With Charging Or Discharging By Control Voltage Applied To Source Or Drain Region (e.g., By Avalanche Breakdown Of Drain Junction) Patents (Class 257/322)
  • Patent number: 7262457
    Abstract: A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 28, 2007
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Patent number: 7262992
    Abstract: A hearing aid comprising a data memory includes a plurality of semiconductor memory cells. The semiconductor memory cell has a gate insulating film formed on a semiconductor substrate, on a well region provided in the semiconductor substrate, or on a semiconductor film deposited on an insulator; a single gate electrode formed on the gate insulating film; two memory functional units formed on both sidewalls of the single gate electrode; a channel formation region formed under the single gate electrode; and first diffusion regions disposed on both sides of the channel formation region. The semiconductor memory cell is constituted so as to change an amount of currents flowing from one of the first diffusion regions to the other first diffusion region according to an amount of charges retained in the memory functional unit or a polarization vector when a voltage is applied to the gate electrode.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: August 28, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akihide Shibata, Takayuki Ogura, Hiroshi Iwata
  • Patent number: 7259420
    Abstract: Disclosed is a multiple-gate transistor that includes a channel region and source and drain regions at ends of the channel region. A gate oxide is positioned between a logic gate and the channel region and a first insulator is formed between a floating gate and the channel region. The first insulator is thicker than the gate oxide. The floating gate is electrically insulated from other structures. Also, a second insulator is positioned between a programming gate and the floating gate. Voltage in the logic gate causes the transistor to switch on and off, while stored charge in the floating gate adjusts the threshold voltage of the transistor. The transistor can comprise a fin-type field effect transistor (FinFET), where the channel region comprises the middle portion of a fin structure and the source and drain regions comprise end portions of the fin structure.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: August 21, 2007
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7253468
    Abstract: Flash memory and methods of fabricating the same are disclosed. An illustrated example flash memory includes a first source formed within a semiconductor substrate; an epitaxial layer formed on an upper surface of the semiconductor substrate; an opening formed within the epitaxial layer to expose the first source; a floating gate device formed inside the opening; and a select gate device formed on the epitaxial layer at a distance from the floating gate device.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: August 7, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jin Hyo Jung
  • Patent number: 7250652
    Abstract: A nonvolatile semiconductor memory device includes a substrate, a central structure, a second gate insulating film, a floating gate, and a control gate. The substrate has a trench. The central structure is formed so as to be embedded in the trench and protruded from the substrate. The second gate insulating film is formed on the substrate so as to be contact with the central structure. The floating gate is formed on the second gate insulating film. The control gate is formed so as to cover the floating gate through a insulating film;. The central structure includes an assistant gate and a first gate insulating film which is formed such that the assistance gate is surrounded with the first gate insulating film. The floating gate is formed in a side wall shape on the side surface of the central structure.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: July 31, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Noriaki Kodama
  • Patent number: 7212437
    Abstract: This invention provides a semiconductor memory device and a corresponding method of operation. The semiconductor memory device comprises a semiconductor substrate having a first conductivity; a plurality of gate structures for storing charge in a non-volatile manner regularly arranged in above the surface of the semiconductor substrate and electrically isolated therefrom; a plurality of wordlines, each of the gate structures being connected to one of the wordlines and a group of the gate structures being connected to a common wordline; and a plurality of active regions, each of the active regions being individually connectable to at least one of the gate structures.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: May 1, 2007
    Inventors: Massimo Atti, Christoph Deml
  • Patent number: 7208794
    Abstract: Semiconductor memory having memory cells, each including first and second conductively-doped contact regions and a channel region arranged between the latter, formed in a web-like rib made of semiconductor material and arranged one behind the other in this sequence in the longitudinal direction of the rib. The rib has an essentially rectangular shape with an upper side of the rib and rib side faces lying opposite. A memory layer is configured for programming the memory cell, arranged on the upper side of the rib spaced apart by a first insulator layer, and projects in the normal direction of the one rib side face over one of the rib side faces so that the one rib side face and the upper side of the rib form an edge for injecting charge carriers from the channel region into the memory layer.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken, Wolfgang Roesner, Michael Specht
  • Patent number: 7202524
    Abstract: A nonvolatile memory device is provided which includes a floating gate having a lower portion formed in a trench defined in a surface of a substrate and an upper portion protruding above the surface of the substrate from the lower portion. A gate insulating layer is formed along an inner wall of the trench and interposed between the trench and the lower portion of the floating gate. A source region is formed in the substrate adjacent a first sidewall of the trench. A control gate having a first portion is formed over the surface of the substrate adjacent a second sidewall of the trench, and a second portion is formed over the upper portion of the floating gate and extending from the first portion. The first sidewall of the trench is opposite the second sidewall of the trench.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: April 10, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-chul Kim, Young-cheon Jeong, Hyok-ki Kwon
  • Patent number: 7187043
    Abstract: A memory function body has a medium interposed between a first conductor (e.g., a conductive substrate) and a second conductor (e.g., an electrode) and consisting of a first material (e.g., silicon oxide or silicon nitride). The medium contains particles. Each particle is covered with a second material (e.g., silver oxide) and formed of a third material (e.g., silver). The second material functions as a barrier against passage of electric charges, and the third material has a function of retaining electric charges. The third material is introduced into the medium by, for example, a negative ion implantation method.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: March 6, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobutoshi Arai, Hiroshi Iwata, Seizo Kakimoto
  • Patent number: 7183662
    Abstract: A memory device, such as a DRAM, SRAM or non-volatile memory device, includes a substrate, a gate electrode disposed on the substrate, and source and drain regions in the substrate adjacent respective first and second sidewalls of the gate electrode. First and second sidewall spacers are disposed on respective ones of the first and second sidewalls of the gate electrode. The first and second sidewall spacers have different dielectric constants. The first and second sidewall spacers may be substantially symmetrical and/or have substantially the same thickness.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-chul Kim, Sung-bong Kim
  • Patent number: 7170129
    Abstract: A method of fabrication a non-volatile memory is provided. A stacked structure is formed on a substrate, the stacked structure including a gate dielectric layer and a control gate. Then, a first dielectric layer, a second dielectric layer and a third dielectric layer are respectively formed on the top and sidewalls of the stacked structure and the exposed substrate. Thereafter, a pair of charge storage layers are formed over the substrate to respectively cover a portion of the top and sidewalls of the stacked structure, and a gap exists between each of the charge storage layers.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: January 30, 2007
    Assignee: MACRONIX International Co., Ltd.
    Inventor: Ming-Chang Kuo
  • Patent number: 7154141
    Abstract: A flash EEPROM array having a double-diffused source junction that can be used for source side programming. The flash EEPROM array, when programmed from the source side exhibits fast programming rates. Additionally, source side programming of arrays having different physical characteristics (e.g. transistor cell channel length) exhibit tighter program rate distributions than for the same arrays in which drain side programming is used.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: December 26, 2006
    Assignee: Hyundai Electronics America
    Inventors: Hsingya Arthur Wang, Yuan Tang, Haike Dong, Ming Sang Kwan, Peter Rabkin
  • Patent number: 7151293
    Abstract: A SONOS memory cell, formed within a semiconductor substrate, includes a bottom dielectric disposed on the semiconductor substrate, a charge trapping material disposed on the bottom dielectric, and a top dielectric disposed on the charge trapping material. Furthermore, the SONOS memory cell includes a word-line gate structure disposed on the top dielectric and at least one bit-line gate for inducing at least one inversion bit-line within the semiconductor substrate.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 19, 2006
    Assignee: Spansion, LLC
    Inventors: Hidehiko Shiraiwa, Jaeyong Park, Satoshi Torii, Hideki Arakawa, Masaru Yano
  • Patent number: 7129536
    Abstract: A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 31, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bomy Chen, Sohrab Kianian, Yaw Wen Hu
  • Patent number: 7122857
    Abstract: A method is provided for forming a highly dense stacked gate flash memory cell with a structure having multi floating gates that can assume 4 states and, therefore, store 2 bits at the same time. This is accomplished by providing a semiconductor substrate having gate oxide formed thereon, and shallow trench isolation and a p-well formed therein. A layer of nitride is next formed over the substrate and an opening formed therein. Polysilicon floating gate spacers are formed in the opening. A dielectric layer is then formed over the floating gates followed by the forming of a control gate. The adjacent nitride layer is then removed leaving a multi-level structure comprising a control gate therebetween multi floating gates with the intervening dielectric layer.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: October 17, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Hsin-Ming Chen
  • Patent number: 7119393
    Abstract: A floating-gate transistor for an integrated circuit is formed on a p-type substrate. An n-type region is disposed over the p-type substrate. A p-type region is disposed over the n-type region. Spaced apart n-type source and drain regions are disposed in the p-type region forming a channel therein. A floating gate is disposed above and insulated from the channel. A control gate is disposed above and insulated from the floating gate. An isolation trench disposed in the p-type region and surrounding the source and drain regions, the isolation trench extending down into the n-type region. The substrate, the n-type region and the p-type region each biased such that the p-type region is fully depleted.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: October 10, 2006
    Assignee: Actel Corporation
    Inventor: John McCollum
  • Patent number: 7115939
    Abstract: Vertical body transistors with adjacent horizontal gate layers are used to form a memory array in a high density flash electrically erasable and programmable read only memory (EEPROM) or a logic array in a high density field programmable logic array (FPLA). The transistor is a field-effect transistor (FET) having an electrically isolated (floating) gate that controls electrical conduction between source regions and drain regions. If a particular floating gate is charged with stored electrons, then the transistor will not turn on and will provide an indication of the stored data at this location in the memory array within the EEPROM or will act as the absence of a transistor at this location in the logic array within the FPLA.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology Inc.
    Inventor: Leonard Forbes
  • Patent number: 7095077
    Abstract: A semiconductor memory includes: a p-type semiconductor (p-type semiconductor film on a substrate, a p-type well region in a semiconductor substrate, or an insulator); a gate insulating film formed on the p-type semiconductor; a gate electrode formed on the gate insulating film; two charge storage sections formed on side walls of the gate electrode; a channel region provided below the gate electrode; and a first n-type diffusion layer region and a second n-type diffusion layer region provided to sides of the channel region, wherein: the charge storage sections are arranged to change an electric current flow between the first n-type diffusion layer region and the second n-type diffusion layer region under application of a voltage to the gate electrode according to the quantity of electric charges stored in the charge storage sections; and the first n-type diffusion layer region is set to a reference voltage, the other n-type diffusion layer region is set to a voltage greater than the reference voltage, and the
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: August 22, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kotaro Kataoka, Hiroshi Iwata, Akihide Shibata
  • Patent number: 7087955
    Abstract: A semiconductor device has a nonvolatile memory employing a split-gate type memory cell structure, using a nitride film as a charge storage layer. An n-type semiconductor region is formed in a main surface of a semiconductor substrate, and then, a memory gate electrode of a memory cell of a split gate type and a charge storage layer are formed over the semiconductor region. Subsequently, side walls are formed on side surfaces of the memory gate electrode, and a photoresist pattern is formed over the main surface of the semiconductor substrate. The photoresist pattern serves as an etching mask, and a part of the main surface of the semiconductor substrate is removed by etching to form a dent. In the region of the dent, the n-type semiconductor region is removed. Then, a p-type semiconductor region for forming a channel of an nMIS transistor for selecting a memory cell is formed.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: August 8, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yoshiyuki Kawashima, Fumitoshi Ito, Takeshi Sakai, Yasushi Ishii, Yasuhiro Kanamaru, Takashi Hashimoto, Makoto Mizuno, Kousuke Okuyama
  • Patent number: 7087953
    Abstract: A method for making a unified non-volatile memory (NVM) comprised of a NOR-type flash memory, a NAND-type flash memory, and a 3-transistor EEPROM integrated on the same chip is achieved. This unified NVM can be used in advanced smart card applications. The unification is achieved by forming the array of NVM cells and their peripheral high-voltage NMOS-FETs in a deep triple-P well or P-substrate while making high-voltage PMOS-FETs in a deep N well with breakdown voltages greater than +18 V and greater than ?18 V, respectively. This novel NVM structure allows one to have compatible breakdown voltages for programming/erasing (charging and discharging) the floating-gate transistors in the NOR flash, the NAND flash, and 3-transistor EEPROM memory.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 8, 2006
    Assignee: Aplus Flash Technology, Inc.
    Inventor: Peter W. Lee
  • Patent number: 7084453
    Abstract: A semiconductor memory device and method for making the same, where a memory cell and high voltage MOS transistor are formed on the same substrate. An insulating layer is formed having a first portion that insulates the control and floating gates of the memory cell from each other, and a second portion that insulates the poly gate from the substrate in the MOS transistor. The insulating layer is formed so that its first portion has a smaller thickness than that of its second portion.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: August 1, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Geeng-Chuan Chern, Amitay Levi, Dana Lee
  • Patent number: 7075143
    Abstract: A nonvolatile semiconductor memory device enabling a high sensitivity read operation by a low voltage, provided with a gate insulating film comprised of a bottom insulating film, a charge storing film, and a top insulating film successively stacked from the bottom, the bottom insulating film including a silicon oxynitride film directly under the charge storing film, and reading a bit of data stored at a local portion of a sub-source line side of a memory transistor and a bit of data stored at a local portion of a sub-bit line side independently by the reverse read method, whereby the incubation time is suppressed by the presence of silicon oxynitride, the controllability of the thickness of the charge storing film is improved, and the threshold voltage in an erase state is decreased, and a method of high sensitivity reading whereby a lower voltage and improved operational reliability are achieved.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: July 11, 2006
    Assignee: Sony Corporation
    Inventors: Ichiro Fujiwara, Akira Nakagawara
  • Patent number: 7061045
    Abstract: The present invention relates to a flash memory and a method for manufacturing the same, capable of minimizing resistance of the common source line in the flash memory cell manufacturing process. In the memory cell manufacturing method according to the embodiment of the present invention, trench lines are continuously formed on a semiconductor substrate, and gate oxide film lines are formed on the semiconductor substrate except at the trench lines. Sequentially, gate lines vertical with the trench lines are formed on the trench lines and the gate oxide film lines, and the dielectric material of the trench line and the gate dielectric film between adjacent gate lines is removed, and a conductive film of Ti/TiN or Co/Ti/TiN is deposited on the common source region, and then a silicide is formed on the common source region by means of annealing.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: June 13, 2006
    Assignee: DongbuAnam Semiconductor Inc.
    Inventor: Myung-Jin Jung
  • Patent number: 7053440
    Abstract: A non-volatile semiconductor memory device comprising: a first conductive type well formed within a semiconductor substrate; and a memory cell having a gate insulating film, a floating gate, an insulating film, a control gate and a pair of source/drain region, the gate insulating film, the floating gate, the insulating film, the control gate being layered in this order above the first conductive type well, the pair of source/drain regions being made up of second conductive type diffusion layers and formed within the first conductive type well, wherein the source region is electrically connected to the first conductive type well.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: May 30, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kenji Hakozaki, Kenichi Tanaka
  • Patent number: 7049651
    Abstract: The charge-trapping layer comprises two strips above the source and drain junctions. The thicknesses of the charge-trapping layer and the gate dielectric are chosen to facilitate Fowler-Nordheim-tunnelling of electrons into the strips during an erasure process. Programming is performed by injection of hot holes into the strips individually for two-bit storage.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 23, 2006
    Assignee: Infineon Technologies AG
    Inventors: Thomas Mikolajick, Hans Reisinger, Josef Willer, Corvin Liaw
  • Patent number: 7030436
    Abstract: A high density horizontal merged MOS-bipolar gain memory cell is realized for DRAM operation. The gain cell includes a horizontal MOS transistor having a source region, a drain region, and a floating body region therebetween. The gain cell includes a horizontal bi-polar transistor having an emitter region, a base region and a collector region. The collector region for the horizontal bi-polar transistor serves as the floating body region for the horizontal MOS transistor. A gate opposes the floating body region and is separated therefrom by a gate oxide. The emitter region for the horizontal bi-polar transistor is coupled to a write data line.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7026687
    Abstract: A proposed non-volatile semiconductor memory and a method of manufacturing the same are directed to performing stable and highly reliable operations. First, grooves are formed in a p-type silicon semiconductor substrate, and impurity diffusion layers are formed on the bottom surfaces of the grooves. A gate insulating film is then formed on the p-type silicon semiconductor substrate. This gate insulating film has a three-layer structure in which a first insulating film made of a silicon oxide film, a charge capturing film made of a silicon nitride film, and a second insulating film made of a silicon oxide film, are laminated in this order. A gate electrode is then formed on the gate insulating film. A convexity formed by the grooves serves as the channel region of the non-volatile semiconductor memory. Even if the device size is reduced, an effective channel length can be secured in this non-volatile semiconductor memory. Thus, excellent stability and reliability can be achieved.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: April 11, 2006
    Assignee: Fujitsu Limited
    Inventors: Satoshi Shinozaki, Mitsuteru Iijima, Hideo Kurihara
  • Patent number: 7019379
    Abstract: A semiconductor device includes a heavily doped layer 25 of p-type formed in the surface of an n-type well 21, an intermediately doped layer 26 of p-type formed to adjoin and surround the heavily p-doped layer 25, and an isolation region 22 formed to surround the heavily p-doped layer 25 and the intermediately p-doped layer 26. The heavily p-doped layer 25 has a higher dopant concentration than the well 21. The intermediately p-doped layer 26 has a higher dopant concentration than the well 21 and a lower dopant concentration than the heavily p-doped layer 25.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 28, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hirotsugu Honda
  • Patent number: 7015540
    Abstract: To realize a semiconductor memory device with reduced cell-to-cell variation in writing characteristics a semiconductor memory has a source region and a drain region, which are formed parallel to each other, and an assist electrode which is between and parallel to the source and drain regions without overlapping, so that at the time of writing, the assist electrode is used as an assist electrode for hot electrons to be injected at the source side and at the time of reading, an inversion layer formed under the assist electrode is used as the source region or the drain region.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: March 21, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Tomoyuki Ishii, Kazunori Furusawa, Hideaki Kurata, Yoshihiro Ikeda
  • Patent number: 6998671
    Abstract: The present invention provides a method for using drain coupling to suppress the second bit effect of localized split floating gate devices. By suitably designing the gate and drain overlap region, the drain coupling coefficient can be controlled to effectively suppress the second bit effect during a reverse read operation. The modified reverse read method such as the “raised source voltage VS” method can also be employed to further improve the drain coupling effect without read disturb. Furthermore, the drain coupling can improve the channel hot electron (CHE) injection efficiency.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 14, 2006
    Assignee: Macronix International Co., Ltd.
    Inventor: Hang-Ting Lue
  • Patent number: 6995424
    Abstract: A non-volatile memory device comprises a cell region defined at a substrate and a plurality of device isolation layers formed in the cell region to define a plurality of active regions. A charge storage insulator covers substantially the entire top surface of the cell region. A plurality of gate lines are formed on the charge storage insulator that cross over the device isolation layers. Conductive patterns are disposed between predetermined gate lines that penetrate the charge storage insulator to electrically connect with the active regions. According to the method of fabricating the device, a plurality of device isolation layers are formed in the substrate and then a charge storage insulator is formed on an entire surface of the substrate and the device isolation layers. A plurality of parallel gate lines that cross over the device isolation layers are formed on the charge storage insulator and then conductive patterns are formed between predetermined gate lines.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 7, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Hyun Lee
  • Patent number: 6987298
    Abstract: A structure of non-volatile memory contains a substrate. A plurality of bit lines are formed in the substrate along a first direction, wherein each of the bit lines also serve as a source/drain (S/D) region. A first dielectric layer is disposed over the substrate. A plurality of selection gate (SG) lines are formed over the first dielectric layer between the bit lines. A plurality of charge-storage structure layer are formed over the substrate between the bit lines and the SG lines. A second dielectric layer is formed over the SG lines and a third dielectric layer is formed over the bit lines. A plurality of word lines are formed over the substrate along a second direction, which is crossing the first direction for the bit lines. Wherein, when a selected one of the SG lines is applied a voltage, another S/D region is created in the substrate under the selected one of the SG lines.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: January 17, 2006
    Assignee: Solide State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Chin-Hsi Lin, Jhyy-Cheng Liou
  • Patent number: 6982457
    Abstract: The invention includes non-volatile memory and logic devices associated with crystalline Si/Ge. The devices can include TFT constructions. The non-volatile devices include a floating gate or floating plate over the Si/Ge, and a pair of source/drain regions. The source/drain regions can extend into the Si/Ge. The memory or logic devices further include an insulative material over the floating gate or plate, and a control gate separated from the floating gate or plate by the insulative material. The crystalline Si/Ge can have a relaxed crystalline lattice, and a crystalline layer having a strained crystalline lattice can be formed between the relaxed crystalline lattice and the floating gate or plate. The devices can be fabricated over any of a variety of substrates. The floating plate option can provide lower programming voltage and orders of magnitude superior endurance compared to other options.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: January 3, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 6963105
    Abstract: A flash memory cell structure has a substrate, a select gate, a first-type doped region, a shallow second-type doped region, a deep second-type doped region, and a doped source region. The substrate has a stacked gate. The select gate is formed on the substrate and adjacent to the stacked gate. The first-type ion formed region is doped in the substrate and adjacent to the select gate as a drain. The shallow second-type doped region is formed on one side of the first-type doped region below the stacked gate. The deep second-type doped region, which serves as a well, is formed underneath the first-type doped region with one side bordering on the shallow second-type doped region. The doped source region is formed on a side of the shallow second-type doped region as a source.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: November 8, 2005
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chih-Wei Hung, Da Sung, Cheng-Yuan Hsu
  • Patent number: 6963104
    Abstract: A non-volatile memory device includes a substrate, an insulating layer, a fin, a number of dielectric layers and a control gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The dielectric layers are formed over the fin and the control gate is formed over the dielectric layers. The dielectric layers may include oxide-nitride-oxide layers that function as a charge storage structure for the memory device.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: November 8, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Yider Wu, Bin Yu
  • Patent number: 6953963
    Abstract: A flash memory cell including a p-type substrate, an n-type deep well, a stacked gate structure, a source region, a drain region, a p-type pocket doped region, spacers, a p-type doped region and a contact plug is provided. The n-type deep well is set up within the p-type substrate and the stacked gate structure is set up over the p-type substrate. The stacked gate structure further includes a tunneling oxide layer, a floating gate, an inter-gate dielectric layer, a control gate and a cap layer sequentially formed over the p-type substrate. The source region and the drain region are set up in the p-type substrate on each side of the stacked gate structure. The p-type pocket doped region is set up within the n-type deep well region and extends from the drain region to an area underneath the stacked gate structure adjacent to the source region. The spacers are attached to the sidewalls of the stacked gate structure. The p-type doped region is set up within the drain region.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: October 11, 2005
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Leo Wang, Chien-Chih Du, Da Sung, Chen-Chiu Hsue
  • Patent number: 6952035
    Abstract: A non-volatile memory semiconductor device includes a first insulation layer, two diffusion regions, a memory gate oxide layer, a first control gate, a second insulation layer, a floating gate of polysilicon, a third insulation layer and a second control gate. The first insulation layer is formed on a semiconductor substrate. The two diffusion regions are formed on a surface of the substrate. The memory gate oxide layer is formed over the two diffusion regions on the substrate. The first control gate including a diffusion region is formed on the surface of the substrate. The second insulation layer is formed on the first control gate. The floating gate of polysilicon is formed over the memory gate oxide layer, the first insulation layer, and the second insulation layer. The third insulation layer is formed on the floating gate. The second control gate is disposed on the floating gate.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: October 4, 2005
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaaki Yoshida, Hiroaki Nakanishi
  • Patent number: 6943401
    Abstract: The present invention is a flash memory manufacturing process that facilitates efficient fabrication of a flash memory cell. In one embodiment, a silicide (e.g., CoSi) is utilized as a diffusion source. A layer of silicide is deposited over a source area and drain area. The dopant is implanted into the CoSi and diffuse out conformably along CoSi-Si interface at a relatively low temperature. The low temperature diffusion facilitates fabrication of a Flash core cell with a very shallow source/drain junction, and as a result a robust DIBL. The present invention also facilitates fabrication of memory cells with smaller spacers and shorter gate length.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: September 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Shenqing Fang
  • Patent number: 6940122
    Abstract: A high-density flash EEPROM (Electrically Erasable Programmable Read Only Memory) unit cell and a memory array architecture including the same are disclosed. The flash EEPROM unit cell comprises a substrate on which field oxide layers are formed for isolating unit cells, a floating gate dielectric layer formed between the adjacent field oxide layers, wherein the floating gate dielectric layer includes a first dielectric layer and a second dielectric layer which are connected in parallel between a source and a drain formed on the substrate, and the thickness of the first dielectric layer is thicker than the second dielectric layer, a floating gate formed on the floating gate dielectric layer, a control gate dielectric layer formed on the floating gate; and a control gate formed on the control gate dielectric layer.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: September 6, 2005
    Assignee: Terra Semiconductor, Inc.
    Inventor: Sukyoon Yoon
  • Patent number: 6940121
    Abstract: A semiconductor memory cell includes a semiconductor substrate that defines a trench having trench walls. The semiconductor memory cell also includes a floating gate electrode positioned within the trench and insulated from the trench walls by a first insulation region; a control gate electrode surrounding the trench; and a second insulation layer on the surface of the semiconductor substrate. The semiconductor memory cell further includes a conductive layer positioned on the second insulation layer. The conductive layer includes a channel region positioned above the floating gate electrode. The semiconductor memory cell also includes a source region and a drain region. The source region and the drain region are each formed in the conductive layer. The source region and the drain region are also connected to the channel region.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: September 6, 2005
    Assignee: Infineon Technology AG
    Inventor: Oliver Gehring
  • Patent number: 6930348
    Abstract: The dual bit split gate flash memory of the invention comprises a plurality of memory cells wherein each memory cell comprises a select gate overlying a substrate and isolated from the substrate by a select gate oxide layer, a first and second floating gate on opposite sidewalls of the select gate and isolated from the select gate by an oxide spacer, and a control gate overlying the select gate and the first and second floating gates and isolated from the select gate and the first and second floating gates by a dielectric layer, and source and drain regions within the substrate and shared by adjacent memory cells.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: August 16, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shih-Wei Wang
  • Patent number: 6917071
    Abstract: There are provided a semiconductor device which is operable with a small occupied area, high reliability, and low power consumption, a nonvolatile semiconductor storage apparatus using the device and a manufacture method of the device. A semiconductor device of the present invention comprises a first gate insulating film, floating gate, second gate insulating film, and control gate on a semiconductor substrate, and a source area and a drain area formed in the semiconductor substrate on opposite sides of the floating gate, the floating gate comprises a first floating gate and a second floating gate disposed to cover the first floating gate, and an isolating gate is formed on the second floating gate on the side of the semiconductor substrate, and parallel to the first floating gate via an isolating insulating film 26.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: July 12, 2005
    Assignee: NEC Corporation
    Inventor: Fumihiko Hayashi
  • Patent number: 6914290
    Abstract: The nonvolatile memory device includes an electrically programmable transistor and a selection transistor. The selection transistor is connected between the electrically program transistor and a programmable voltage supply line. The selection transistor controls application of a voltage on the program voltage supply line to the electrically programmable transistor.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: July 5, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Khe Yoo, Jeong-Uk Han
  • Patent number: 6897515
    Abstract: A semiconductor memory capable of attaining a low voltage, a high-speed operation, low power consumption and a high degree of integration is obtained. This semiconductor memory comprises a floating gate electrode, a first source/drain region having a diode structure employed for controlling the potential of the floating gate electrode and a second source/drain region formed to hold a channel region between the same and the first source/drain region. Thus, when a channel of a transistor is turned on in reading, a large amount of current flows from the first source/drain region having a diode structure to a substrate, whereby high-speed reading can be implemented. Further, a negative voltage is readily applied to the first source/drain region having a diode structure, whereby a low voltage and low power consumption are attained and the scale of a step-up circuit is reduced, and hence a high degree of integration can be attained.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: May 24, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Hideaki Fujiwara
  • Patent number: 6891220
    Abstract: A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the floating gate, and can be electrically connected to the source region. A method of programming the cell comprises the steps of creating an inversion layer in the second portion of the channel.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: May 10, 2005
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bing Yeh, Sohrab Kianian, Yaw Wen Hu
  • Patent number: 6882001
    Abstract: An electrically-programmable memory cell programmed by means of injection of channel hot electrons into a charge-storage element capacitively coupled to a memory cell channel for modulating a conductivity thereof depending on a stored amount of charge. A first and a second spaced-apart electrode regions are formed in a semiconductor layer and define a channel region there between; at least one of the first and second electrode regions acts as a programming electrode of the memory cell. A control electrode is capacitively coupled to the charge-storage element. The charge-storage element is placed over the channel to substantially extend from the first to the second electrode regions, and is separated from the channel region by a dielectric layer. The dielectric layer has a reduced thickness in a portion thereof near the at least one programming electrode.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: April 19, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventor: Luigi Pascucci
  • Patent number: 6861700
    Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: March 1, 2005
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
  • Patent number: 6861699
    Abstract: The present invention includes a method of fabricating a non-volatile memory device having two transistors for two-bit operations to improve electron trapping efficiency and integration degree of the non-volatile memory device, and a method of driving the non-volatile memory device. The EEPROM device according to the present invention comprises a silicon substrate including a first and a second channel area, a first and a second conductive gate on the first and the second channel area, respectively, facing each other, a first and a second insulation layer in the bottom of the first and the second gate, and a first and a second junction area of a second conductive type between the first and the second channel area overlapping with the first and the second conductive gate.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: March 1, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seong-Gyun Kim
  • Patent number: 6841823
    Abstract: Disclosed is a self-aligned non-volatile memory cell including a small sidewall spacer electrically coupled and being located next to a main floating gate region. Both the small sidewall spacer and the main floating gate region are formed on a substrate and both form the floating gate of the non-volatile memory cell. Both are isolated electrically from the substrate by an oxide layer which is thinner between the small sidewall spacer and the substrate; and is thicker between the main floating gate region and the substrate. The small sidewall spacer can be made small; therefore, the thin oxide layer area can also be made small to create a small pathway for electrons to tunnel into the floating gate.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 11, 2005
    Assignee: Atmel Corporation
    Inventors: Bohumil Lojek, Alan L. Renninger
  • Publication number: 20040222456
    Abstract: A computer system comprising: (A) a CPU; (B) a memory arrangement comprising: (i) a side-wall memory array including a plurality of side-wall memory transistors; (ii) a charge pump; (iii) a plurality of switching circuits; and (iv) logic circuitry; and (C) a system bus, wherein each of the side-wall memory transistors comprises: a gate electrode formed on a semiconductor layer with a gate insulating film formed on the semiconductor layer; a channel region formed below the gate electrode; a pair of diffusion regions formed on the both sides of the channel region and having a conductive type opposite to that of the channel region; and a pair of memory functional units formed on the both sides of the gate electrode and having a function of retaining charges.
    Type: Application
    Filed: May 5, 2004
    Publication date: November 11, 2004
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Koji Hamaguchi, Masaru Nawaki, Yoshinao Morikawa, Hiroshi Iwata, Akihide Shibata