With Means (other Than Self-alignment Of The Gate Electrode) To Decrease Gate Capacitance (e.g., Shield Electrode) Patents (Class 257/340)
  • Patent number: 7304356
    Abstract: A multiple-cell insulated-gate-bipolar-transistor chip is disclosed which includes a semiconductor substrate having formed therein a p+-type collector region and an n?-type base region, with a pn junction therebetween. An annular trench is etched in the substrate so as to surround the array of IGBT cells. Received in the trench are a dielectric layer which is held against the base region, and an electroconductive layer which is held against the base region via the dielectric layer and which is electrically coupled to the collector region. When the pn junction between the collector and base regions is reverse biased, the electroconductive layer creates at the annular periphery of the base region a depletion layer which is joined to a depletion layer created in the base region by the pn junction, thereby preventing current leakage from the side surfaces of the IGBT chip.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 4, 2007
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Tetsuya Takahashi
  • Patent number: 7294885
    Abstract: The invention relates to a field effect controllable semiconductor component, comprising a semiconductor body with a first terminal zone and a second terminal zone, a channel zone formed between the two terminal zones, a control electrode, and also a plurality of compensation zones. The semiconductor component furthermore has additional doping zones which are arranged in spatial proximity to the compensation zones or in a manner merged therewith. The additional doping zones are connected to the first terminal zone, if appropriate via a series diode.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 13, 2007
    Assignee: Infineon Technologies AG
    Inventors: Nada Tihanyi, legal representative, Jenö Tihanyi, deceased
  • Patent number: 7283401
    Abstract: A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 16, 2007
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter W. Lee, Fu-Chang Hsu, Hsing-Ya Tsao, Han-Rei Ma
  • Patent number: 7276764
    Abstract: An object of the present invention is to provide a semiconductor device capable of radiating electron-beams only to a desired region without forming a layer for restricting the radiating rays. A source electrode 22 made of aluminum prevents the generation of bremsstrahlung even when the electron-beams are radiated to the source electrode in a exposed condition. Also, the source electrode having an opening 25 at above of a crystal defect region 11 is used as a mask when the electron-beams are radiated thereto. That is the source electrode made of aluminum can be used both as a wiring and a mask for the radiating rays.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: October 2, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 7265415
    Abstract: In one embodiment of the present invention, a trench MOS-gated transistor includes a first region of a first conductivity type forming a pn junction with a well region of a second conductivity type. The well region has a flat bottom portion and a portion extending deeper than the flat bottom portion. A gate trench extends into the well region. Channel regions extend in the well region along outer sidewalls of the gate trench. The gate trench has a first bottom portion which terminates within the first region, and a second bottom portion which terminates within the deeper portion of the well region such that when the transistor is in an on state the deeper portion of the well region prevents a current from flowing through those channel region portions located directly above the deeper portion of the well region.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: September 4, 2007
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Praveen Muraleedharan Shenoy, Christopher Boguslaw Kocon
  • Patent number: 7253482
    Abstract: A field effect transistor (FET) device includes a gate conductor formed over a semiconductor substrate, a source region having a source extension that overlaps and extends under the gate conductor, and a drain region having a drain extension that overlaps and extends under the gate conductor only at selected locations along the width of the gate conductor.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Patent number: 7253486
    Abstract: In one example embodiment, a transistor (100) is provided. The transistor (100) comprises a source (10), a gate (30), a drain (20), and a field plate (40) located between the gate (30) and the drain (20). The field plate (40) comprises a plurality of connection locations (47) and a plurality of electrical connectors (45) connecting said plurality of connection locations (47) to a potential.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: August 7, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Ellen Lan, Phillip Li
  • Patent number: 7235849
    Abstract: The semiconductor device comprises a silicon substrate 10 having a device region 11, a transistor including a gate electrode 20 formed in the device region 11 with the gate insulation film 14 formed therebetween, and a dummy metal layer 52 formed over the gate electrode 20 with an inter-layer insulation film 32 formed therebetween, formed of a metal material having the property of occluding hydrogen and having a peripheral part positioned outer of a region where the region for the gate electrode 20 formed in and the device region 11 overlap each other.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: June 26, 2007
    Assignee: Fujitsu Limited
    Inventor: Masatoshi Takami
  • Patent number: 7184293
    Abstract: A crosspoint-type ferroelectric memory is provided. In the crosspoint-type ferroelectric memory, a first memory cell array and a second memory cell array are stacked with a first interlayer insulating layer and a second interlayer insulating layer therebetween. The first memory cell array includes lower electrodes formed in stripes, upper electrodes formed in stripes in a direction that crosses the lower electrodes, ferroelectric capacitors that are disposed at least at intersecting parts of the lower electrodes and the upper electrodes, and an embedded insulating layer formed between the ferroelectric capacitors. The interlayer insulating layer includes a conductive layer between a first insulating layer and a second insulating layer.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 27, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Kazumasa Hasegawa, Hiroyuki Aizawa
  • Patent number: 7126186
    Abstract: A compensation component and a process for production thereof includes a semiconductor body having first and second electrodes, a drift zone disposed therebetween, and areas of a first conductivity type and a second conductivity type opposite the first conductivity type disposed in the drift zone. Higher doped zones of the first type are inlaid in a weaker doped environment of the second type closer to the first electrode and higher doped zones of the second type are inlaid in a weaker doped environment of the first type closer to the second electrode. The drift zone is complementary so that, in a direction between the electrodes, a more highly doped zone of the first type adjoins a more weakly doped environment of the first type, and a more weakly doped environment of the second type adjoins a more highly doped zone of the second type.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 24, 2006
    Assignee: Infineon Technolgies AG
    Inventors: Hans Weber, Armin Willmeroth, Uwe Wahl, Markus Schmitt
  • Patent number: 7122470
    Abstract: A semiconductor device having a gate electrode free from increasing of resistance of the gate electrode, from decreasing of capacitance of the insulation film due to depletion, and from penetrating of impurity. The semiconductor device includes a silicon layer, a gate insulating film formed on the silicon layer, a metal boron compound layer formed on the gate insulating film, and a gate electrode formed on the metal boron compound layer and containing at least silicon.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 17, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Akira Nishiyama
  • Patent number: 7119415
    Abstract: A monolithically integrated circuit comprises a thin film resistor (8) with low resistance and low temperature coefficient; a high frequency lateral power transistor device (9) including gate (17), source (16) and drain (15) regions, and a Faraday shield layer region (22; 22?) above the gate region; and at least a first metallization layer (28) there above for electrical connection of the gate (17), source (16) and drain (15) regions through via holes filled with conductive material (29c–d). The thin film resistor (8) and the Faraday shield layer region (22; 22?) are made in the same conductive layer, which is arranged below the first metallization layer (28).
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: October 10, 2006
    Assignee: Infineon Technologies AG
    Inventors: Hans Norström, Ted Johansson
  • Patent number: 7115946
    Abstract: A semiconductor device includes a semiconductor region of a first conductivity type, a drain region of the first conductivity type, an offset region of the first conductivity type, a body region of the second conductivity type, a source region of the first conductivity type, a gate insulating film and a gate electrode. The drain region is provided in a surface of the semiconductor region and is shaped like a stripe. The offset region is provided in the surface of the semiconductor region and surrounds the drain region. The body region is provided in the surface of the semiconductor region and surrounds the offset region. The source region is provided in a surface of the body region and surrounds the offset region. The gate insulating film is provided on a part of the body region. The gate electrode is provided on the gate insulating film.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: October 3, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusuke Kawaguchi, Kazutoshi Nakamura, Akio Nakagawa
  • Patent number: 7087958
    Abstract: In one embodiment of the invention, a semiconductor device set includes at least one trench-typed MOSFET and a trench-typed termination structure. The trench-typed MOSFET has a trench profile and includes a gate oxide layer in the trench profile, and a polysilicon layer on the gate oxide layer. The trench-typed termination structure has a trench profile and includes an oxide layer in the trench profile. A termination polysilicon layer with discrete features separates the termination polysilicon layer. An isolation layer covers the termination polysilicon layer and filling the discrete features. The trench-typed MOSFET and the trench-typed termination structure may be formed on a DMOS device including an N+ silicon substrate, an N epitaxial layer on the N+ silicon substrate, and a P epitaxial layer on the N epitaxial layer. The trench profiles of the trench-typed MOSFET and of the trench-typed termination structure may penetrate through the P epitaxial layer into the N epitaxial layer.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: August 8, 2006
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Hsing-Huang Hsieh
  • Patent number: 7064391
    Abstract: A supporting structure is wafer-bonded to the upper face side of a partially or fully processed device wafer. The device wafer includes a transistor having a well region that extends into the substrate material of the device wafer. The source and drain regions of the transistor extend into the well region. After attachment of the supporting structure, the device wafer is thinned from the back side until the bottom of the well region is reached. To reduce source and drain junction capacitances, etching can continue until the source and drain regions are reached. In one embodiment, all of the well-to-substrate junction is removed in a subsequent etching step, thereby reducing or eliminating the well-to-substrate junction capacitance of the resulting transistor. Resistance between the well electrode and the transistor channel is reduced because the well contact is disposed on the back side of the device wafer directly under the transistor gate.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: June 20, 2006
    Assignee: XILINX, Inc.
    Inventor: Robert O. Conn
  • Patent number: 7064978
    Abstract: A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: June 20, 2006
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter W. Lee, Fu-Chang Hsu, Hsing-Ya Tsao, Han-Rei Ma
  • Patent number: 7053449
    Abstract: A double gate MOSFET having a control gate and a signal gate. The effective threshold voltage seen by the signal gate may be modified by charging the control gate. The effective threshold voltage may be increased in magnitude to reduce sub-threshold leakage current when the double gate MOSFET is inactive. When inactive, the control gate is maintained at a negative voltage for a double gate nMOSFET, and is maintained at a positive voltage for a double gate pMOSFET. When active, the control gate is charged to a voltage close to the threshold voltage, and then floated, so that a signal voltage applied to the signal gate may turn the double gate MOSFET ON during a signal voltage transition via the coupling capacitance between the signal and control gates.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: May 30, 2006
    Assignee: Intel Corporation
    Inventors: Jaume A. Segura, Ali Keshavarzi, Vivek K. De
  • Patent number: 7042048
    Abstract: Heightening of breakdown voltage of a trench gate type power MISFET is actualized without increasing the number of manufacturing steps. In the manufacturing method of the semiconductor device according to the present invention, p? type semiconductor region and p? type field limiting rings are formed in a gate line area simultaneously in one impurity ion implantation step so as to bring them into contact with a groove having a gate extraction electrode formed therein. Upon formation, supposing that the width of the gate extraction electrode disposed outside the groove is CHSP, and the resistivity of the n? type single crystal silicon layer 1B is ? (?·cm), the CHSP is set to satisfy the following equation: CHSP?3.80+0.148?.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: May 9, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Yoshito Nakazawa, Yuji Yatsuda
  • Patent number: 7005703
    Abstract: An MOS device includes a semiconductor layer comprising a substrate of a first conductivity type and a second layer of a second conductivity type formed on at least a portion of the substrate. First and second source/drain regions of the second conductivity type are formed in the second layer proximate an upper surface of the second layer, the second layer being spaced laterally from the first source/drain region. A gate is formed above the second layer proximate the upper surface of the second layer and at least partially between the first and second source/drain regions. The MOS device further includes at least one electrically conductive trench formed in the second layer between the gate and the second source/drain region, the trench being formed proximate the upper surface of the semiconductor layer and extending substantially vertically through the second layer to the substrate. The MOS device exhibits reduced HCI effects and/or improved high-frequency performance.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: February 28, 2006
    Assignee: Agere Systems Inc.
    Inventors: Muhammed Ayman Shibib, Shuming Xu
  • Patent number: 6998680
    Abstract: A semiconductor device, namely a lateral MOSFET, facilitates to reduce the on-resistance per unit area. The lateral MOSFET exhibiting a high breakdown voltage includes a semiconductor substrate of a first conductivity type, trenches formed in semiconductor substrate and aligned in the channel in the width direction of the MOSFET, a drain drift region of a second conductivity type surrounding the trenches from the side of the side walls and bottom walls thereof, an insulator in each trench, and a region doped with an impurity of the first conductivity type and extending between the trenches.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: February 14, 2006
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Akio Kitamura, Mutsumi Kitamura
  • Patent number: 6998679
    Abstract: A semiconductor device includes a gate electrode on a semiconductor substrate, a source electrode and a drain electrode that are provided on the semiconductor substrate, the gate electrode being interposed between the source electrode and the drain electrode, an insulating layer covering the gate electrode, and a source wall that extends from the source electrode and passes over the gate electrode, an end surface of the source wall being interposed between the gate electrode and the drain electrode and being located in a position lower than a top surface of the gate electrode.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: February 14, 2006
    Assignee: Fujitsu Quantum Devices Limited
    Inventors: Kazutaka Inoue, Hitoshi Haematsu
  • Patent number: 6998672
    Abstract: A memory cell having a source region, a drain region, a source-end control gate, a drain-end control gate, an injection gate arranged between the source-end control gate and the drain-end control gate, a source-end storage element arranged in the source-end control gate, and a drain-end storage element arranged in the drain-end control gate. To program the memory cell, a low electrical voltage is applied to the injection gate, and a high electrical voltage is applied to the control gates.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: February 14, 2006
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Josef Willer
  • Patent number: 6989567
    Abstract: A semiconductor transistor structure includes a substrate having an epitaxial layer, a source region extending from the surface of the epitaxial layer, a drain region within the epitaxial layer, a channel located between the drain and source regions, and a gate arranged above the channel. The drain region includes a first region for establishing a contact with an electrode, a second region being less doped than the first region being buried within the epitaxial layer and extending from the first region horizontally in direction towards the gate, a third region less doped than the second region and extending vertically from the surface of the epitaxial layer and horizontally from the second region until under the gate, a top layer extending from the surface of the epitaxial layer to the second region, and a bottom layer extending from the second region into the epitaxial layer.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: January 24, 2006
    Assignee: Infineon Technologies North America Corp.
    Inventors: Olof Tornblad, Gordon Ma
  • Patent number: 6977414
    Abstract: A semiconductor device comprises: a semiconductor layer of a first conductivity type; a pair of base regions of a second conductivity type selectively provided on a surface of the semiconductor layer; and source regions of a first conductivity type, each of the source regions being selectively provided on a surface of each of the base regions. The semiconductor device further comprises an electrical field reducing region of a second conductivity type selectively provided on the surface of the semiconductor layer between the pair of the base regions; a gate insulating film provided on the surface of the base regions; a pair of gate electrodes provided on the gate insulating film, each of the gate electrodes being provided on the surface of the base regions between the source region and the electrical field reducing region; and a source electrode connected to the source regions. The electrical field reducing region is isolated from both of the gate electrode and the source electrode.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: December 20, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutoshi Nakamura, Yoshihiro Yamaguchi, Yusuke Kawaguchi, Syotaro Ono, Akio Nakagawa
  • Patent number: 6958514
    Abstract: A semiconductor device comprises a semiconductor substrate, a semiconductor layer formed above the semiconductor substrate, a plurality of unit cells each having a structure with a gate electrode disposed and formed above the semiconductor layer to have a stripe-like shape and with a source layer and a drain layer formed in the semiconductor layer to have stripe-like shapes respectively, a gate wiring line for mutually connecting together respective gate electrodes of the unit cells, a first main electrode being formed on a dielectric film covering the gate electrodes and the gate wiring line and being in contact with any one of the source layer and the drain layer of each unit cell, an impurity diffusion layer formed in the semiconductor layer to a depth reaching the semiconductor substrate only at part immediately underlying the gate wiring line, the part being selected from part immediately underlying a remaining one of the source layer and the drain layer of each unit cell and part immediately underlying
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: October 25, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuya Nakayama, Bungo Tanaka, Nobuyuki Sato
  • Patent number: 6949797
    Abstract: A semiconductor structure comprises a substrate and a source region formed in the substrate. Further, a drain region is formed in the substrate. The drain region comprises a first drain portion with a first doping concentration and a second drain portion with a second doping concentration, which is lower than the first doping concentration. Between the source region and the second drain portion a channel region is defined. Further, a field plate is provided, which is disposed across the junction between the first drain portion and the second drain portion to reduce the gradient of the electrical field at the junction.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 27, 2005
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Krumbein, Hans Taddiken
  • Patent number: 6927453
    Abstract: An MOS device includes a semiconductor layer of a first conductivity type, a source region of a second conductivity type formed in the semiconductor layer, and a drain region of the second conductivity type formed in the semiconductor layer and spaced apart from the source region. A gate is formed proximate an upper surface of the semiconductor layer and at least partially between the source and drain regions. The MOS device further includes a buried LDD region of the second conductivity type formed in the semiconductor layer between the gate and the drain region, the buried LDD region being spaced laterally from the drain region, and a second LDD region of the first conductivity type formed in the buried LDD region and proximate the upper surface of the semiconductor layer. The second LDD region is self-aligned with the gate and spaced laterally from the gate such that the gate is non-overlapping relative to the second LDD region.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 9, 2005
    Assignee: Agere Systems Inc.
    Inventors: Muhammed Ayman Shibib, Shuming Xu
  • Patent number: 6921943
    Abstract: The present invention is directed to a built-in solution for soft error protection by forming an epitaxial layer with a graded dopant concentration. By grading a dopant concentration, starting from a first dopant concentration and ending with a second dopant concentration at the device layer, usually determined by the characteristics of the device to be built in the device layer, a constant electric field (?-field) results from the changing dopant concentration. The creation of this ?-field influences the stray, unwanted charges (or transient charges) away from critical device components. Charges that are created in the epitaxial layer are sweep downward, toward, and sometimes into, the substrate where they are absorbed, thus unable to cause a soft error in the device.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: July 26, 2005
    Assignee: GlobiTech Incorporated
    Inventors: Danny Kenney, Keith Lindberg, Curtis Hall, G. R. Mohan Rao
  • Patent number: 6917076
    Abstract: A semiconductor device and a method for manufacturing the same and method for deleting information in use of the semiconductor device, in which field shield isolation or a trench type isolation between elements is used with suppression of penetration of field oxide into element active region of the device, that is, a defect involved in conventional LOCOS type process, are disclosed. A non-LOCOS insulating device isolation block is formed in a semiconductor substrate. The non-LOCOS insulating device isolation block uses a field shield element isolation structure or trench type element isolation structure.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 12, 2005
    Assignee: United Microelectronics Corporation
    Inventors: Kohei Eguchi, Yuichi Egawa, Shoichi Iwasa, Hideki Fujikake, Wataru Yokozeki, Tatsuya Kawamata
  • Patent number: 6900502
    Abstract: A semiconductor device 10 includes a substrate 12 (e.g., a silicon substrate) with an insulating layer 14 (e.g., an oxide such as silicon dioxide) disposed thereon. A first semiconducting material layer 16 (e.g., SiGe) is disposed on the insulating layer 14 and a second semiconducting material layer 18 (e.g., Si) is disposed on the first semiconducting material layer 16. The first and second semiconducting material layers 16 and 18 preferably have different lattice constants such that the first semiconducting material layer 16 is compressive and the second semiconducting material layer is tensile 18.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 31, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Hu Ge, Chao-Hsuing Wang, Chien-Chao Huang, Wen-Chin Lee, Chenming Hu
  • Patent number: 6890804
    Abstract: A semiconductor device includes a substrate of a first conductivity type, an insulating layer formed on at least a portion of the substrate, and an epitaxial layer of a second conductivity type formed on at least a portion of the insulating layer. First and second source/drain regions of the second conductivity type are formed in the epitaxial layer proximate an upper surface of the epitaxial layer, the first and second source/drain regions being spaced laterally from one another. A gate is formed above the epitaxial layer proximate the upper surface of the epitaxial layer and at least partially between the first and second source/drain regions.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 10, 2005
    Assignee: Agere Systems, Inc.
    Inventors: Muhammed Ayman Shibib, Shuming Xu
  • Patent number: 6891223
    Abstract: Transistor configurations have trench transistor cells disposed along trenches in a semiconductor substrate with two or more electrode structures disposed in the trenches, and also metallizations are disposed above a substrate surface of the semiconductor substrate. The trenches extend into an inactive edge region of the transistor configuration and an electrically conductive connection between the electrode structures and corresponding metallizations are provided in the edge region.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: May 10, 2005
    Assignee: Infineon Technologies AG
    Inventors: Joachim Krumrey, Franz Hirler, Ralf Henninger, Martin Pölzl, Walter Rieger
  • Patent number: 6885041
    Abstract: A semiconductor device comprises: a channel region 14 of silicon, a source region 26 and a drain region 26 respectively forming junction with the channel region 14, and a gate electrode 30 formed on the channel region 14 interposing an insulation film 16 therebetween, either of the source region 26 and the drain region 26 being formed of SiGeC, which lattice-matches with silicon. Whereby parasitic resistance between the source region and the drain region can be much decreased.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: April 26, 2005
    Assignee: Fujitsu Limited
    Inventor: Yuji Awano
  • Patent number: 6885061
    Abstract: Heightening of breakdown voltage of a trench gate type power MISFET is actualized without increasing the number of manufacturing steps. In the manufacturing method of the semiconductor device according to the present invention, p? type semiconductor region and p? type field limiting rings are formed in a gate line area simultaneously in one impurity ion implantation step so as to bring them into contact with a groove having a gate extraction electrode formed therein. Upon formation, supposing that the width of the gate extraction electrode disposed outside the groove is CHSP, and the resistivity of the n? type single crystal silicon layer 1B is ? (?·cm), the CHSP is set to satisfy the following equation: CHSP?3.80+0.148 ?.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 26, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yoshito Nakazawa, Yuji Yatsuda
  • Patent number: 6870219
    Abstract: A field effect transistor includes a drain region (12) having a first portion (18) and a second portion (20), with the second portion being more lightly doped than the first portion. A channel region (14) is adjacent to the second portion and a drain electrode (24) overlies the drain region. A gate electrode (16) overlies the channel region. A shield structure (30) overlies the drain region and has a first section (32) at a first distance (33) from a semiconductor substrate (10) and a second section (34) at a second distance (35) from the semiconductor substrate, the second distance being greater than the first distance. In a particular embodiment the FET includes a shield structure wherein the first and second sections are physically separate. The location of these shield sections may be varied within the FET, and the potential of each section may be independently controlled.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: March 22, 2005
    Assignee: Motorola, Inc.
    Inventor: Helmut Brech
  • Patent number: 6870220
    Abstract: A gate structure for a semiconductor device includes a shielding electrode and a switching electrode. Respective portions of the shielding electrode are disposed above said drain region and said well region. A first dielectric layer is disposed between the shielding electrode and the drain and well regions. The switching electrode includes respective portions that are disposed above said well region and said source region. A second dielectric layer is disposed between the switching electrode and the well and source regions. A third dielectric layer is disposed between the shielding electrode and the switching electrode.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: March 22, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Christopher B. Kocon, Alan Elbanhawy
  • Patent number: 6861702
    Abstract: A lateral MOSFET exhibiting a high breakdown voltage includes a plurality of unit devices formed in a semiconductor substrate; each unit device including a trench, the side face thereof being extended at any angle from 30 degrees to 90 degrees with respect to the surface of trench; an offset drain region surrounding the side face and the bottom face of trench; an insulator filling trench; a gate electrode extended onto trench such that gate electrode works as a field plate; a source electrode extended above trench such that source electrode works as a field plate; and a drain electrode extended above trench such that drain electrode works as a field plate.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: March 1, 2005
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Akio Kitamura
  • Patent number: 6833585
    Abstract: A high voltage lateral Double diffused Metal Oxide Semiconductor (DMOS) transistor includes a plurality of well regions of a first conductivity type formed to be spaced out within a well region of a second conductivity type between a channel region of the first conductivity type and a drain region of the second conductivity type. Most current is carried through some portions of the well region of the second conductivity type in which the well regions of the first conductivity do not appear so that the current carrying performance of the device is improved. When a bias voltage is applied to the drain region, the well region of the second conductivity type is completely depleted at other portions where the well region of the second conductivity type and the well regions of the first conductivity type alternately appear so that the breakdown voltage of the device can be increased.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: December 21, 2004
    Assignee: Fairchild Korea Semiconductor
    Inventors: Min-hwan Kim, Chang-ki Jeon, Young-suk Choi
  • Patent number: 6828630
    Abstract: A method and structure for a CMOS device comprises depositing a silicon over insulator (SOI) wafer over a buried oxide (BOX) substrate, wherein the SOI wafer has a predetermined thickness; forming a gate dielectric over the SOI wafer; forming a shallow trench isolation (STI) region over the BOX substrate, wherein the STI region is configured to have a generally rounded corner; forming a gate structure over the gate dielectric; depositing an implant layer over the SOI wafer; performing one of N-type and P-type dopant implantations in the SOI wafer and the implant layer; and heating the device to form source and drain regions from the implant layer and the SOI wafer, wherein the source and drain regions have a thickness greater than the predetermined thickness of the SOI wafer, wherein the gate dielectric is positioned lower than the STI region.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 7, 2004
    Assignee: International Business Machines Corporation
    Inventors: Heemyong Park, Byoung H. Lee, Paul D. Agnello, Dominic J. Schepis, Ghavam G. Shahidi
  • Patent number: 6825565
    Abstract: A semiconductor device includes a drift region, which includes a first alternating conductivity type layer, and a peripheral region, which includes a second alternating conductivity type layer and a third alternating conductivity type layer in the surface portion of the peripheral region. The first layer includes first n-type regions and first p-type regions arranged alternately at a first pitch. The second layer is continuous with the first layer and includes second n-type regions and second p-type regions arranged alternately at the first pitch. The impurity concentration in the second layer is almost the same as the impurity concentration in the first layer. The third layer includes third n-type regions and third p-type regions arranged alternately at a second pitch. The third layer can be doped more lightly than the first and second alternating conductivity type layers. The second pitch can be the same as the first pitch or smaller.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: November 30, 2004
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasuhiko Onishi, Tatsuji Nagaoka, Susumu Iwamoto, Takahiro Sato
  • Patent number: 6822291
    Abstract: A method and apparatus thereof for fabricating an integrated circuit on a laminate having a gate electrode layer over a silicon dioxide layer. Detection of the gate etch endpoint signal is improved by maximizing the use of a faster etching dopant material (e.g., n-type dopant) and minimizing the use of a slower etching dopant material (e.g., p-type dopant) in the gate electrode layer. In one embodiment, a first portion of the gate electrode layer, substantially corresponding only to the location at which a gate is to be formed, is doped with the slower etching dopant material. The remaining portion of the gate electrode layer is doped with the faster etching dopant material; thus, more of the gate electrode layer is doped with the faster etching dopant material than with the slower etching dopant material. A gate mask is aligned over the gate electrode layer, and the unmasked portions of the gate electrode layer are removed using an etchant.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: November 23, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Calvin Todd Gabriel, Tammy D. Zheng, Emmanuel de Muizon, Linda A. Leard
  • Patent number: 6818950
    Abstract: In cellular MOSFET transistor arrays using a geometric gate construction, deleterious inherent capacitance induced by the construction is substantially reduced by the use of plugs in between adjacent source regions of transistor source rows and adjacent drain regions of transistor drain rows of the array. Embodiments using field oxide, thicker step gate oxide, dielectric materials in a floating gate construction, and shallow trench isolation region plugs are described.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: November 16, 2004
    Assignee: Micrel, Inc.
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 6806535
    Abstract: A method of fabricating a non-volatile memory is provided. A longitudinal strip of stacked layer is formed over a substrate. The longitudinal strip is a stacked layer including a gate dielectric layer, a conductive layer and a cap layer. A buried bit line is formed in the substrate on each side of the longitudinal strip. The longitudinal strip is patterned to form a plurality of stacked blocks. Thereafter, a dielectric layer is formed over the substrate. The dielectric layer exposes the cap layer of the stacked blocks. Some cap layers of the stacked blocks are removed to expose the conductive layer underneath. A word line is formed over the dielectric layer to connect stacked blocks in the same row serially together.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: October 19, 2004
    Assignee: Macronix International Co., Ltd.
    Inventor: Ching-Yu Chang
  • Patent number: 6806123
    Abstract: The invention includes a DRAM array having a structure therein which includes a first material separated from a second material by an intervening insulative material. The first material is doped to at least 1×1017 atoms/cm3 with n-type and p-type dopant. The invention also includes a semiconductor construction in which a doped material is over a segment of a substrate. The doped material has a first type majority dopant therein, and is electrically connected with an electrical ground. A pair of conductively-doped diffusion regions are adjacent the segment, and spaced from one another by at least a portion of the segment. The conductively-doped diffusion regions have a second type majority dopant therein. The invention also encompasses methods of forming semiconductor constructions.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: October 19, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Mark McQueen, Luan C. Tran, Chandra Mouli
  • Patent number: 6774434
    Abstract: A field effect transistor semiconductor device (1) comprises a source region (33), a drain region (14) and a drain drift region (11), the device having a field shaping region (20) adjacent the drift region (11) and arranged such that, in use, when a voltage is applied between the source (33) and drain (14) regions and the device is non-conducting, a substantially constant electric field is generated in the field shaping region (20) and accordingly in the adjacent drift region (11). The field shaping region (20), which may be intrinsic semiconductor, is arranged to function as a capacitor dielectric region (20) between a first capacitor electrode region (21) and a second capacitor electrode region (22), the first and second capacitor electrode regions (21, 22) being adjacent respective ends of the dielectric region (20) and having different electron energy barriers.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 10, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Raymond J. E. Hueting, Jan W. Slotboom, Petrus H. C. Magnee
  • Publication number: 20040145014
    Abstract: A method of forming an insulating material for use in an integrated circuit includes providing a substrate of the integrated circuit and forming a polymeric material on the substrate. At least a portion of the polymeric material is converted to a foamed polymeric material. The converting of the polymeric material includes exposing at least a portion of the polymeric material to a supercritical fluid. Further, an integrated circuit includes a substrate of the integrated circuit and a foamed polymeric material on at least a portion of the substrate. The integrated circuit may further include a conductive layer adjacent the foamed polymeric material. The conductive layer may be a metal line on the foamed polymeric material, or the conductive layer may be an interconnect, e.g., a contact or a via, adjacent the foamed polymeric material.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 29, 2004
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Paul A. Farrar
  • Patent number: 6744101
    Abstract: A field effect transistor (FET) structure, and method for making the same, which further suppresses short-channel effects based on variations within the gate dielectric itself. The FET structure utilizes non-uniform gate dielectrics to alter the vertical electric field presented along the channel. The thickness and/or dielectric constant of the gate dielectric is varied along the length of the channel to present a vertical electric field which varies in a manner that tends to reduce the short-channel effects and gate capacitances.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: June 1, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wei Long, Yowjuang William Liu, Don Wollesen
  • Patent number: 6744117
    Abstract: A semiconductor device (10) having a gate (15), a source (19), and a drain (20) with a gate bus (25) and first ground shield (24) patterned from a first metal layer and a second ground shield (31) patterned from a second metal layer. The first ground shield (24) and the second ground shield (31) lower the capacitance of device (10) making it suitable for high frequency applications and housing in a plastic package.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: June 1, 2004
    Assignee: Motorola, Inc.
    Inventors: Christopher P. Dragon, Wayne R. Burger, Daniel J. Lamey
  • Patent number: 6727549
    Abstract: A method of fabricating a film of active devices is provided. First damaged regions are formed, in a substrate, underneath first areas of the substrate where active devices are to be formed. Active devices are formed onto the first areas. Second damaged regions are formed, in the substrate, between the first damaged regions. The film is caused to detach from a rest of the substrate at a location where the first and second damaged regions are formed.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: April 27, 2004
    Assignee: Intel Corporation
    Inventor: Brian S. Doyle
  • Patent number: 6707102
    Abstract: A power MOSFET for a high frequency amplification element having good output power characteristics and high frequency characteristics is described. In the power MOSFET, a shield conductive film electrically connected to via an insulating film is arranged over a drain-offset semiconductor region. A wiring for a drain electrode is so arranged as to extent in parallel to the shield conductive film at one end side of the shield conductive film. On the other hand, a wiring for the gate electrode, a wiring for a source electrode and a gate shunt wiring are arranged in this order to extend in parallel to each other at the other end side of the shield conductive film. The shield conductive film is so formed that the thickness thereof is smaller than that of the wiring for the gate electrode. In this way, the input and output capacitances of the MOSFET can be decreased.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: March 16, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Masatoshi Morikawa, Mio Shindo, Isao Yoshida, Kenichi Nagura