Guard Ring Patents (Class 257/484)
  • Publication number: 20140145213
    Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Cree, Inc.
    Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Kumar Agarwal, John Williams Palmour, Scott Allen
  • Patent number: 8736013
    Abstract: In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 27, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chris Nassar, Dan Hahn, Sunglyong Kim, Jongjib Kim
  • Patent number: 8716826
    Abstract: In a semiconductor device having a pn-junction diode structure that includes anode diffusion region including edge area, anode electrode on anode diffusion region, and insulator film on edge area of anode diffusion region, the area of anode electrode above anode diffusion region with insulator film interposed between anode electrode and anode diffusion region is narrower than the area of insulator film on edge area of anode diffusion region.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: May 6, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Ryouichi Kawano, Tomoyuki Yamazaki, Michio Nemoto, Mituhiro Kakefu
  • Patent number: 8710595
    Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Makoto Tsutsue, Masaki Utsumi
  • Patent number: 8697568
    Abstract: Disclosed is a method of fabricating a semiconductor chip. The method includes forming a silicon layer; forming a first layer formed on the silicon layer and including a first seal ring surrounding a first chip area and a second seal ring surrounding a second chip area; and forming a second layer formed on the first layer and including a metal interconnection connecting one of the first and second chip areas and an external terminal.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Min Kang, Hyungwoo Kim, Ki-chul Park, SangMan Lee
  • Publication number: 20140077328
    Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicant: PFC DEVICE CORP.
    Inventors: Kou-Liang CHAO, Mei-Ling CHEN, Tse-Chuan SU, Hung-Hsin KUO
  • Patent number: 8653534
    Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: February 18, 2014
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu
  • Patent number: 8643104
    Abstract: A lateral diffusion metal-oxide-semiconductor (LDMOS) transistor structure comprises a barrier layer, a semiconductor layer, a source, a first drain and a guard ring. The barrier layer with a first polarity is disposed in a substrate. The semiconductor layer with a second polarity is disposed on the barrier layer. The source has a first polarity region and a second polarity region both formed in the semiconductor layer. The first drain is disposed in the semiconductor layer and has a drift region with the second polarity. The guard ring with the first polarity extends downward from a surface of the semiconductor layer in a manner of getting in touch with the barrier layer and to surround the source and the drain, and is electrically connected to the source.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: February 4, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Wei-Shan Liao, An-Hung Lin, Hong-Ze Lin, Bo-Jui Huang
  • Patent number: 8637952
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a first conductivity type region, a device isolation insulating film, a second conductivity type region, and a low concentration region. The first conductivity type region is formed in part of the semiconductor substrate. The device isolation insulating film is formed in an upper surface of the semiconductor substrate and includes an opening formed in part of an immediately overlying region of the first conductivity type region. The second conductivity type region is formed in the opening and is in contact with the first conductivity type region. The low concentration region is formed along a side surface of the opening, has second conductivity type, has an effective impurity concentration lower than an effective impurity concentration of the second conductivity type region, and separates an interface of the first conductivity type region and the second conductivity type region from the device isolation insulating film.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuaki Yamaura
  • Patent number: 8633541
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 21, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Farzan Farbiz, Akram A. Salman
  • Patent number: 8633571
    Abstract: A semiconductor device includes a semiconductor substrate including an element region, an inner sealing and an outer sealing which are formed on the element region and have a first opening part and a second opening part, respectively, a multilayer interconnection structure which is formed on the substrate and stacks multiple inter-layer insulation films each including a wiring layer, a moisture resistant film formed between a first inter-layer insulation film and a second inter-layer insulation film which are included in the multilayer interconnection structure, a first portion which extended from a first side of the moisture resistant film and passes the first opening part, a second portion which extended from a second side of the moisture resistant film and passes through the second opening part, and a wiring pattern including a via plug which penetrates the moisture resistant film and connects the first portion and the second portion.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Akihiko Okutsu, Hitoshi Saito, Yoshiaki Okano
  • Patent number: 8633543
    Abstract: An electro-static discharge protection circuit includes: a PNPN junction, a P-type side of the PNPN junction being coupled to a terminal, an N-type side of the PNPN junction being coupled to ground; and a P-type metal oxide semiconductor transistor, a source and a gate of the P-type metal oxide semiconductor transistor being coupled to an N-type side of a PN junction whose P-type side coupled to the ground, and a drain of the P-type metal oxide semiconductor transistor being coupled to the terminal.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazutoshi Ohta, Kenji Hashimoto
  • Patent number: 8624348
    Abstract: A microelectronic element is disclosed that includes a semiconductor chip and a continuous monolithic metallic edge-reinforcement ring that covers each of the plurality of edge surfaces of the semiconductor chip and extending onto the front surface. The semiconductor chip may have front and rear opposed surfaces and a plurality of contacts at the front surface and edge surfaces extending between the front and rear surfaces. The semiconductor chip may also embody at least an active device or a passive device.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 7, 2014
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Patent number: 8618626
    Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 31, 2013
    Assignee: PFC Device Corporation
    Inventors: Kou-Liang Chao, Mei-Ling Chen, Tse-Chuan Su, Hung-Hsin Kuo
  • Patent number: 8618618
    Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 31, 2013
    Assignee: Panasonic Corporation
    Inventors: Makoto Tsutsue, Masaki Utsumi
  • Patent number: 8604583
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Patent number: 8592298
    Abstract: A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Avogy, Inc.
    Inventors: Linda Romano, David P. Bour, Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20130307111
    Abstract: A TMBS diode is disclosed. In an active portion and voltage withstanding structure portion of the diode, an end portion trench surrounds active portion trenches. An active end portion which is an outer circumferential side end portion of an anode electrode is in contact with conductive polysilicon inside the end portion trench. A guard trench is separated from the end portion trench and surrounds it. A field plate provided on an outer circumferential portion of the anode electrode is separated from the anode electrode, and contacts both part of a surface of n-type drift layer in a mesa region between the end portion trench and the guard trench and the conductive polysilicon formed inside the guard trench. The semiconductor device has high withstand voltage without injection of minority carriers, and relaxed electric field intensity of the trench formed in an end portion of an active portion.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Fuji Electric Co., Ltd.
    Inventors: Tomonori MIZUSHIMA, Michio NEMOTO
  • Publication number: 20130277791
    Abstract: In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Inventors: Chris Nassar, Dan Hahn, Sunglyong Kim, Jongjib Kim
  • Patent number: 8552469
    Abstract: There is a problem that a reverse off-leak current becomes too large in a Schottky barrier diode. A semiconductor device of the present invention includes P-type first and second anode diffusion layers formed in an N-type epitaxial layer, N-type cathode diffusion layers formed in the epitaxial layer, a P-type third anode diffusion layer formed in the epitaxial layer so as to surround the first and second anode diffusion layers and to extend toward the cathode diffusion layers, and a Schottky barrier metal layer formed on the first and second anode diffusion layers.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 8, 2013
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Shuichi Kikuchi, Shigeaki Okawa, Kiyofumi Nakaya, Shuji Tanaka
  • Patent number: 8525288
    Abstract: In the diffusion region (3) of the second conductivity mode, a more highly doped region of the same conductivity mode (5) is introduced in such a manner that the region of the first conductivity mode (2) which is covered by the metal silicide (9) and of the second conductivity mode (3) are connected in a conductive manner. The region (3) of the second conductivity mode is diffused in such a manner that it reaches the more highly doped region (1) of the first doping type (1), with an outward diffusion of the doping from the more highly doped substrate layer (1) into the more weakly doped layer (2) of the same conductivity mode in the direction of the semiconductor surface taking place at the same time.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 3, 2013
    Assignee: Eris Technology Corporation
    Inventors: Michael Reschke, Hans-Jurgen Hillemann, Klaus Gunther
  • Publication number: 20130221477
    Abstract: A semiconductor device that can achieve a high-speed operation at a time of switching, and the like. The semiconductor device includes: a p-type buried layer buried within an n?-type semiconductor layer; and a p-type surface layer formed in a central portion of each of cells. In a contact cell, the p-type buried layer is in contact with the p-type surface layer. The semiconductor device further includes: a p+-type contact layer formed on the p-type surface layer of the contact cell; and an anode electrode provided on the n?-type semiconductor layer. The anode electrode forms a Schottky junction with the n?-type semiconductor layer and forms an ohmic junction with the p+-type contact layer.
    Type: Application
    Filed: December 22, 2011
    Publication date: August 29, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hiroshi Watanabe, Naoki Yutani, Yoshiyuki Nakaki, Kenichi Ohtsuka
  • Patent number: 8513764
    Abstract: A Schottky diode including a semiconductor region, a first terminal comprising a metal or a metal silicide or being metallic, and a second terminal comprising at least a portion of the semiconductor region. The diode further includes an at least partly conductive material or a material capable of holding a charge in close proximity to, or in contact with, or surrounding one of the first and second terminals, a field insulator located at least partly in the semiconductor region, a dielectric region located over the semiconductor region between the field insulator and the one of the first and second terminals for isolating the conductive or charge-holding material from the semiconductor region, and wherein the dielectric region comprises insulating regions of different thicknesses.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 20, 2013
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Paul R. Stribley, Suba Chithambaram Subramaniam
  • Patent number: 8508002
    Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventors: Makoto Tsutsue, Masaki Utsumi
  • Patent number: 8487396
    Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 16, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Patent number: 8450828
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, including a first main surface and a second main surface opposite to each other. A power semiconductor element includes a first electrode in a first region at the first main surface of the semiconductor substrate, and a second electrode at the second main surface. A current flows between the first electrode and the second electrode. The semiconductor device also includes a guard ring of a second conductivity type, in a second region at the first main surface, at a more outer circumference than the first region. A semi-insulating insulation film covers the second region. A dielectric film in the second region covers the semi-insulating insulation film. A flow block portion in a third region at the first main surface, at a more outer circumference than the second region, prevents a flow out of the dielectric film.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 28, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Eisuke Suekawa
  • Publication number: 20130119505
    Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. Harame, Qizhi Liu, Robert M. Rassel
  • Patent number: 8432012
    Abstract: A semiconductor device includes a semiconductor layer having a first conductivity type and having a surface in which an active region of the semiconductor device is defined, and a plurality of spaced apart doped regions within the active region. The plurality of doped regions have a second conductivity type that is opposite the first conductivity type and define a plurality of exposed portions of the semiconductor layer within the active region. The plurality of doped regions include a plurality of rows extending in a longitudinal direction. Each of the rows includes a plurality of longitudinally extending segments, and the longitudinally extending segments in a first row at least partially overlap the longitudinally extending segments in an adjacent row in a lateral direction that is perpendicular to the longitudinal direction.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 30, 2013
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Jason Henning
  • Patent number: 8410561
    Abstract: An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 2, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Akira Sato, Toru Watanabe, Shogo Inaba, Takeshi Mori
  • Patent number: 8405184
    Abstract: A trench Schottky diode and its manufacturing method are provided. The trench Schottky diode includes a semiconductor substrate having therein a plurality of trenches, a gate oxide layer, a polysilicon structure, a guard ring and an electrode. At first, the trenches are formed in the semiconductor substrate by an etching step. Then, the gate oxide layer and the polysilicon structure are formed in the trenches and protrude above a surface of the semiconductor substrate. The guard ring is formed to cover a portion of the resultant structure. At last, the electrode is formed above the guard ring and the other portion not covered by the guard ring. The protruding gate oxide layer and the protruding polysilicon structure can avoid cracks occurring in the trench structure.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: March 26, 2013
    Assignee: PFC Device Corporation
    Inventors: Kou-Liang Chao, Hung-Hsin Kuo, Tse-Chuan Su, Mei-Ling Chen
  • Publication number: 20130062723
    Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
    Type: Application
    Filed: September 11, 2011
    Publication date: March 14, 2013
    Applicant: CREE, INC.
    Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal, John Williams Palmour, Scott Allen
  • Patent number: 8368167
    Abstract: The embodiments of the present invention disclose a semiconductor device and a method for forming the semiconductor device. Wherein the semiconductor comprises: a first semiconductor layer, having a first conductivity type on a semiconductor substrate, a guard ring region, formed in the surface of the first semiconductor layer, having a second conductivity type; a Schottky diode metal contact, coupled to the first semiconductor layer, wherein the guard ring region is at periphery of the Schottky diode interface, and wherein the Schottky diode metal contact has no direct electrical connection with the guard ring region; and an electrical resistance module, coupled between the Schottky diode metal contact and the guard ring. Due to the ballasting effect from the electrical resistance module, the minority injection or the parasitic transistor action are alleviated. Thus, forward current capability is extended without introducing significant minority injection.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 5, 2013
    Assignee: Chengdu Monolithic Power Systems, Inc.
    Inventor: Joseph Urienza
  • Patent number: 8362586
    Abstract: According to one embodiment, a semiconductor device provided with a structure, which prevents withstand voltage deterioration and may be manufactured at a low cost, is provided.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tetsuo Hatakeyama
  • Patent number: 8362585
    Abstract: A semiconductor junction barrier Schottky (JBS-SKY) diode with enforced upper contact structure (EUCS) is disclosed. Referencing an X-Y-Z coordinate, the JBS-SKY diode has semiconductor substrate (SCST) parallel to X-Y plane. Active device zone (ACDZ) atop SCST and having a JBS-SKY diode with Z-direction current flow. Peripheral guarding zone (PRGZ) atop SCST and surrounding the ACDZ. The ACDZ has active lower semiconductor structure (ALSS) and enforced active upper contact structure (EUCS) atop ALSS. The EUC has top contact metal (TPCM) extending downwards and in electrical conduction with bottom of EUCS; and embedded bottom supporting structure (EBSS) inside TPCM and made of a hard material, the EBSS extending downwards till bottom of the EUCS. Upon encountering bonding force onto TPCM during packaging of the JBS-SKY diode, the EBSS enforces the EUCS against an otherwise potential micro cracking of the TPCM degrading the leakage current of the JBS-SKY diode.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: January 29, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Anup Bhalla, Ji Pan, Daniel Ng
  • Patent number: 8338906
    Abstract: An integrated circuit structure has a metal silicide layer formed on an n-type well region, a p-type guard ring formed on the n-type well region and encircling the metal silicide layer. The outer portion of the metal silicide layer extends to overlap the inner edge of the guard ring, and a Schottky barrier is formed at the junction of the internal portion of the metal silicide layer and the well region. A conductive contact is in contact with the internal portion and the outer portion of the metal silicide layer.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 25, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ping-Chun Yeh, Der-Chyang Yeh, Ruey-Hsin Liu, Mingo Liu
  • Patent number: 8330244
    Abstract: A semiconductor device according to some embodiments includes a semiconductor layer having a first conductivity type and a surface in which an active region of the semiconductor device is defined. A plurality of spaced apart first doped regions are arranged within the active region. The plurality of first doped regions have a second conductivity type that is opposite the first conductivity type, have a first dopant concentration, and define a plurality of exposed portions of the semiconductor layer within the active region. The plurality of first doped regions are arranged as islands in the semiconductor layer. A second doped region in the semiconductor layer has the second conductivity type and has a second dopant concentration that is greater than the first dopant concentration.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: December 11, 2012
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal
  • Patent number: 8324705
    Abstract: An integrated circuit structure includes a semiconductor substrate; a first well region of a first conductivity type over the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type encircling the first well region; and a metal-containing layer over and adjoining the first well region and extending over at least an inner portion of the second well region. The metal-containing layer and the first well region form a Schottky barrier. The integrated circuit structure further includes an isolation region encircling the metal-containing layer; and a third well region of the second conductivity type encircling at least a central portion of the first well region. The third well region has a higher impurity concentration than the second well region, and includes a top surface adjoining the metal-containing layer, and a bottom surface higher than bottom surfaces of the first and the second well regions.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Shao Tang, Dah-Chuen Ho, Yu-Chang Jong, Zhe-Yi Wang, Yuh-Hwa Chang, Yogendra Yadav
  • Patent number: 8299558
    Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Alan F. Norris, Robert M. Rassel, Yun Shi
  • Publication number: 20120256192
    Abstract: An electronic device includes a drift region, a Schottky contact on a surface of the drift region, and an edge termination structure in the drift region adjacent the Schottky contact. The edge termination structure includes a recessed region that is recessed from the surface of the drift region by a distance d that may be about 0.5 microns.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Inventors: Qingchun Zhang, Jason Henning
  • Patent number: 8274080
    Abstract: A semiconductor wafer includes semiconductor chip areas on a semiconductor substrate, the semiconductor chip areas having thereon semiconductor circuit patterns and inner guard ring patterns surrounding the semiconductor circuit patterns; and scribe lanes on the semiconductor substrate between the semiconductor chip areas, the scribe lanes having thereon outer guard ring patterns surrounding the inner guard ring patterns and a process monitoring pattern between the outer guard ring patterns, the outer guard ring patterns and the process monitoring pattern being merged with each other.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Hyun Han
  • Publication number: 20120212164
    Abstract: There is disclosed a semiconductor device capable of improving reliability, a rotating electrical machine using the semiconductor device or a vehicle using the semiconductor device. The semiconductor device includes Schottky barrier junctions and pn junctions. The pn junctions are provided in rectification areas and guard ring parts. Breakdown voltage at pn junctions in the rectification area is lower than breakdown voltage at the Schottky barrier junctions and the pn junctions in the guard ring parts.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 23, 2012
    Inventors: Takeshi TERAKAWA, Satoshi MATSUYOSHI, Kazutoyo NARITA, Mutsuhiro MORI
  • Publication number: 20120211859
    Abstract: A Schottky diode including a semiconductor region, a first terminal comprising a metal or a metal silicide or being metallic, and a second terminal comprising at least a portion of the semiconductor region. The diode further includes an at least partly conductive material or a material capable of holding a charge in close proximity to, or in contact with, or surrounding one of the first and second terminals, a field insulator located at least partly in the semiconductor region, a dielectric region located over the semiconductor region between the field insulator and the one of the first and second terminals for isolating the conductive or charge-holding material from the semiconductor region, and wherein the dielectric region comprises insulating regions of different thicknesses.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Inventors: Paul R. Stribley, Suba Chithambaram Subramaniam
  • Patent number: 8247876
    Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Makoto Tsutsue, Masaki Utsumi
  • Patent number: 8237239
    Abstract: A Schottky diode device is provided, including a p-type semiconductor structure. An n drift region is disposed over the p-type semiconductor structure, wherein the n drift region comprises first and second n-type doping regions having different n-type doping concentrations, and the second n-type doping region is formed with a dopant concentration greater than that in the first n-type doping region. A plurality of isolation structures is disposed in the second n-type doping region of the n drift region, defining an anode region and a cathode region. A third n-type doping region is disposed in the second n-type doping region exposed by the cathode region. An anode electrode is disposed over the first n-type doping region in the anode region. A cathode electrode is disposed over the third n-type doping region in the cathode region.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 7, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Huang-Lang Pai, Hung-Shern Tsai
  • Patent number: 8232558
    Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: July 31, 2012
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu
  • Patent number: 8227892
    Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors with shields to increase circuit Q. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 24, 2012
    Assignee: Broadcom Corporation
    Inventor: James Y. C. Chang
  • Publication number: 20120175724
    Abstract: A Schottky diode with a small footprint and a high-current carrying ability is fabricated by forming an opening that extends into an n-type semiconductor material. The opening is then lined with a metallic material such as platinum. The metallic material is then heated to form a salicide region where the metallic material touches the n-type semiconductor material.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Inventors: Sheldon D. Haynie, Ann Gabrys
  • Patent number: 8198651
    Abstract: A semiconductor device for protecting against an electro static discharge is disclosed. In one embodiment, the semiconductor device includes a first low doped region disposed in a substrate, a first heavily doped region disposed within the first low doped region, the first heavily doped region comprising a first conductivity type, and the first low doped region comprising a second conductivity type, the first and the second conductivity types being opposite, the first heavily doped region being coupled to a node to be protected. The semiconductor device further includes a second heavily doped region coupled to a first power supply potential node, the second heavily doped region being separated from the first heavily doped region by a portion of the first low doped region, and a second low doped region disposed adjacent the first low doped region, the second low doped region comprising the first conductivity type.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: June 12, 2012
    Assignee: Infineon Technologies AG
    Inventors: Gernot Langguth, Wolfgang Soldner, Cornelius Christian Russ
  • Patent number: 8193602
    Abstract: A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: June 5, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Zia Alan Shafi, Jeffrey A. Babcock
  • Patent number: 8188526
    Abstract: It is an object of the present invention to surely protect a predetermined semiconductor element or a predetermined semiconductor element group in an analog block from a noise generated from a digital block. A semiconductor device according to the present invention includes a semiconductor substrate, a digital block to be a region in which a digital circuit is formed and an analog block to be a region in which an analog circuit is formed, arranged by separating an upper surface of the semiconductor substrate and a substrate potential fixing region provided on the semiconductor substrate so as to surround in a planar view the predetermined semiconductor element group in the analog block, and a pad connected to the substrate potential fixing region and receiving a predetermined potential from an external part.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 29, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Okuda, Toshio Kumamoto