With Means (other Than Self-alignment Of The Gate Electrode) To Decrease Gate Capacitance (e.g., Shield Electrode) Patents (Class 257/340)
  • Patent number: 8013391
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, active trenches extending through the well region and into the drift region where the active trenches define an active area. Inside each of the active trenches is formed a first conductive gate electrode disposed along and insulated from a first trench sidewall, a second conductive gate electrode disposed along and insulated from a second trench sidewall, and a conductive shield electrode disposed between the first and second conductive gate electrodes, wherein the shield electrode is insulated from and extends deeper inside the trench than the first and second conductive gate electrodes. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trenches.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 6, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Nathan L. Kraft
  • Patent number: 8008719
    Abstract: A semiconductor device is formed having lower gate to drain capacitance. A trench (80) is formed adjacent to a drain (20) of the semiconductor device. Trench (80) has a sidewall surface (100) and a surface (90). A doped region (110) is implanted through the sidewall surface (100) of trench (80). A dielectric layer (150) overlies the sidewall surface (100) of trench (80). A shield layer (170) overlies the dielectric layer (150). The shield layer (170) is between a portion of drain (20) and a portion of the gate and gate interconnect of the semiconductor device thereby reducing gate to drain capacitance. The shield layer (170) overlies a minority portion of the surface (90) of trench (80). A second shield layer (270) further reduces gate to drain capacitance.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: August 30, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Robert Bruce Davies
  • Patent number: 7981785
    Abstract: A polysilicon electrode layer (103) (a first electrode layer) is formed by forming a polysilicon film on a gate oxide film (102) on a silicon wafer (101). A tungsten layer (105) (a second electrode layer) is formed on this polysilicon electrode layer (103). In addition, a barrier layer (104) is formed on the polysilicon electrode layer (103) before the formation of the tungsten layer (105). Etching is then conducted using a silicon nitride layer (106) as the etching mask. Next, an oxide insulating film (107) is formed on an exposed surface of the polysilicon layer (103) by plasma oxidation wherein a process gas containing oxygen gas and hydrogen gas is used at a process temperature not less than 300° C. With this method, a selective oxidation of the polysilicon electrode layer (103) can be carried out without oxidizing the tungsten layer (105).
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: July 19, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Masaru Sasaki, Yoshiro Kabe
  • Patent number: 7932148
    Abstract: This invention discloses an improved trenched metal oxide semiconductor field effect transistor (MOSFET) device that includes a trenched gate surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a substrate. The MOSFET cell further includes a shielded gate trench (SGT) structure below and insulated from the trenched gate. The SGT structure is formed substantially as a round hole having a lateral expansion extended beyond the trench gate and covered by a dielectric liner layer filled with a trenched gate material. The round hole is formed by an isotropic etch at the bottom of the trenched gate and is insulated from the trenched gate by an oxide insulation layer. The round hole has a lateral expansion beyond the trench walls and the lateral expansion serves as a vertical alignment landmark for controlling the depth of the trenched gate.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 26, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventors: Hong Chang, Sung-Shan Tai, Tiesheng Li, Yu Wang
  • Patent number: 7898029
    Abstract: The semiconductor device includes a P-type semiconductor region and an MOS transistor. MOS transistor includes a gate electrode, a collector electrode, a drain electrode, an N-type impurity region and a P-type impurity region. N-type impurity region is electrically connected to the drain electrode. P-type impurity region is electrically connected to the collector electrode. P-type impurity region is electrically connected to the drain electrode. The semiconductor device further includes an N-type impurity region and an electrode. N-type impurity region is electrically connected to the gate electrode. The electrode is formed on the P-type semiconductor region with an insulating film therebetween, and is electrically connected to gate electrode. Thereby, an element footprint can be reduced while maintaining characteristics.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: March 1, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohide Terashima
  • Patent number: 7871867
    Abstract: A semiconductor device is disclosed that comprises a high breakdown voltage MOSFET. The MOSFET includes a source region of a second conductivity type and a drain region of the second conductivity type formed apart from each other in a well region of a first conductivity type, a channel region formed between the source region and the drain region, a gate insulation film formed on the channel region, a LOCOS oxide film having greater film thickness than the gate insulation film, and a gate electrode formed across the gate insulation film and the LOCOS oxide film.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 18, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Naohiro Ueda, Masato Kijima
  • Patent number: 7868396
    Abstract: A power semiconductor component includes a drift zone in a semiconductor body, a component junction and a compensation zone. The component junction is disposed between the drift zone and a further component zone, which is configured such that when a blocking voltage is applied to the component junction, a space charge zone forms extending generally in a first direction in the drift zone. The compensation zone is disposed adjacent to the drift zone in a second direction and includes at least one high-dielectric material having a temperature-dependent dielectric constant. The temperature dependence of the compensation zone varies in the second direction.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Rueb, Franz Hirler
  • Patent number: 7863682
    Abstract: A semiconductor device having a junction barrier Schottky diode includes: a SiC substrate; a drift layer on the substrate; an insulation film on the drift layer having an opening in a cell region; a Schottky barrier diode having a Schottky electrode contacting the drift layer through the opening of the insulation film and an ohmic electrode on the substrate; a terminal structure having a RESURF layer surrounding the cell region; and multiple second conductive type layers on an inner side of the RESURF layer. The second conductive type layers and the drift layer provide a PN diode. The Schottky electrode includes a first Schottky electrode contacting the second conductive type layers with ohmic contact and a second Schottky electrode contacting the drift layer with Schottky contact.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 4, 2011
    Assignee: Denso Corporation
    Inventors: Eiichi Okuno, Takeo Yamamoto
  • Publication number: 20100327349
    Abstract: In a semiconductor device having an LDMOSFET, a source electrode is at the back surface thereof. Therefore, to reduce electric resistance between a source contact region in the top surface and the source electrode at the back surface, a poly-silicon buried plug is provided which extends from the upper surface into a P+-type substrate through a P-type epitaxial layer, and is heavily doped with boron. Dislocation occurs in a mono-crystalline silicon region around the poly-silicon buried plug to induce a leakage failure. The semiconductor device has a silicon-based plug extending through the boundary surface between first and second semiconductor layers having different impurity concentrations. At least the inside of the plug is a poly-crystalline region. Of the surface of the poly-crystalline region, the portions located on both sides of the foregoing boundary surface in adjacent relation thereto are each covered with a solid-phase epitaxial region.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 30, 2010
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroyuki ARIE, Nobuaki UMEMURA, Nobuyoshi HATTORI, Nobuto NAKANISHI, Kimio HARA, Kyoya NITTA, Makoto ISHIKAWA
  • Patent number: 7851883
    Abstract: This invention aims at providing an inexpensive semiconductor device having a parasitic diode and lowering an hfe of a parasitic PNP transistor and a manufacturing method thereof. Such semiconductor device includes a P-type silicon substrate and a gate electrode formed above the P-type silicon substrate. The P-type silicon substrate includes an N-type well layer, an N-type buried layer, a P-type body layer, an N-type source layer formed in the P-type body layer, and a drain contact layer formed in the N-type well layer. The P-type body layer and the N-type source layer are formed by self alignment that uses the gate electrode as a mask. The N-type drain contact layer is formed opposite the N-type source layer across the P-type body layer formed below the gate electrode. The N-type buried layer is formed below the P-type body layer.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaki Inoue, Akira Ohdaira
  • Patent number: 7825467
    Abstract: A description is given of a normally on semiconductor component having a drift zone, a drift control zone and a drift control zone dielectric arranged between the drift zone and the drift control zone.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 2, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Anton Mauder, Franz Hirler
  • Patent number: 7824989
    Abstract: A method for forming a field effect transistor (FET) device includes forming a gate conductor over a semiconductor substrate; forming a source region, the source region having a source extension that overlaps and extends under the gate conductor; and forming a drain region, the drain region having a drain extension that overlaps and extends under the gate conductor at selected locations along the width of the gate; and the drain region further comprising a plurality of recessed areas corresponding to areas where the drain extension does not overlap and extend under the gate conductor, wherein the plurality of recessed areas is formed only in the drain region.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Patent number: 7816733
    Abstract: A semiconductor device having a JBS diode includes: a SiC substrate; a drift layer on the substrate; an insulation film on the drift layer having an opening in a cell region; a Schottky barrier diode having a Schottky electrode contacting the drift layer through the opening and an ohmic electrode on the substrate; a terminal structure having a RESURF layer in the drift layer surrounding the cell region; and multiple second conductive type layers in the drift layer on an inner side of the RESURF layer contacting the Schottky electrode. The second conductive type layers are separated from each other. The second conductive type layers and the drift layer provide a PN diode. Each second conductive type layer has a depth larger than the RESURF layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: October 19, 2010
    Assignee: DENSO CORPORATION
    Inventors: Eiichi Okuno, Takeo Yamamoto
  • Patent number: 7785980
    Abstract: An object of the present inventions is to overcome a problem that the presence of a metal film, which is opaque to a visible light, between a lower layer alignment mark and a photoresist prevents the detection of the lower layer alignment mark, to make the pattern formation difficult. In the present inventions, an insulating film is placed beneath the alignment mark in structure; an alignment mark consisting of said multi-layered film comprising an alignment mark layer and the insulating film, which constitutes a stepped part with an increased difference in level, is first formed, inside a mark hole, in a manner of self-alignment; and then the metal film which is the very cause of the above problem is formed thereon. Since the metal film itself has a stepped shape corresponding to the alignment mark, alignment can be made with great accuracy.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Kazushi Suzuki
  • Patent number: 7781828
    Abstract: An integrated semiconductor with lateral thermal insulation is disclosed. In one embodiment, the chip has, on a common substrate, at least one power semiconductor circuit region and, laterally adjacent to the power semiconductor circuit region, at least one further temperature-sensitive semiconductor circuit region, interspaces being maintained between the circuit regions. At least one thermally insulating trench is provided at least in each interspace in each case between power semiconductor circuit region(s) and temperature-sensitive semiconductor circuit region(s), which at least one thermally insulating trench extends into the depth of the chip right into the substrate and in the longitudinal direction of the chip at least over a lateral side of the at least one power semiconductor circuit region and/or the temperature-sensitive semiconductor circuit region and is either unfilled or filled with a thermally insulating filling material.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 24, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Matthias Stecher
  • Patent number: 7781834
    Abstract: A semiconductor device includes a gate electrode over a semiconductor substrate, wherein the gate electrode has a gate width direction; a source/drain region in the semiconductor substrate and adjacent the gate electrode, wherein the source/drain region has a first width in a direction parallel to the gate width direction; and a bulk pick-up region in the semiconductor substrate and abutting the source/drain region. The bulk pick-up region and the source/drain region have opposite conductivity types. The bulk pick-up region has a second width in the width direction, and wherein the second width is substantially less than the first width.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-San Wei, Kuo-Ming Wu, Jian-Hsing Lee
  • Patent number: 7763936
    Abstract: A lateral MOS device is formed in a body having a surface and is formed by a semiconductor layer of a first conductivity type; a drain region of a second conductivity type, formed in the semiconductor layer and facing the surface; a source region of the second conductivity type, formed in the semiconductor layer and facing the surface; a channel of the first conductivity type, formed in the semiconductor layer between the drain region and the source region and facing the surface; and an insulated gate region, formed on top of the surface over the channel region. In order to improve the dynamic performance, a conductive region extends only on one side of the insulated gate region, on top of the drain region but not on top of the insulated gate region.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 27, 2010
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Antonello Santangelo, Salvatore Cascino, Leonardo Gervasi
  • Patent number: 7763929
    Abstract: A nonvolatile semiconductor memory device includes floating gates, source areas, drain areas, word lines, diffusion layers, source lines and shield wires. The source area is shared by the floating gates adjacent to each other in a column direction. The drain area faces the source area in the column direction with the floating gate. The drain area is wider than the source area in the column direction. The diffusion layer is formed on an inner wall of a trench made between the source areas adjacent to each other in the same row direction and electrically connects the adjacent source areas together. The source line is formed of the source area and diffusion layer on the same row. The shield wire is disposed on and along the source line. A top surface of the shield wire is lower than that of the floating gate adjacent to the shield wire.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Sakagami
  • Patent number: 7750396
    Abstract: A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed in the upper part of the semiconductor substrate so as to be spaced; a channel region formed in a part of the semiconductor substrate between the source region and the drain region; a first dielectric film formed on the channel region of the semiconductor substrate; a second dielectric film formed on the first dielectric film and having a higher permittivity than the first dielectric film; a third dielectric film formed on at least an end surface of the second dielectric film near the drain region out of end surfaces of the second dielectric film near the source and drain regions; and a gate electrode formed on the second dielectric film and the third dielectric film.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventor: Yoshinori Takami
  • Patent number: 7736981
    Abstract: A transistor is provided. The transistor includes a silicon layer including a source region and a drain region. A gate stack is disposed on the silicon layer between the source region and the drain region. The gate stack comprises a first layer of a high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. A lateral extent of the second layer of the gate stack is substantially greater than a lateral extent of the third layer of the gate stack. Also provided are methods for fabricating such a transistor.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 7737494
    Abstract: A semiconductor device includes a semiconductor layer with an impurity of a first conductivity type diffused therein, and a local insulating layer, source layer, and a drain layer formed therein. The drain layer has an impurity of a second conductivity type opposite to the first conductivity type. A gate electrode is formed over the semiconductor layer extending from over the local insulating layer to the source layer. A low-concentration diffusion layer is formed in the semiconductor layer below the drain layer. First and second gate insulating films are formed between the gate electrode and the semiconductor layer, and respectively extending from an end, on the source layer side, of the gate electrode to the local insulating layer without reaching the local insulating layer, and extending from an end on another side of the local insulting layer to the source layer.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 15, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hiroyuki Tanaka
  • Patent number: 7736977
    Abstract: An object of the present invention is to provide a semiconductor device capable of radiating electron-beams only to a desired region without forming a layer for restricting the radiating rays. A source electrode 22 made of aluminum prevents the generation of bremsstrahlung even when the electron-beams are radiated to the source electrode in a exposed condition. Also, the source electrode having an opening 25 at above of a crystal defect region 11 is used as a mask when the electron-beams are radiated thereto. That is the source electrode made of aluminum can be used both as a wiring and a mask for the radiating rays.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: June 15, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 7696535
    Abstract: A gallium nitride high electron mobility transistor, in which an inner field-plate is disposed between the gate and drain of the high electron mobility transistor, so that an electric field is distributed between gate and drain regions to reduce a peak value and to reduce gate leakage current while maintaining high frequency performance, thus obtaining a high breakdown voltage, reducing the capacitance between the gate and the drain attributable to a shielding effect, and improving linearity and high power and high frequency characteristics through variation in the input voltage of the inner field-plate.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: April 13, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Kyounghoon Yang, Sungsik Lee, Kiwon Lee, Kwangui Ko
  • Patent number: 7642596
    Abstract: An insulated gate field effect transistor has a drain region (2,4), a body region (6) of opposite conductivity type and a source region (8) and an insulated gate (14) extending laterally over the body region (6), defining a channel region (30) extending in the body region (6) from a source end adjacent to the source region (8) to a drain end adjacent to a drain end part (26) of the drain region (4). A conductive shield plate (22) is provided adjacent to the drain end for shielding the gate. Embodiments include a shield plate extension (32) extending over the drain region from the shield plate (22) towards the gate (14).
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 5, 2010
    Assignee: NXP B.V.
    Inventor: Steven T. Peake
  • Patent number: 7589389
    Abstract: A semiconductor device comprising: a base layer of a first conductivity type selectively formed above a semiconductor substrate; a gate electrode formed on the base layer via the insulating film; a source layer of a second conductivity type selectively formed at a surface of the base layer at one side of the gate electrode; an channel implantation layer selectively formed at the surface of the base layer so as to be adjacent to the source layer below the gate electrode, the channel implantation layer having a higher concentration than the base layer; a RESURF layer of the second conductivity type selectively formed at the surface of the base layer at the other side of the gate electrode; and a drain layer of a second conductivity type being adjacent to the RESURF layer, a portion of the drain layer overlapping the base layer, and the drain layer having a higher concentration than the RESURF layer.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: September 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Matsudai, Norio Yasuhara
  • Patent number: 7573097
    Abstract: The specification describes an improved mechanical electrode structure for MOS transistor devices with elongated runners. It recognizes that shrinking the geometry increases the likelihood of mechanical failure of comb electrode geometries. The mechanical integrity of a comb electrode is improved by interconnecting the electrode fingers in a cross-connected grid. In one embodiment, the transistor device is interconnected with gate fingers on a lower metaliization level, typically the first level metal, with the drain interconnected at a higher metal level. That allows the drain fingers to be cross-connected with a vertical separation between drain and gate comb electrodes. The cross-connect members may be further stabilized by adding beam extensions to the cross-connect members. The beam extensions may be anchored in an interlevel dielectric layer for additional support.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: August 11, 2009
    Assignee: Agere Systems Inc.
    Inventors: John C. Desko, Roger A. Fratti, Vivian Ryan
  • Patent number: 7569900
    Abstract: A semiconductor device includes an SiC substrate, an SiC layer of a first conductivity type disposed on the upper surface of the SiC substrate, a first SiC region of a second conductivity type disposed on the SiC layer, a second SiC region of the first conductivity type disposed on a surface region of the first SiC region, including a nitrogen-added first sub-region and a phosphorus-added second sub-region disposed in contact with the first sub-region, a gate insulating film disposed to extend over the SiC layer, first SiC region, and first sub-region of the second SiC region, a gate electrode formed on the gate insulating film, a first electrode formed on the second sub-region of the second SiC region and the first SiC region, and a second electrode formed on the lower surface of the SiC substrate.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 4, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiji Imai, Takashi Shinohe
  • Patent number: 7554154
    Abstract: This invention discloses bottom-source lateral diffusion MOS (BS-LDMOS) device. The device has a source region disposed laterally opposite a drain region near a top surface of a semiconductor substrate supporting a gate thereon between the source region and a drain region. The BS-LDMOS device further has a combined sinker-channel region disposed at a depth in the semiconductor substrate entirely below a body region disposed adjacent to the source region near the top surface wherein the combined sinker-channel region functioning as a buried source-body contact for electrically connecting the body region and the source region to a bottom of the substrate functioning as a source electrode. A drift region is disposed near the top surface under the gate and at a distance away from the source region and extending to and encompassing the drain region.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: June 30, 2009
    Assignee: Alpha Omega Semiconductor, Ltd.
    Inventor: François Hébert
  • Patent number: 7528443
    Abstract: A semiconductor device includes a substrate having a recess, a gate electrode in the recess in the substrate, and a source electrode and a drain electrode disposed on opposite sides of the gate electrode. An insulating film is on at least on a surface of the gate electrode and a portion in the recess, other than where the gate electrode is located, and a shield electrode connected to the source electrode is located on a portion of the insulating film between the gate electrode and the drain electrode.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 5, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tetsuo Kunii, Yoshitsugu Yamamoto, Hirotaka Amasuga
  • Patent number: 7521756
    Abstract: A lateral DMOS transistor is disclosed that includes a first region of a first conductivity type, which is surrounded on the sides by a second region of a second conductivity type, whereby a boundary line between both regions has opposite straight sections and curved sections linking the straight sections, and with a first dielectric structure, which serves as a field region and is embedded in the first region and surrounds a subregion of the first region. Whereby the first distance between the first dielectric structure and the boundary line is greater along the straight sections than along the curved sections.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 21, 2009
    Assignee: Atmel Germany GmbH
    Inventors: Franz Dietz, Michael Graf, Stefan Schwantes
  • Patent number: 7521759
    Abstract: A semiconductor structure includes (a) a semiconductor substrate having a channel region and a first integrated impurity diffusion region including a first electric field reduction region that is formed adjacent to the channel region and which includes a plurality of specific regions separated from each other, (b) a first insulating film formed on the semiconductor substrate, and (c) a first electrode structure having a first region formed above the channel region and a second region that is formed adjacent to the first region and above the first electric field reduction region to be self-aligned with the first electric field reduction region, the semiconductor structure including one or more openings formed above the plurality of specific regions and a first opening surrounding portion surrounding the one or more openings.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: April 21, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Katsuhito Sasaki
  • Patent number: 7511340
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo
  • Publication number: 20090065862
    Abstract: A semiconductor device comprising: a base layer of a first conductivity type selectively formed above a semiconductor substrate; a gate electrode formed on the base layer via the insulating film; a source layer of a second conductivity type selectively formed at a surface of the base layer at one side of the gate electrode; an channel implantation layer selectively formed at the surface of the base layer so as to be adjacent to the source layer below the gate electrode, the channel implantation layer having a higher concentration than the base layer; a RESURF layer of the second conductivity type selectively formed at the surface of the base layer at the other side of the gate electrode; and a drain layer of a second conductivity type being adjacent to the RESURF layer, a portion of the drain layer overlapping the base layer, and the drain layer having a higher concentration than the RESURF layer.
    Type: Application
    Filed: November 4, 2008
    Publication date: March 12, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoko MATSUDAI, Norio Yasuhara
  • Patent number: 7495286
    Abstract: A high-voltage semiconductor device structure is provided, which includes a drain structure having two curved structures that are insulatedly adjacent to each other and alternatively arranged, and a source structure, a drain extension structure, and a gate structure formed between the two curved structures. By using the curved structures with alternatively arranged configuration, an electrode terminal with a small curvature radius is prevented from being produced, and the electric field accumulation effect is partially eliminated, thereby increasing the breakdown voltage. Meanwhile, the curved structure with alternatively arranged configuration not only reduces the ON resistance, but also utilizes the space effectively, thus, the integration of the semiconductor device on the chip is enhanced, so that the miniaturization requirement of an electronic device is satisfied.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: February 24, 2009
    Assignee: Leadtrend Technology Corp.
    Inventor: Chi-Hsiang Lee
  • Patent number: 7492005
    Abstract: This invention discloses an improved trenched metal oxide semiconductor field effect transistor (MOSFET) device that includes a trenched gate surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a substrate. The MOSFET cell further includes a shielded gate trench (SGT) structure below and insulated from the trenched gate. The SGT structure is formed substantially as a round hole having a lateral expansion extended beyond the trench gate and covered by a dielectric liner layer filled with a trenched gate material. The round hole is formed by an isotropic etch at the bottom of the trenched gate and is insulated from the trenched gate by an oxide insulation layer. The round hole has a lateral expansion beyond the trench walls and the lateral expansion serves as a vertical alignment landmark for controlling the depth of the trenched gate.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 17, 2009
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Hong Chang, Sung-Shan Tai, Tiesheng Li, Yu Wang
  • Patent number: 7476947
    Abstract: A semiconductor device is disclosed that comprises a high breakdown voltage MOSFET. The MOSFET includes a source region of a second conductivity type and a drain region of the second conductivity type formed apart from each other in a well region of a first conductivity type, a channel region formed between the source region and the drain region, a gate insulation film formed on the channel region, a LOCOS oxide film having a greater film thickness than the gate insulation film and formed adjacent to the gate insulation film, and a gate electrode formed across the gate insulation film and the LOCOS oxide film.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 13, 2009
    Assignee: Ricoh Company, Ltd
    Inventors: Naohiro Ueda, Masato Kijima
  • Patent number: 7459751
    Abstract: Disclosed is an insulated gate semiconductor device including a first region having a gate electrode region and a first insulating film region surrounding the gate electrode region; a semiconductor region which includes a channel forming region and is disposed to oppose the gate electrode region with the first insulating film region between them; and a second region which has a conductor region buried in a semiconductor region not including the channel forming region disposed to oppose the gate electrode region with the first insulating film region between them, and has a second insulating film region which separates the conductor region from the semiconductor region.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Sugiyama
  • Patent number: 7432189
    Abstract: A method for reducing capacitances between semiconductor device wirings is provided. A sacrificial layer is formed over a dielectric layer. A plurality of features are etched into the sacrificial layer and dielectric layer. The features are filled with a filler material. The sacrificial layer is removed, so that parts of the filler material remain exposed above a surface of the dielectric layer, where spaces are between the exposed parts of the filler material, where the spaces are in an area formerly occupied by the sacrificial layer. Widths of the spaces between the parts of the filler material are shrunk with a shrink sidewall deposition. Gaps are etched into the dielectric layer through the shrink sidewall deposition. The filler material and shrink sidewall deposition are removed.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 7, 2008
    Assignee: Lam Research Corporation
    Inventors: S. M. Reza Sadjadi, Zhi-Song Huang
  • Patent number: 7427795
    Abstract: Drain-extended MOS transistors (T1, T2) and semiconductor devices (102) are described, as well as fabrication methods (202) therefor, in which a p-buried layer (130) is formed prior to formation of epitaxial silicon (106) over a substrate (104), and a drain-extended MOS transistor (T1, T2) is formed in the epitaxial silicon layer (106). The p-buried layer (130) may be formed above an n-buried layer (120) in the substrate (104) for high-side driver transistor (T2) applications, wherein the p-buried layer (130) extends between the drain-extended MOS transistor (T2) and the n-buried layer (120) to inhibit off-state breakdown between the source (154) and drain (156).
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 23, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 7420247
    Abstract: A LDMOS transistor comprises a trench formed through the epitaxial layer at least to the top surface of the substrate, the trench having a bottom surface and a sidewall contacting the source region and the portion of the channel region extending under the source region. A first insulating layer is formed over the upper surface and sidewall surfaces of the conductive gate. A continuous layer of conductive material forming a source contact and a gate shield electrode is formed along the bottom surface and the sidewall of the trench and over the first insulating layer to cover the top and sidewall surfaces of the conductive gate. A second insulating layer is formed over an active area of the transistor, including over the continuous layer of conductive material and filling the trench. A drain electrode can extend over the second insulating layer to substantially cover the active area.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: September 2, 2008
    Assignee: Cicion Semiconductor Device Corp.
    Inventors: Shuming Xu, Jacek Korec
  • Publication number: 20080179670
    Abstract: A component arrangement including a MOS transistor having a field electrode is disclosed. One embodiment includes a gate electrode, a drift zone and a field electrode, arranged adjacent to the drift zone and dielectrically insulated from the drift zone by a dielectric layer a charging circuit, having a rectifier element connected between the gate electrode and the field electrode.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 31, 2008
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler
  • Publication number: 20080173940
    Abstract: A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 24, 2008
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, Volker Dudek, Michael Graf
  • Patent number: 7402875
    Abstract: Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Suman Datta, Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Gilbert Dewey, Mark L. Doczy, Robert S. Chau
  • Patent number: 7382030
    Abstract: The present invention relates to a semiconductor device having an integrated metal shield. The shield, created as part of a MOSFET, is formed about a gate electrode of the MOSFET to effectively reduce drain-to-gate capacitance and increase breakdown voltage. The shield consists of a metallic shield contact via and a source contact extension. The metallic shield contact via, formed between the gate electrode and a drain region of the MOSFET, may be either a series of closely spaced vias or a wide continuous via. The metallic shield contact via is isolated from the surface of a semiconductor wafer by a shield isolation layer at one end. The metallic shield contact via is electrically coupled to the source contact extension at the other end. The source contact extension is metallic, and may be formed from the same metal used to create a source contact and a drain contact for the MOSFET.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 3, 2008
    Assignee: RF Micro Devices, Inc.
    Inventors: Tony Ivanov, Michael Carroll, Triet Dinh, Julio Costa
  • Patent number: 7374982
    Abstract: A high voltage MOS transistor with a gate extension that has a reduced electric field in the drain region near the gate is provided. The high voltage MOS transistor includes a first and second gate layers, and a dielectric layer between the gate layers. The first and second gate layers are electrically coupled togther and form the gate of the transistor. The second gate layer extends over the drain of the transistor above the dielectric and gate oxide layers to form the gate extension. The gate extension reduces the peak electric field in the drain by providing a wide area for the voltage to drop between the drain and the gate of the transistor. The dielectric layer also reduces the peak electric field in the drain near the gate by providing insulation between the gate and the drain. A lower electric field in the drain reduces the impact generation rate of carriers.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 20, 2008
    Assignee: Linear Technology Corporation
    Inventor: Francois Hebert
  • Patent number: 7372128
    Abstract: The invention discloses an integrated circuit anti-interference outline structure for applications of integrated circuits capable of shielding the integrated circuit from invasions of external electromagnetic waves and leaks of internal electromagnetic waves, wherein the integrated circuit anti-interference outline structure surrounds a periphery of a partial circuit within the integrated circuit and comprises a plurality of PNP structures. At a surface of the integrated circuits are two metal strips for producing a parasitic capacitance at poly layers in order to control noises within acceptable ranges. On a P-substrate therein is disposed with a deep N-well layer for connecting to an N-terminal of an N-well layer, so as to produce a positive voltage zone having a large area, and thus having noise currents overflow from a ground terminal as well as preventing the integrated circuit from invasions and leaks of electromagnetic waves.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: May 13, 2008
    Assignee: Alcor Micro, Corp.
    Inventors: Jean-Jen Cheng, Pei-Sung Chuang
  • Patent number: 7372736
    Abstract: A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 13, 2008
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter W. Lee, Fu-Chang Hsu, Hsing-Ya Tsao, Han-Rei Ma
  • Patent number: 7355245
    Abstract: A field effect transistor (FET) device includes a gate conductor formed over a semiconductor substrate, a source region having a source extension that overlaps and extends under the gate conductor, and a drain region having a drain extension that overlaps and extends under the gate conductor only at selected locations along the width of the gate conductor.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Patent number: 7345340
    Abstract: A semiconductor integrated circuit that has a quick response to changes in source/drain electrode voltage having an LDMOS transistor. The transistor has a second conduction type first well region formed in a first conduction type semiconductor substrate; a first conduction type second well region formed in the first well region; a second conduction type third well region formed in the second well region; a drain region formed in the second well region; a source region formed in the third well region; a gate electrode formed through a gate insulating film over the third well region between the drain region and the source region; and an insulating layer formed between the gate electrode and the drain region. Parasitic capacitances between the semiconductor substrate and the source region and those between the substrate and the drain region are respectively in series.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: March 18, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Mitsuharu Hitani, Toshio Nagasawa, Akihiro Tamura
  • Patent number: 7307314
    Abstract: A LDMOS transistor having a gate shield provides reduced drain coupling to the gate shield and source by restricting the thickness of the gate shield and by confining a source contact to the source region without overlap of the gate.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: December 11, 2007
    Assignee: Cree Microwave LLC
    Inventors: Jeff Babcock, Johan Agus Darmawan, John Mason, Ly Diep