With Charging Or Discharging By Control Voltage Applied To Source Or Drain Region (e.g., By Avalanche Breakdown Of Drain Junction) Patents (Class 257/322)
  • Patent number: 7983081
    Abstract: An apparatus and method of an electrically programmable and erasable non-volatile memory cell with a deep N-well to isolate the memory cell from the substrate is disclosed. In one embodiment, a non-volatile memory apparatus includes at least one non-volatile memory cell fabricated on a P substrate, with a deep N-well located in the P substrate, while a P-well and an N-well are located in the deep N-well. The memory cell further includes a PMOS transistor located in the N-well, in which the PMOS transistor includes a PMOS gate-oxide, and an NMOS capacitor located in the P-well. The NMOS capacitor includes an N+ coupling region located in the P-well, and an NMOS gate-oxide. The memory cell further includes a floating gate comprised of a poly-silicon gate overlying the PMOS transistor and the NMOS capacitor.
    Type: Grant
    Filed: December 14, 2008
    Date of Patent: July 19, 2011
    Assignee: Chip.Memory Technology, Inc.
    Inventors: Gang-Feng Fang, Wingyu Leung
  • Patent number: 7977731
    Abstract: A NOR flash memory has a plurality of memory cell transistors, wherein each memory cell transistor shares the source diffusion layer with another memory cell transistor adjacent thereto on one side thereof in the column direction and shares the drain diffusion layer with another memory cell transistor adjacent thereto on the other side thereof in the column direction, and the width of the source diffusion layer in the column direction is narrower than the width of the drain diffusion layer in the column direction.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Asada, Hideyuki Yamawaki
  • Patent number: 7977226
    Abstract: A flash memory device and a method for fabricating the same are disclosed. The flash memory device includes an ONO layer on a substrate, polysilicon gates on the ONO layer, a gate oxide layer on the substrate, the ONO layer and the polysilicon gates, and a low temperature oxide layer and polysilicon sidewall spacers on outer side surfaces of the polysilicon gates, except in a region between nearest adjacent polysilicon gates.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki Jun Yun
  • Patent number: 7968932
    Abstract: A semiconductor device which is formed in a self-aligned manner without causing a problem of misalignment in forming a control gate electrode and in which a leak between the control gate electrode and a floating gate electrode is not generated, and a manufacturing method of the semiconductor device are provided. A semiconductor device includes a semiconductor film, a first gate insulating film over the semiconductor film, a floating gate electrode over the first gate insulating-film, a second gate insulating film which covers the floating gate electrode, and a control gate electrode over the second gate insulating film. The control gate electrode is formed so as to cover the floating gate electrode with the second gate insulating film interposed therebetween, the control gate electrode is provided with a sidewall, and the sidewall is formed on a stepped portion of the control gate-electrode, generated due to the floating gate electrode.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 28, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 7968934
    Abstract: An integrated memory device, an integrated memory chip and a method for fabricating an integrated memory device is disclosed. One embodiment provides at least one integrated memory device with a drain, a source, a floating gate, a selection gate and a control gate, wherein the conductivity between the drain and the source can be controlled independently via the control gate.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: June 28, 2011
    Assignee: Infineon Technologies AG
    Inventors: Robert Strenz, Christian Peters
  • Patent number: 7968935
    Abstract: A reconfigurable semiconductor device is disclosed. The semiconductor device includes a substrate, a first insulating material formed on the substrate, two channels having different polarities, a plurality of terminal electrodes formed on the insulating material and coupled in common with the channels at their opposite ends, a second insulating material formed on the terminal electrodes, and a control gate formed on the second insulating material. The channels have different polarity and a charge storage layer is formed inside the second insulating material. The control gate is applied with a forward bias or a reverse bias and then the bias is cut off. The voltage-current characteristics of the semiconductor device are changed according to an electrical charge created in the charge storage layer.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: June 28, 2011
    Assignee: Seoul National University Research & Development Business Foundation
    Inventors: Seunghun Hong, Sung Myung, Kwang Heo
  • Patent number: 7964907
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Patent number: 7923327
    Abstract: Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device comprises: a control gate region formed by doping a semiconductor substrate with second impurities; an electron injection region formed by doping the semiconductor substrate with first impurities, where a top surface of the electron injection region includes a tip portion at an edge; a floating gate electrode covering at least a portion of the control gate region and the tip portion of the electron injection region; a first tunnel oxide layer interposed between the floating gate electrode and the control gate region; a second tunnel oxide layer interposed between the floating gate electrode and the electron injection region; a trench surrounding the electron injection region in the semiconductor substrate; and a device isolation layer pattern filled in the trench.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7902570
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7847339
    Abstract: A semiconductor integrated circuit device includes a semiconductor substrate; a dummy pattern extending in one direction on the semiconductor substrate; a junction region electrically connecting the dummy pattern to the semiconductor substrate; and a voltage applying unit that is configured to apply a bias voltage to the dummy pattern.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Hyun Lee, Jung-Yun Choi
  • Patent number: 7838406
    Abstract: The present invention is a semiconductor device including a semiconductor substrate having a trench, a first insulating film provided on side surfaces of the trench, a second insulating film of a material different from the first insulating film provided to be embedded in the trench, a word line provided extending to intersect with the trench above the semiconductor substrate, a gate insulating film of a material different from the first insulating film separated in an extending direction of the word line by the trench and provided under a central area in a width direction of the word line, and a charge storage layer separated in the extending direction of the word line by the trench and provided under both ends in the width direction of the word line to enclose the gate insulating film, and a method for manufacturing the same.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: November 23, 2010
    Assignee: Spansion LLC
    Inventors: Takayuki Maruyama, Fumihiko Inoue
  • Patent number: 7772635
    Abstract: A non-volatile memory device has improved performance from a stressed, silicon nitride capping layer. The device is comprised of memory cells in a substrate that have source and drain regions. A tunnel dielectric is formed over the substrate between each pair of source and drain regions. If the memory device is an NROM, a nitride charge storage layer is formed over the tunnel dielectric. If the memory device is a flash memory, a floating gate is formed over the tunnel dielectric. An inter-gate insulator and control gate are then formed over the charge storage layer. The stressed, silicon nitride capping layer is formed over the control gate.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn, Alan R. Reinberg
  • Patent number: 7745870
    Abstract: A floating gate memory cell has a floating gate in which there are two floating gate layers. The top layer is etched to provide a contour in the top layer while leaving the lower layer unchanged. The control gate follows the contour of the floating gate to increase capacitance therebetween. The two layers of the floating gate can be polysilicon separated by a very thin etch stop layer. This etch stop layer is thick enough to provide an etch stop during a polysilicon etch but preferably thin enough to be electrically transparent. Electrons are able to easily move between the two layers. Thus the etch of the top layer does not extend into the lower layer but the first and second layer have the electrical effect for the purposes of a floating gate of being a continuous conductive layer.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, Craig T. Swift
  • Patent number: 7719029
    Abstract: A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Princeton Lightwave, Inc.
    Inventor: Mark Allen Itzler
  • Patent number: 7714374
    Abstract: A method for forming a flash memory cell and the structure thereof is disclosed. The flash memory cell includes a substrate, a first raised source/drain region and a second raised source/drain region separated by a trench in-between, a first charge-trapping spacer and a second charge-trapping spacer respectively on the sidewall of the first and second raised source/drain region, a gate structure covering the first and second spacers, the trench and the first and second raised source/drain regions and a gate oxide layer located between the gate structure and the first and second raised source/drain regions and the substrate. By forming the charge-trapping spacers with less e-distribution, the flash memory affords better erasure efficiency.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: May 11, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Sung-Bin Lin
  • Patent number: 7700994
    Abstract: An electrically erasable/programmable CMOS logic memory cell for RFID applications and other mobile applications includes a tunneling capacitor, a control capacitor, and a CMOS inverter that share a single floating gate. A two-phase program/erase operation performs an initial Fowler-Nordheim (F-N) injection phase using the capacitors, and then a Band-to-Band Tunneling (BBT) phase using the CMOS inverter. Both the F-N injection and BBT phases are performed using low currents and low voltages (i.e., 5V or less). The tunneling and control capacitors are fabricated in isolated P-wells (IPWs) including both N+ and a P+ regions to enable the use of both positive and negative programming voltages during the F-N and BBT programming/erasing operations.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: April 20, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Evgeny Pikhay, Efraim Aloni, Adi Birman, Daniel Nehmad
  • Patent number: 7682894
    Abstract: The present invention provides a method of manufacturing a flash memory device. The method includes forming a gate oxide layer on a semiconductor substrate, forming a floating gate including protrusions and depressions on its surface by patterning polysilicon deposited on the gate oxide layer, depositing a dielectric layer on the floating gate and the gate oxide layer, and forming a control gate by patterning polysilicon deposited on the dielectric layer.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: March 23, 2010
    Assignee: Dongku HiTek Co.
    Inventor: Sang-Woo Nam
  • Patent number: 7671401
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: March 2, 2010
    Assignee: Mosys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7671404
    Abstract: A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: March 2, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Digh Hisamoto, Shinichiro Kimura, Kan Yasui, Nozomu Matsuzaki
  • Patent number: 7663180
    Abstract: A semiconductor device including: a well layer that is formed on a semiconductor substrate; a first impurity diffusion layer that is formed on the well layer; a floating gate that is formed on the well layer in one region isolated from the first impurity diffusion layer, with a gate insulating film therebetween, and that is drawn over the first impurity diffusion layer and over the well layer in other region isolated from the first impurity diffusion layer, respectively; a source or drain layer that is formed on the well layer in such a manner that the source or drain layer sandwiches the floating gate disposed on the gate insulation film with another source or drain layer and in isolation from the first impurity diffusion layer; and a second impurity diffusion layer that is formed on the well layer adjacently to the other region, the well layer being of a first conductivity type while the source or drain layer, the first impurity diffusion layer and the second impurity diffusion layer being each of a second
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 16, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Masatoshi Tagaki
  • Patent number: 7649221
    Abstract: A nonvolatile semiconductor memory includes a plurality of memory cell transistors configured with a first floating gate, a first control gate, and a first inter-gate insulating film each arranged between the first floating gate and the first control gate, respectively, and which are aligned along a bit line direction; device isolating regions disposed at a constant pitch along a word line direction making a striped pattern along the bit line direction; and select gate transistors disposed at each end of the alignment of the memory cell transistors, each configured with a second floating gate, a second control gate, a second inter-gate insulator film disposed between the second floating gate and the second control gate, and a sidewall gate electrically connected to the second floating gate and the second control gate.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Atsuhiro Sato
  • Patent number: 7626193
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7586145
    Abstract: An EEPROM flash memory device having a floating gate electrode enabling a reduced erase voltage and method for forming the same, the floating gate electrode including an outer edge portion including multiple charge transfer pointed tips.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: September 8, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd
    Inventors: Yuan-Hung Liu, Shih-Chi Fu, Chi-Hsin Lo, Chia-Shiung Tsai
  • Publication number: 20090194806
    Abstract: Embodiments relate to a single poly type EEPROM and a method for manufacturing an EEPROM. According to embodiments, a single poly type EEPROM may include unit cells. A unit cell may include a floating gate at a side of a control node formed on and/or over a semiconductor substrate having an activation region and a device isolation area, not overlapping a device isolation region but overlapping only a top of the activation region. A select gate may be formed on and/or over a top of the activation region. According to embodiments, a ratio of a capacitance of a control node side to a capacitance of a bit line side may increase, which may improve a coupling ratio. According to embodiments, a junction capacitance may be maximized by not doping the floating gate with an impurity, which may allow for a reduction in chip size by securing design margins.
    Type: Application
    Filed: December 27, 2008
    Publication date: August 6, 2009
    Inventor: Sang-Woo Nam
  • Patent number: 7547940
    Abstract: Non-volatile memory devices according to embodiments of the present invention include an EEPROM transistor in a first portion of a semiconductor substrate, an access transistor in a second portion of the semiconductor substrate and an erase transistor in a third portion of the semiconductor substrate. The second portion of the semiconductor substrate extends adjacent a first side of the first portion of the semiconductor substrate and the third portion of the semiconductor substrate extends adjacent a second side of the first portion of the semiconductor substrate. The first and second sides of the first portion of the semiconductor substrate may be opposite sides of the first portion of the semiconductor substrate. The access transistor has a first source/drain terminal electrically connected to a first source/drain terminal of the EEPROM transistor and the erase transistor has a first source/drain terminal electrically connected to a second source/drain terminal of the access transistor.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: June 16, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yong-hoon Kim
  • Publication number: 20090101962
    Abstract: A semiconductor device and methods of manufacturing and operating the semiconductor device may be disclosed. The semiconductor device may comprise different nanostructures. The semiconductor device may have a first element formed of nanowires and a second element formed of nanoparticles. The nanowires may be ambipolar carbon nanotubes (CNTs). The first element may be a channel layer. The second element may be a charge trap layer. In this regard, the semiconductor device may be a transistor or a memory device.
    Type: Application
    Filed: October 20, 2008
    Publication date: April 23, 2009
    Inventors: Seunghun Hong, Sung Myung, Jiwoon Im, Minbaek Lee
  • Patent number: 7514738
    Abstract: A nonvolatile semiconductor memory has a memory cell structure with a doped semiconductor substrate, a gate electrode, a channel area disposed in the substrate below the gate electrode, a pair of variable resistance areas disposed on opposite sides of the channel area in the substrate, charge storage bodies formed above the variable resistance areas and on the sides of the gate electrode, and highly doped source and drain areas formed on opposite sides of the variable resistance areas in the substrate. The variable resistance areas are doped at a carrier concentration of 5×1017 cm?3 or less to ensure an adequate current difference between the programmed and erased states of the memory cell. The doping of the variable resistance areas differs from the lightly doped drain doping in peripheral circuit areas.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: April 7, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Takashi Ono, Narihisa Fujii, Kenji Ohnuki
  • Patent number: 7501677
    Abstract: A SONOS memory cell, formed within a semiconductor substrate, includes a bottom dielectric disposed on the semiconductor substrate, a charge trapping material disposed on the bottom dielectric, and a top dielectric disposed on the charge trapping material. Furthermore, the SONOS memory cell includes a word-line gate structure disposed on the top dielectric and at least one bit-line gate for inducing at least one inversion bit-line within the semiconductor substrate.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 10, 2009
    Assignee: Spansion LLC
    Inventors: Hidehiko Shiraiwa, Jaeyong Park, Satoshi Torii, Hideki Arakawa, Masaru Yano
  • Patent number: 7449742
    Abstract: The present memory device includes first and second electrodes, a passive layer between the first and second electrodes; and an active layer between the first and second electrodes, the active layer being of dendrimeric material which provides passages through the active layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 11, 2008
    Assignee: Spansion LLC
    Inventors: Igor Sokolik, Juri Krieger, Xiaobo Shi, Richard Kingsborough, William Leonard
  • Patent number: 7449747
    Abstract: Flash memory is rapidly decreasing in price. There is a demand for a new memory system that permits size reduction and suits multiple-value memory. A flash memory of AND type suitable for multiple-value memory with multiple-level threshold values can be made small in area if the inversion layer is utilized as the wiring; however, it suffers the disadvantage of greatly varying in writing characteristics from cell to cell. Another promising method of realizing multiple-value memory is to change the storage locations. This method, however, poses a problem with disturbance at the time of operation. The present invention provides one way to realize a semiconductor memory device with reduced cell-to-cell variation in writing characteristics.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: November 11, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Tomoyuki Ishii, Kazunori Furusawa, Hideaki Kurata, Yoshihiro Ikeda
  • Patent number: 7446371
    Abstract: In a non-volatile memory device and a method for forming such a device, at least one edge of the charge trapping layer is recessed. In this manner, the threshold voltage of the device during a programming operation and the threshold voltage of the device during an erase operation are maintained at an appropriate and consistent level. As a result, device characteristics are improved.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: November 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sang-su Kim
  • Patent number: 7439574
    Abstract: Provided are a silicon/oxide/nitride/oxide/silicon (SONOS) memory, a fabricating method thereof, and a memory programming method. The SONOS memory includes a substrate; a first insulating layer stacked on the substrate; a semiconductor layer, which is patterned on the first insulating layer in a predetermined shape, including source and drain electrodes separated by a predetermined interval; a second insulating layer located on the semiconductor layer between the source and drain electrodes; a memory layer, which is deposited on sides of a portion of the semiconductor layer between the source and drain electrodes and on sides and an upper surface of the second insulating layer, including electron transferring channels and an electron storing layer; and a gate electrode, which is deposited on a surface of the memory layer, for controlling transfer of electrons in the memory layer. The programming method may provide a large capacity, stable, multi-level memory.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: October 21, 2008
    Assignees: Samsung Electronics Co., Ltd., Seoul National University
    Inventors: Chung-woo Kim, Byung-gook Park, Jong-duk Lee, Yong-kyu Lee
  • Patent number: 7436707
    Abstract: A flash memory cell structure has a substrate, a select gate, a first-type doped region, a shallow second-type doped region, a deep second-type doped region, and a doped source region. The substrate has a stacked gate. The select gate is formed on the substrate and adjacent to the stacked gate. The first-type ion formed region is doped in the substrate and adjacent to the select gate as a drain. The shallow second-type doped region is formed on one side of the first-type doped region below the stacked gate. The deep second-type doped region, which serves as a well, is formed underneath the first-type doped region with one side bordering on the shallow second-type doped region. The doped source region is formed on a side of the shallow second-type doped region as a source.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 14, 2008
    Assignee: Powership Semiconductor Corp.
    Inventors: Chih-Wei Hung, Da Sung, Cheng-Yuan Hsu
  • Publication number: 20080232162
    Abstract: A One Time Programming (OTP) cell structure, a method of fabricating an OTP structure, and a method of programming a OTP cell structure. The OTP structure comprises a semiconductor substrate; an n Metal-Oxide-Semiconductor (nMOS) programming structure formed on the substrate; wherein respective electrical contacts to a source of the nMOS programming structure and to a p-bulk of the substrate are separated for individual biasing of the source and the p-bulk of the substrate.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Hing Poh Kuan, Kwang Ye Sim
  • Publication number: 20080211010
    Abstract: A semiconductor device includes: a package; two semiconductor chip fixing parts located adjacently to each other in the package; and first and the second semiconductor chips, each of which is fixed on the semiconductor chip fixing part and has a field effect transistor formed therein. A gate lead G1, a source lead S1, and a drain lead D2 are arranged from left to right on the first surface of the package and a drain lead D1, a source lead S2, and a gate lead G2 are arranged from left to right on the second surface. A gap between the source lead S1 and the drain lead D2 is two times a gap between the gate lead G1 and the source lead S1, and a gap between the drain lead D1 and the source lead S2 is two times a gap between the source lead S2 and the gate lead G2.
    Type: Application
    Filed: February 7, 2008
    Publication date: September 4, 2008
    Inventors: Toshiyuki Hata, Takamitsu Kanazawa, Takeshi Otani
  • Publication number: 20080179657
    Abstract: A semiconductor device includes: a silicon substrate; a first trench formed on a surface portion of the silicon substrate to isolate a plurality of active regions from one another; a first element isolation layer embedded in the first trench; a plurality of selectively-grown silicon layers formed on the respective active regions; and a second element isolation layer embedded in a second trench defined by the top surface of the first element isolation layer and opposing side surfaces of adjacent two of the selectively-grown silicon layers.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 31, 2008
    Applicant: ELPIDA MEMORY INC.
    Inventor: Yuki TASAKA
  • Patent number: 7394127
    Abstract: A non-volatile memory device includes a pair of source/drain regions disposed in a semiconductor substrate, having a channel region between them. A charge storage oxide layer is disposed on the channel region and overlaps part of each of the pair of source/drain regions. A gate electrode is disposed on the charge storage oxide layer. At least one halo implantation region is formed in the semiconductor substrate adjacent to one of the pair of source/drain regions, and overlapping the charge storage oxide layer. A program operation is performed by trapping electrons in the charge storage oxide layer located near the source/drain region where the halo ion implantation region is formed, and an erase operation is performed by injecting holes into the charge storage oxide layer located near the source/drain region where the halo ion implantation region is formed.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Chul Kim, Geum-Jong Bae, Byoung-jin Lee, Sang-Su Kim
  • Patent number: 7391078
    Abstract: A non-volatile memory is provided. A substrate having a plurality of trenches and a plurality of select gates is provided. The trenches are arranged in parallel and extend in a first direction. Each of the select gates is disposed on the substrate between two adjacent trenches respectively. A plurality of select gate dielectric layers are disposed between the select gates and the substrate. A plurality of composite layers are disposed over the surface of the trenches and each composite layer has a charge trapping layer. A plurality of word lines are arranged in parallel in a second direction, wherein each of the word lines fills the trenches between adjacent select gates and is disposed over the composite layers.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: June 24, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wei-Zhe Wong, Ching-Sung Yang
  • Publication number: 20080142872
    Abstract: A non-volatile memory device includes a semiconductor substrate having a first section including a substantially planar first top surface, a second section including a substantially planar second top surface, and a sidewall extending between the first and second top surfaces. The second top surface of the substrate is closer to a bottom surface of the substrate than is the first top surface. A charge storage pattern extends on the first and second top surfaces of the substrate and along the sidewall therebetween. A source region in the first section of the substrate extends from the first top surface into the second section of the substrate and has a stepped portion defined by the sidewall and the second top surface. Related fabrication methods and methods of operation are also discussed.
    Type: Application
    Filed: November 26, 2007
    Publication date: June 19, 2008
    Inventor: Weon-Ho Park
  • Patent number: 7382015
    Abstract: A non-volatile semiconductor memory device, which is intended to prevent data destruction by movements of electric charges between floating gates and thereby improve the reliability, includes element isolation/insulation films buried into a silicon substrate to isolate stripe-shaped element-forming regions. Formed on the substrate are a floating gate via a first gate insulating film and further a control gate via a second gate insulating film. Source and drain diffusion layers are formed in self-alignment with control gates. The second gate insulating film on the floating gate is divided and separated together with the floating gate by slits above the element isolation/insulation films into discrete portions of individual memory cells.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 3, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Iguchi, Yoshiaki Himeno, Hiroaki Tsunoda
  • Patent number: 7339230
    Abstract: Embodiments herein present a structure, method, etc. for making high density MOSFET circuits with different height contact lines. The MOSFET circuits include a contact line, a first gate layer situated proximate the contact line, and at least one subsequent gate layer situated over the first gate layer. The contact line includes a height that is less than a combined height of the first gate layer and the subsequent gate layer(s). The MOSFET circuits further include gate spacers situated proximate the gate layers and a single contact line spacer situated proximate the contact line. The gate spacers are taller and thicker than the contact line spacer.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 4, 2008
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7335938
    Abstract: A nonvolatile semiconductor memory includes a plurality of memory cell transistors configured with a first floating gate, a first control gate, and a first inter-gate insulating film each arranged between the first floating gate and the first control gate, respectively, and which are aligned along a bit line direction; device isolating regions disposed at a constant pitch along a word line direction making a striped pattern along the bit line direction; and select gate transistors disposed at each end of the alignment of the memory cell transistors, each configured with a second floating gate, a second control gate, a second inter-gate insulator film disposed between the second floating gate and the second control gate, and a sidewall gate electrically connected to the second floating gate and the second control gate.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: February 26, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Atsuhiro Sato
  • Patent number: 7312491
    Abstract: A semiconductor memory element, which can be controlled via field effect, includes a semiconductor substrate of a first conduction type, a first doping region of a second conduction type provided in the semiconductor substrate, a second doping region of the second conduction type provided in the semiconductor substrate, a channel region located between the first and second doping regions, a multilayer gate dielectric which is arranged adjacent to the channel region and has a charge trapping memory layer, and a gate terminal provided above the gate dielectric. The charge trapping memory layer includes at least one sequence of adjacent layers, wherein the sequence of adjacent layers comprises an amorphous silicon carbide layer and an amorphous silicon nitride layer.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: December 25, 2007
    Assignee: Infineon Technologies, AG
    Inventors: Klaus-Dieter Ufert, Josef Willer
  • Patent number: 7309893
    Abstract: A semiconductor device includes a substrate having a pair of first diffused regions, and a gate including an oxide film provided on the substrate, and a charge storage layer provided on the oxide film, the charge storage layer being an electrical insulator capable of storing charges in bit areas. The oxide film has first portions related to the bit areas and a second portion that is located between the bit areas and is thicker than the first potions. The first portions serve as tunneling oxide portions, while the second portion allows reduced tunneling.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: December 18, 2007
    Assignee: Spansion LLC
    Inventor: Masatomi Okanishi
  • Patent number: 7301197
    Abstract: A low voltage non-volatile charge storage transistor has a nanocrystal layer for permanently storing charge until erased. A subsurface charge injector generates secondary carriers by stimulating electron-hole current flowing toward the substrate, with some carriers impacting charge in nanocrystals. The charge injector is a p-n junction diode where one polarity is source and drain electrodes and the other polarity is two split doped regions in the substrate partially overlapping the active area on opposite sides of the active area. Any misalignment of masks for making the injected doped portions is inconsequential because a misalignment on one side of the active area offsets the corresponding misalignment on the other side. The injector implanted portions with overlap in the active area always have the same total area in the active area. This leads to programming reliability.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 27, 2007
    Assignee: Atmel Corporation
    Inventor: Bohumil Lojek
  • Patent number: 7274068
    Abstract: A nitride read only memory cell comprising a silicon-germanium layer with a pair of source/drain regions. A strained silicon layer is formed overlying the silicon-germanium layer such that the pair of source/drain regions is linked by a channel that is generated in the strained silicon layer during operation of the cell. A nitride layer is formed overlying the substrate. The nitride layer has at least one charge storage region. The nitride layer may be a planar layer, a planar split gate nitride layer, or a vertical split nitride layer. A control gate is formed overlying the nitride layer. Ballistic direct injection is used to program the memory cell. A first charge storage region of the nitride layer establishes a virtual source/drain region in the channel. The virtual source/drain region has a lower threshold voltage than the remaining portion of the channel.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7268387
    Abstract: The present invention provides a semiconductor nonvolatile memory in which writing or erasing of storing information can be carried out at a high speed with low consumption power and in which dispersion width of a threshold voltage after writing or erasing is very narrow. A channel region of a memory transistor is divided into two regions of a writing control region and a writing region. The writing control region and the writing region have different threshold voltages. Writing is only carried out in the writing region. The writing control region turns off when the amount of electric charges accumulated in a floating gate reaches a specific value due to writing. The writing control region is used as a switch for a writing operation to automatically stop writing. Accordingly, an involatile memory comprising a memory transistor, in which writing can be carried out at a high speed with low consumption power and which is superior in controlling a threshold voltage after writing or erasing, can be obtained.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: September 11, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kurokawa, Kiyoshi Kato
  • Patent number: 7265412
    Abstract: A memory cell includes first and second data holding portions for holding stored data and its inverted data. First and second p channel TFT compensate for charges leaked from first and second capacitors, respectively. A first (second) access transistor has first and second gate electrodes connected to a first (second) word line and to a second (first) node, respectively. The first (second) access transistor discharges the charges leaked from a power supply node via the first (second) p channel TFT in the OFF state in the leakage mode where the first (second) word line is inactivated and the second (first) node is at an H level.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: September 4, 2007
    Assignee: Renesas Technology Corp.
    Inventor: Yuji Kihara
  • Patent number: RE40486
    Abstract: Disclosed is a self-aligned non-volatile memory cell including a small sidewall spacer electrically coupled and being located next to a main floating gate region. Both the small sidewall spacer and the main floating gate region are formed on a substrate and both form the floating gate of the non-volatile memory cell. Both are isolated electrically from the substrate by an oxide layer which is thinner between the small sidewall spacer and the substrate; and is thicker between the main floating gate region and the substrate. The small sidewall spacer can be made small; therefore, the thin oxide layer area can also be made small to create a small pathway for electrons to tunnel into the floating gate.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: September 9, 2008
    Assignee: Atmel Corporation
    Inventors: Bohumil Lojek, Alan L. Renninger
  • Patent number: RE42283
    Abstract: A TFT liquid crystal display device is disclosed, which includes two substrates and a liquid crystal layer provided in between the substrates, one substrate having a surface providing with a plurality of data signal lines, a plurality of scan lines, a plurality of pixel electrodes, and a plurality of functional components having source electrode, gate electrodes and drain electrodes. Moreover, the projection of one of the signal electrode and the drain electrode on the gate electrode having at least one bridging zone and one conducting zone. The width of the bridging zone in the direction in parallel to one side of the gate electrode is smaller than the width of the conducting zone in the direction in parallel to the side of the gate electrode.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: April 12, 2011
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Hung-Jen Chu, Ming-Hsuan Chang, Chien-Kuo Ho, Nai-Jen Hsiao