the first gate structure. The NMOS region includes a second region and a second gate structure on the second region. The method also includes introducing a p-type dopant into the first source and drain regions, performing a first annealing, forming second source and drain regions on opposite sides of the second gate structure, introducing an n-type dopant into the second source and drain regions, and performing a second annealing. The method satisfies thermal budget requirements of forming PMOS and NMOS devices, thereby enabling a better diffusion of the p-type dopant into the source and drain regions of the PMOS device without affecting the performance of the NMOS device.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 2, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Yong Li
  • Patent number: 10319808
    Abstract: A semiconductor device is provided, including a semiconductor substrate; a first conductivity type drift region provided inside the semiconductor substrate; a plurality of gate trench portions provided extending from an upper surface of the semiconductor substrate and reaching the drift region; a dummy trench portion provided between two gate trench portions and provided extending from the upper surface of the semiconductor substrate and reaching the drift region; a second conductivity type base region provided: in a region of the semiconductor substrate adjacent to any of the gate trench portions; and between the upper surface of the semiconductor substrate and the drift region; and a second conductivity type first well region provided: in a region of the semiconductor substrate adjacent to the dummy trench portion; and reaching a position deeper than a lower end of the dummy trench portion; and having a doping concentration higher than that of the base region.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: June 11, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 10304928
    Abstract: Provided is a semiconductor device including a semiconductor substrate doped with impurities, a front surface-side electrode provided on a front surface side of the semiconductor substrate, a back surface-side electrode provided on a back surface side of the semiconductor substrate, wherein the semiconductor substrate has a peak region arranged on the back surface side of the semiconductor substrate and having one or more peaks of impurity concentration, a high concentration region arranged closer to the front surface than the peak region and having a gentler impurity concentration than the one or more peaks, and a low concentration region arranged closer to the front surface than the high concentration region and having a lower impurity concentration than the high concentration region.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: May 28, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takahiro Tamura, Yuichi Onozawa, Takashi Yoshimura, Hiroshi Takishita, Akio Yamano
  • Patent number: 10290566
    Abstract: In an embodiment, an electronic component includes a high-voltage depletion mode transistor including a current path coupled in series with a current path of a low-voltage enhancement mode transistor, a diode including an anode and a cathode, and a die pad. A rear surface of the high-voltage depletion mode transistor is mounted on and electrically coupled to the die pad. A first current electrode of the low-voltage enhancement mode transistor is mounted on and electrically coupled to the die pad. The anode of the diode is coupled to a control electrode of the high-voltage depletion mode transistor, and the cathode of the diode is mounted on the die pad.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: May 14, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Klaus Schiess, Oliver Haeberlen, Matteo-Alessandro Kutschak
  • Patent number: 10217836
    Abstract: A method of manufacturing a power semiconductor device includes forming trenches in a substrate, wherein the substrate includes a first surface and a second surface opposite to the first surface, forming a gate insulating layer and a gate electrode in each of the trenches, forming a P-type base region between the trenches in the substrate, performing a first implantation process using P-type dopants implanted onto the P-type base region, forming an N+ source region in the substrate, forming an interlayer insulating layer on the N+ source region, performing a second implantation process using P-type dopants to form a P+ doped region on the P-type base region, forming an emitter electrode in contact with the N+ source region and the P+ doped region, forming a P-type collector region on the second surface of the substrate, and forming a drain electrode on the P-type collector region.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: February 26, 2019
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jeong Hwan Park, Seung Sik Park, Ha Yong Yang
  • Patent number: 10204987
    Abstract: In a semiconductor device including a super junction structure that p-type columns and n-type columns are periodically arranged, a depth of a p-type column region in a cell region that a semiconductor element is formed is made shallower than a depth of a p-type column region in an intermediate region which surrounds the cell region. Thereby, a breakdown voltage of the cell region becomes lower than a breakdown voltage of the intermediate region. An avalanche breakdown phenomenon is caused to occur preferentially in the cell region in which even when an avalanche current is generated, the current is dispersed and smoothly flows. Thereby, it is possible to avoid local current constriction and breakage incidental thereto and consequently it becomes possible to improve avalanche resistance (an avalanche current amount with which a semiconductor device comes to be broken).
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 12, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Yuya Abiko, Satoshi Eguchi, Akio Ichimura, Natsuo Yamaguchi, Tetsuya Iida
  • Patent number: 10134886
    Abstract: In one embodiment, an IGBT is formed to include a region of semiconductor material. Insulated gate structures are disposed in region of semiconductor material extending from a first major surface. An n-type field stop region extends from a second major surface into the region of semiconductor material. A p+ type polycrystalline semiconductor layer is disposed adjacent to the field stop region and provides an emitter region for the IGBT. An embodiment may include a portion of the p+ type polycrystalline semiconductor being doped n-type.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: November 20, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Marian Kuruc, Juraj Vavro
  • Patent number: 9991173
    Abstract: An integrated circuit is produced on a bulk semiconductor substrate in a given CMOS technology and includes a semiconductor device for protection against electrostatic discharges. The semiconductor device has a doublet of floating-gate, thyristors coupled in parallel and head-to-tail. Each thyristor has a pair of electrode regions. The two thyristors respectively have two separate gates and a common semiconductor gate region. The product of the current gains of the two transistors of each thyristor is greater than 1. Each electrode region of at least one of the thyristors has a dimension, measured perpendicularly to the spacing direction of the two electrodes of the corresponding pair, which is adjusted so as to impart to the thyristor an intrinsic triggering voltage less than the breakdown voltage of a transistor to be protected, and produced in the CMOS technology.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 5, 2018
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Johan Bourgeat
  • Patent number: 9905666
    Abstract: A method for fabricating a trench Schottky rectifier device is provided. At first, a plurality of trenched are formed in a substrate of a first conductivity type. An insulating layer is formed on sidewalls of the trenches. Then, an ion implantation procedure is performed through the trenches to form a plurality of doped regions of a second conductivity type under the trenches. Subsequently, the trenches are filled with conductive structure such as metal structure or tungsten structure. At last, an electrode overlying the conductive structure and the substrate is formed. Thus, a Schottky contact appears between the electrode and the substrate. Each doped region and the substrate will form a PN junction to pinch off current flowing toward the Schottky contact to suppress the current leakage in a reverse bias mode.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 27, 2018
    Assignee: PFC DEVICE HOLDINGS LTD
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo
  • Patent number: 9853120
    Abstract: A method for fabricating a trench Schottky rectifier device is provided. At first, a plurality of trenched are formed in a substrate of a first conductivity type. An insulating layer is formed on sidewalls of the trenches. Then, an ion implantation procedure is performed through the trenches to form a plurality of doped regions of a second conductivity type under the trenches. Subsequently, the trenches are filled with conductive structure such as metal structure or tungsten structure. At last, an electrode overlying the conductive structure and the substrate is formed. Thus, a Schottky contact appears between the electrode and the substrate. Each doped region and the substrate will form a PN junction to pinch off current flowing toward the Schottky contact to suppress the current leakage in a reverse bias mode.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 26, 2017
    Assignee: PFC DEVICE HOLDINGS LTD
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo
  • Patent number: 9595520
    Abstract: An insulated gate bipolar translator (IGBT) with a built-in diode and a manufacturing method thereof are provided.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: March 14, 2017
    Assignee: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Xiaoshe Deng, Shuo Zhang, Qiang Rui, Genyi Wang
  • Patent number: 9548296
    Abstract: An electrostatic protection circuit in a semiconductor device includes a first first-conductivity type well extending in a first direction over a semiconductor substrate, a second first-conductivity type well extending in a second direction over the semiconductor substrate and perpendicular to the first direction with one end coupled to a first long side of the first first-conductivity type well, and a second-conductivity type well formed around the first first-conductivity type well and the second first-conductivity type well. It also includes a first high-concentration second-conductivity type region extending in the second direction on a surface of the second first-conductivity type well and a first high-concentration first-conductivity type region extending in the second direction on a surface of the second-conductivity type well while facing the first high-concentration second-conductivity type region.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 17, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Yasuyuki Morishita
  • Patent number: 9536976
    Abstract: A method for fabricating a trench Schottky rectifier device is provided. At first, a plurality of trenched are formed in a substrate of a first conductivity type. An insulating layer is formed on sidewalls of the trenches. Then, an ion implantation procedure is performed through the trenches to form a plurality of doped regions of a second conductivity type under the trenches. Subsequently, the trenches are filled with conductive structure such as poly-silicon structure or tungsten structure. At last, an electrode overlying the conductive structure and the substrate is formed. Thus, a Schottky contact appears between the electrode and the substrate. Each doped region and the substrate will form a PN junction to pinch off current flowing toward the Schottky contact to suppress the current leakage in a reverse bias mode.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 3, 2017
    Assignee: PFC DEVICE HOLDINGS LTD
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo
  • Patent number: 9490324
    Abstract: An N-polar III-N transistor includes a III-N buffer layer, a first III-N barrier layer, and a III-N channel layer, the III-N channel layer having a gate region and a plurality of access regions on opposite sides of the gate region. The compositional difference between the first III-N barrier layer and the III-N channel layer causes a conductive channel to be induced in the access regions of the III-N channel layer. The transistor also includes a source, a gate, a drain, and a second III-N barrier layer between the gate and the III-N channel layer. The second III-N barrier layer has an N-face proximal to the gate and a group-III face opposite the N-face, and has a larger bandgap than the III-N channel layer. The lattice constant of the first III-N barrier layer is within 0.5% of the lattice constant of the buffer layer.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: November 8, 2016
    Assignee: Transphorm Inc.
    Inventors: Umesh Mishra, Srabanti Chowdhury, Carl Joseph Neufeld
  • Patent number: 9356113
    Abstract: The invention concerns a method for producing a field effect transistor having a trench gate comprising: —the forming (110) of at least one trench (11, 12, 13) in a semi-conductive substrate (1) having a first type of conductivity, said substrate comprising two opposing faces called front face and rear face, —the primary implantation (120) of ions having a second type of conductivity so as to implant each trench of the substrate to form an active gate area, —the depositing (160) of a layer of polycrystalline silicon having the second type of conductivity on the implanted active gate area, —the oxidation (160) of the layer of polycrystalline silicon, and —the metallization (180) of the substrate on the front and rear faces of same in order to form active source and drain areas.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 31, 2016
    Assignees: Institut National des Sciences Appliquees de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Ecole Centrale De Lyon, Consejo Superior De Investigaciones Cienti{acute over (f)}icas (CSIC)
    Inventors: Dominique Tournier, Florian Chevalier, Philippe Godignon, José Millan
  • Patent number: 9159820
    Abstract: A semiconductor device contains a semiconductor substrate, a cathode, an anode, and a gate electrode. The semiconductor device has a cathode segment disposed in a portion corresponding to at least the cathode, an anode segment disposed in a portion corresponding to the anode, a plurality of embedded segments disposed in a portion closer to the cathode segment than to the anode segment, a takeoff segment disposed between the gate electrode and the embedded segments to electrically connect the gate electrode to the embedded segments, and a channel segment disposed between the adjacent embedded segments.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 13, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Shoji Yokoi, Naohiro Shimizu, Masakazu Kimura
  • Patent number: 9048281
    Abstract: A semiconductor device satisfies the condition Db?(?)×Da, in which Da represents a distance between a top surface of a cathode segment and an end of an embedded gate segment facing an anode segment, and Db represents a distance between a highest-impurity concentration portion in the embedded gate segment and an end of the cathode segment facing the anode segment.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 2, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Naohiro Shimizu, Shoji Yokoi
  • Patent number: 8890169
    Abstract: On a front surface of a region where a junction termination extension structure of a semiconductor device using silicon carbide is formed, a structure having an n-type semiconductor region with a concentration relatively higher than a concentration of an n?-type drift layer is formed. An edge of the junction termination extension structure located on a side away from an active region is surrounded from its bottom surface to its front surface by an n-type semiconductor region. By this means, it is possible to provide a device with a low resistance while ensuring a withstand voltage, or by decreasing the resistance of the device, it is possible to provide a device with low power loss.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: November 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Norifumi Kameshiro, Haruka Shimizu
  • Patent number: 8872264
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8779439
    Abstract: The present invention provides a silicon carbide Schottky-barrier diode device and a method for manufacturing the same. The silicon carbide Schottky bather diode device includes a primary n? epitaxial layer, an n+ epitaxial region, and a Schottky metal layer. The primary n? epitaxial layer is deposited on an n+ substrate joined with an ohmic metal layer at an undersurface thereof. The n+ epitaxial region is formed by implanting n+ ions into a central region of the primary n? epitaxial layer. The Schottky metal layer is deposited on the n+ epitaxial layer.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: July 15, 2014
    Assignee: Hyundai Motor Company
    Inventors: Kyoung Kook Hong, Jong Seok Lee
  • Patent number: 8710665
    Abstract: An electronic component includes a semiconductor substrate defined by a generally planar first face, a generally planar second face and side faces extending between the generally planar second face and the generally planar first face. The semiconductor substrate has a curved contour between the generally planar second face and the side faces.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 29, 2014
    Assignee: Infineon Technologies AG
    Inventor: Friedrich Kroener
  • Patent number: 8513675
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of <5° from vertical. The devices can be made using normal (i.e., 0°) or near normal incident ion implantation. The devices have relatively uniform sidewall doping and can be made without angled implantation.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 20, 2013
    Assignee: Power Integrations, Inc.
    Inventors: David C. Sheridan, Andrew P. Ritenour
  • Patent number: 8482062
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 9, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8378417
    Abstract: A semiconductor device includes a semiconductor substrate; a well of a first conductivity type in the semiconductor substrate; a first element; and a first vertical transistor. The first element supplies potential to the well, the first element being in the well. The first element may include, but is not limited to, a first pillar body of the first conductivity type. The first pillar body has an upper portion that includes a first diffusion layer of the first conductivity type. The first diffusion layer is greater in impurity concentration than the well. The first vertical transistor is in the well. The first vertical transistor may include a second pillar body of the first conductivity type. The second pillar body has an upper portion that includes a second diffusion layer of a second conductivity type.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 19, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kazuo Ogawa, Yoshihiro Takaishi
  • Patent number: 8318589
    Abstract: Embodiments disclosed herein generally relate to a process of depositing a transparent conductive oxide layer over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. The transparent conductive oxide layer may be deposited by a “cold” sputtering process. In other words, during the sputtering process, a plasma is ignited in the processing chamber which naturally heats the substrate. No additional heat is provided to the substrate during deposition such as from the susceptor. After the transparent conductive oxide layer is deposited, the substrate may be annealed and etched, in either order, to texture the transparent conductive oxide layer. In order to tailor the shape of the texturing, different wet etch chemistries may be utilized. The different etch chemistries may be used to shape the surface of the transparent conductive oxide and the etch rate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: November 27, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Valery V. Komin, Hien-Minh Huu Le, David Tanner, James S. Papanu, Philip A. Greene, Suresh M. Shrauti, Roman Gouk, Steven Verhaverbeke
  • Patent number: 8264033
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: September 11, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8227831
    Abstract: A semiconductor device having a junction FET having improved characteristics is provided. The semiconductor device has a junction FET as a main transistor and has a MISFET as a transistor for control. The junction FET has a first gate electrode, a first source electrode, and a first drain electrode. The MISFET has a second gate electrode, a second source electrode, and a second drain electrode. The MISFET is an n-channel type MISFET and has electric characteristics of an enhancement mode MISFET. The second gate electrode and the second drain electrode of the MISFET are connected to each other by short-circuiting. The first gate electrode of the junction FET and the second source electrode of the MISFET are connected to each other by short-circuiting.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hidekatsu Onose
  • Patent number: 8202772
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of <5° from vertical. The devices can be made using normal (i.e., 0°) or near normal incident ion implantation. The devices have relatively uniform sidewall doping and can be made without angled implantation.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 19, 2012
    Assignee: SS SC IP, LLC
    Inventors: David C. Sheridan, Andrew P. Ritenour
  • Patent number: 8119471
    Abstract: A method for manufacturing a semiconductor device including a vertical double-diffusedmetal-oxide-semiconductor (VDMOS) transistor includes preparing a semiconductor substrate and injecting a first impurity of a second conductivity type to a first region, injecting a second impurity to a second region that is located inside and is narrower than the first region, and forming an epitaxial layer on the semiconductor substrate and forming the semiconductor layer constituted by the semiconductor substrate and the epitaxial layer, and at a same time, diffusing the first and the second impurities injected in a first impurity injection and a second impurity injection to form a buried layer of the second conductivity type.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: February 21, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 8058655
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of <5° from vertical. The devices can be made using normal (i.e., 0°) or near normal incident ion implantation. The devices have relatively uniform sidewall doping and can be made without angled implantation.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 15, 2011
    Assignee: SS SC IP, LLC
    Inventors: David C. Sheridan, Andrew P. Ritenour
  • Patent number: 8058670
    Abstract: A trench insulation gate bipolar transistor (IGBT) power device with a monolithic deep body clamp diode comprising a plurality of trench gates surrounded by emitter regions of a first conductivity type near a top surface of a semiconductor substrate of the first conductivity type encompassed in base regions of a second conductivity type. A collector region of the second conductivity type is disposed on a rear side opposite from the top surface of the semiconductor substrate corresponding to and underneath the trench gates surrounded by the emitter regions encompassed in the base regions constituting a plurality of insulation gate bipolar transistors (IGBTs). A deep dopant region of the second conductivity type having P-N junction depth deeper than the base region is disposed between and extending below the trench gates in the base region of the first conductivity type.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 15, 2011
    Assignee: Force—MOS Technology Corporation
    Inventor: Fwu-Iuan Hshieh
  • Publication number: 20100308370
    Abstract: A trench insulation gate bipolar transistor (IGBT) power device with a monolithic deep body clamp diode comprising a plurality of trench gates surrounded by emitter regions of a first conductivity type near a top surface of a semiconductor substrate of the first conductivity type encompassed in base regions of a second conductivity type. The trench semiconductor power device further comprises a collector region of the second conductivity type disposed on a rear side opposite from the top surface of the semiconductor substrate corresponding to and underneath the trench gates surrounded by the emitter regions encompassed in the base regions constituting a plurality of insulation gate bipolar transistors (IGBTs). The IGBT power device further includes a deep dopant region of the second conductivity type having P-N junction depth deeper than the base region, disposed between and extending below the trench gates in the base region of the first conductivity type.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 9, 2010
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7700971
    Abstract: An insulated gate silicon carbide semiconductor device is provided having small on-resistance. The device combines a static induction transistor structure with an insulated gate field effect transistor structure. The advantages of both the SIT structure and the insulated gate field effect transistor structure are obtained. The structures are formed on the same SiC semiconductor substrate, with the MOSFET structure above the SIT structure. The SIT structure includes a p+ gate region in an n-type drift layer on an n+ SiC semiconductor substrate, and an n+ first source region on the surface of the drift layer. The MOSFET structure includes a p-well region on the surface of the first source region, a second source region formed in the p-well region, and a MOS gate structure formed in a trench extending from the second source region to the first source region. The p+ gate region and a source electrode are conductively connected.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 20, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventor: Katsunori Ueno
  • Patent number: 7642566
    Abstract: A scalable device structure and process for forming a normally off JFET with 45 NM linewidths or less. The contacts to the source, drain and gate areas are formed by forming a layer of oxide of a thickness of less than 1000 angstroms, and, preferably 500 angstroms or less on top of the substrate. A nitride layer is formed on top of the oxide layer and holes are etched for the source, drain and gate contacts. A layer of polysilicon is then deposited so as to fill the holes and the polysilicon is polished back to planarize it flush with the nitride layer. The polysilicon contacts are then implanted with the types of impurities necessary for the channel type of the desired transistor and the impurities are driven into the semiconductor substrate below to form source, drain and gate regions.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 5, 2010
    Assignee: DSM Solutions, Inc.
    Inventors: Madhukar B. Vora, Ashok Kumar Kapoor
  • Patent number: RE49953
    Abstract: A light emitting device includes plural transfer elements to be sequentially turned on, plural setting elements that are respectively connected to the plural transfer elements and are capable of shifting to an on-state by the transfer element being turned on, plural driving elements that are respectively connected to the plural setting elements and are capable of shifting to the on-state by the setting element being turned on; and plural light emitting elements that are respectively connected to the plural driving elements and have increased light-emission or an increased light-emission intensity by the driving element being turned on, in which plural pairs of the driving element and the light emitting element are connected to at least one of the plural setting elements and the plural light emitting elements are arranged in a two-dimensional shape.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: April 30, 2024
    Assignee: FUJIFILM Business Innovation Corp.
    Inventor: Takashi Kondo