Non-single Crystal, Or Recrystallized, Semiconductor Material Forms Part Of Active Junction (including Field-induced Active Junction) Patents (Class 257/49)
  • Patent number: 9319613
    Abstract: An image sensor array has a tiling unit comprising a source follower stage coupled to buffer signals from a photodiode when the unit is read onto a sense line, the source follower stage differs from conventional sensor arrays because it uses an N-channel transistor having a P-doped polysilicon gate. In embodiments, other transistors of the array have conventional N-channel transistors with N-doped polysilicon gates.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: April 19, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Tiejun Dai
  • Patent number: 9268346
    Abstract: Disclosed herein is a reactor including, a plurality of reaction regions, and a plurality of heaters, each arranged in each of the reaction regions, wherein the heater including a semiconductor heat generating element and a semiconductor temperature detecting element and being capable of independent temperature control, and the temperature detecting element having a heat conduction region of metal thin film in its surrounding region.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: February 23, 2016
    Assignee: Sony Corporation
    Inventors: Toshiki Moriwaki, Nobuhiro Kanai, Takanori Anaguchi
  • Patent number: 9236400
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: January 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Patent number: 9194985
    Abstract: A color filter substrate comprising: a base plate; a first conductive layer formed on the base plate in a first direction; a color resistance layer formed on the first conductive layer at positions at least corresponding to pixel regions, wherein the color resistance layer is formed with via holes at positions corresponding to each sub-pixel region; a black matrix formed on the first conductive layer at positions corresponding to pixel gaps; a second conductive layer formed on the surfaces of the black matrix and the color resistance layer in a second direction different from the first direction; a dielectric layer formed at least on the second conductive layer, wherein the dielectric layer is formed with via holes corresponding to the via holes in the color resistance layer; and a third conductive layer formed on the dielectric layer and electrically connected with a corresponding portion of the first conductive layer through aligned via holes of the color resistance layer and the dielectric layer.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: November 24, 2015
    Assignees: BOE TECHNOLOGY GROUPCO., LTD., BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Lan Feng, Qingna Hou
  • Patent number: 9184314
    Abstract: Solar cell structures and formation methods which utilize the surface texture in conjunction with a passivating dielectric layer to provide a practical and controllable technique of forming an electrical contact between a conducting layer and underlying substrate through the passivating dielectric layer, achieving both good surface passivation and electrical contact with low recombination losses, as required for high efficiency solar cells. The passivating dielectric layer is intentionally modified to allow direct contact, or tunnel barrier contact, with the substrate. Additional P-N junctions, and dopant gradients, are disclosed to further limit losses and increase efficiency.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: November 10, 2015
    Assignee: TETRASUN, INC.
    Inventors: Douglas Crafts, Oliver Schultz-Wittman
  • Patent number: 9171955
    Abstract: The present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 27, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiharu Hirakata, Yukie Nemoto
  • Patent number: 9153510
    Abstract: A semiconductor device includes a semiconductor substrate provided with a predetermined element and having wirings formed on its main surface connected to back wirings by a plurality of through silicon vias (TSVs), and a conductive cover which covers the main surface of the semiconductor substrate. The semiconductor substrate and the conductive cover are bonded to each other with a conductive bonding member. The TSV bonded to the conductive cover with the conductive bonding member is connected to an external electrode pad to which a ground potential is supplied.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: October 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masafumi Sugimoto, Eiichi Hosomi, Atsushi Murakawa, Kazumi Takahashi, Kazuhito Higuchi, Susumu Obata
  • Patent number: 9070812
    Abstract: An active matrix substrate includes: an electrode layer formed on the insulating substrate within a display region; a mark disposed on the insulating substrate within a non-display region, and made of a same material as the electrode layer; a first insulating film directly covering each of the electrode layer and the mark; and a second insulating film covering a part of the first insulating film. Within at least a part of the sealing region, the second insulating film is removed from the insulating substrate. The mark is disposed in the at least the part of the sealing region in which the second insulating film is removed, and is provided to overlap at least a part of the sealing region. A protective film is formed on the insulating substrate to cover a side surface and a surface of the first insulating film covering the mark, the surface of the first insulating film being located opposite from the insulating substrate.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: June 30, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masahiro Yoshida, Takaharu Yamada, Satoshi Horiuchi, Kazuyori Mitsumoto
  • Patent number: 9040987
    Abstract: A semiconductor device including a substrate, a metal layer, an insulating layer, a semiconductor layer, a drain and a source is provided. The substrate has a surface and a first cavity. The metal layer is disposed on the substrate and covers the surface and inner-wall of the first cavity to define a second cavity corresponding to the first cavity. The insulating layer covers the metal layer and inner-wall of the second cavity to define a third cavity corresponding to the second cavity. The semiconductor layer exposes a portion of the insulating layer and covers the inner-wall of the third cavity to define a fourth cavity corresponding to the third cavity. The drain and source are disposed on the semiconductor layer and covers a portion of the semiconductor layer and a portion of the insulating layer, in which the drain and source expose the fourth cavity.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 26, 2015
    Assignee: E Ink Holdings Inc.
    Inventors: Wei-Chou Lan, Ted-Hong Shinn, Henry Wang, Chia-Chun Yeh
  • Patent number: 9041202
    Abstract: An object is to provide a semiconductor device with high aperture ratio or a manufacturing method thereof. Another object is to provide semiconductor device with low power consumption or a manufacturing method thereof. A light-transmitting conductive layer which functions as a gate electrode, a gate insulating film formed over the light-transmitting conductive layer, a semiconductor layer formed over the light-transmitting conductive layer which functions as the gate electrode with the gate insulating film interposed therebetween, and a light-transmitting conductive layer which is electrically connected to the semiconductor layer and functions as source and drain electrodes are included.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 9035415
    Abstract: A technology for a vertical semiconductor device having a RESURF structure, which is capable of preventing the drop of the withstand voltage when the adhesion of external electric charges occurs is provided. The vertical semiconductor device disclosed in the present specification has a cell region and a non-cell region disposed outside the cell region. This vertical semiconductor device has a diffusion layer disposed in at least part of the non-cell region. When the vertical semiconductor device is viewed in a plane, the diffusion layer has an impurity surface density higher than that satisfying a RESURF condition at an end part close to the cell region, and an impurity surface density lower than that satisfying the RESURF condition at an end part far from the cell region.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 19, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Patent number: 9012900
    Abstract: An organic light emitting diode display device capable of improving capacitance Cst of a storage capacitor and transmittance and a method of fabricating the same are disclosed. The organic light emitting diode display device includes a driving thin film transistor (TFT) formed on the substrate, a passivation film formed to cover the TFT driver, a color filter formed on the passivation film in a luminescent region, a planarization film formed to cover the color filter, a transparent metal layer formed on the planarization film, an insulating film formed on the transparent metal layer, a first electrode connected to the TFT driver and overlapping the transparent metal layer while interposing the insulating film therebetween, an organic light emitting layer and a second electrode which are sequentially formed on the first electrode. The transparent metal layer, the insulating film, and the first electrode constitute a storage capacitor in the luminescent region.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: April 21, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Jung-Sun Beak, Jeong-Oh Kim, Yong-Min Kim
  • Patent number: 9012912
    Abstract: Glass treatment methods, wafer, panels, and semiconductor devices are disclosed. In some embodiments, a method of treating a glass substrate includes forming a first film on the glass substrate, the first film having a first porosity. The method includes forming a second film on the first film, the second film comprising an electrically insulating material and having a second porosity. The first porosity is lower than the second porosity.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Wen-Shiang Liao
  • Patent number: 9006584
    Abstract: An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 14, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas Dyer Bonifield, Byron Williams, Shrinivasan Jaganathan, David Larkin, Dhaval Atul Saraiya
  • Patent number: 8999105
    Abstract: An etch mask is formed on a substrate. The substrate is positioned in an enclosure configured to shield an interior of the enclosure from electromagnetic fields exterior to the enclosure; and the substrate is etched in the enclosure, including removing a portion of the substrate to form a structure having at least a portion that is isolated and/or suspended over the substrate.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 7, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Marko Loncar, Mikhail D. Lukin, Michael J. Burek, Nathalie de Leon, Brendan Shields
  • Patent number: 9000436
    Abstract: Disclosed is a thin film transistor including an active pattern including a first conductive region, a first channel region adjacent to the first conductive region, a second conductive region spaced apart from the first conductive region, a second channel region spaced apart from the first channel region, and a third conductive region spaced apart from the second conductive region, and a gate electrode positioned on the active pattern and including a first gate region crossing the first channel region, a second gate region crossing the second channel region, and a connection gate region connecting the first gate region. The connection gate region, the first gate region, and the second gate region together surround the second conductive region.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 7, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: So-Ra Kwon
  • Patent number: 8994021
    Abstract: An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm?1 and less than or equal to 0.7 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm?1 and less than or equal to 4.1 nm?1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm?1 and less than or equal to 1.4 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm?1 and less than or equal to 7.1 nm?1.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Kengo Akimoto, Hiroki Ohara, Tatsuya Honda, Takatsugu Omata, Yusuke Nonaka, Masahiro Takahashi, Akiharu Miyanaga
  • Patent number: 8987736
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: March 24, 2015
    Inventor: Amit Goyal
  • Patent number: 8987737
    Abstract: Provided is a polycrystalline silicon wafer produced by a melting and unidirectional solidification method, where the polycrystalline silicon wafer has a diameter of 450 mm or more, a thickness of 900 ?m or more, and an average crystal grain size of 5 to 50 mm, and is made up of one piece. The present invention provides a large-sized polycrystalline silicon wafer having a wafer size of 450 mm or more, of which: mechanical properties are similar to those of monocrystalline silicon wafers; the crystal size is large; the surface roughness is low; the surface has a high cleanliness; the polished surface has less unevenness by having a definite crystal orientation; and the sag value is similar to that of monocrystalline silicon wafers.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 24, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hiroshi Takamura, Ryo Suzuki
  • Patent number: 8981377
    Abstract: A semiconductor device and method of making the same are provided. The method of forming semiconductor device uses non-implant process to form doped layers, and thus is applicable for large-size display panel. The method of forming semiconductor device uses annealing process to reduce the resistance of the doped layers, which improves the electrical property of the semiconductor device. A first dielectric layer of the semiconductor device is able to protect a semiconductor layer disposed in a first region of the substrate from being damaged during the process, and an etching stop layer of the semiconductor device is able to protect the semiconductor layer disposed in a second region of the substrate from being damaged when defining second doped layers. The first dielectric layer and the etching stop layer are formed by the same patterned dielectric layer, thus no extra process is required, fabrication cost is reduced, and yield is increased.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 17, 2015
    Assignee: AU Optronics Corp.
    Inventor: Shou-Peng Weng
  • Patent number: 8975124
    Abstract: One or more embodiments of the disclosed technology provide a thin film transistor, an array substrate and a method for preparing the same. The thin film transistor comprises a base substrate, and a gate electrode, a gate insulating layer, an active layer, an ohmic contact layer, a source electrode, a drain electrode and a passivation layer prepared on the base substrate in this order. The active layer is formed of microcrystalline silicon, and the active layer comprises an active layer lower portion and an active layer upper portion, and the active layer lower portion is microcrystalline silicon obtained by using hydrogen plasma to treat at least two layers of amorphous silicon thin film prepared in a layer-by-layer manner.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 10, 2015
    Assignees: Boe Technology Group Co., Ltd., Beijing Asahi Glass Electronics Co., Ltd.
    Inventors: Xueyan Tian, Chunping Long, Jiangfeng Yao
  • Publication number: 20150041810
    Abstract: A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
    Type: Application
    Filed: September 18, 2014
    Publication date: February 12, 2015
    Inventors: Alfredo M. Morales, Richard J. Anderson, Nancy Y.C. Yang, Jack L. Skinner, Michael J. Rye
  • Patent number: 8946704
    Abstract: A semiconductor device in which release of oxygen from side surfaces of an oxide semiconductor film including c-axis aligned crystal parts can be prevented is provided. The semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film including c-axis aligned crystal parts, and an oxide film including c-axis aligned crystal parts. In the semiconductor device, the first oxide semiconductor film, the second oxide semiconductor film, and the oxide film are each formed using a IGZO film, where the second oxide semiconductor film has a higher indium content than the first oxide semiconductor film, the first oxide semiconductor film has a higher indium content than the oxide film, the oxide film has a higher gallium content than the first oxide semiconductor film, and the first oxide semiconductor film has a higher gallium content than the second oxide semiconductor film.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8927394
    Abstract: An active device substrate includes a flexible substrate, an inorganic de-bonding layer, and at least one active device. The flexible substrate has a first surface and a second surface opposite to the first surface, wherein the first surface is a flat surface. The inorganic de-bonding layer covers the first surface of the flexible substrate, and the material of the inorganic de-bonding layer is metal, metal oxide or combination thereof. The active device is disposed on or above the second surface of the flexible substrate.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: January 6, 2015
    Assignee: AU Optronics Corporation
    Inventor: Tsung-Ying Ke
  • Publication number: 20140367687
    Abstract: An etch mask is formed on a substrate. The substrate is positioned in an enclosure configured to shield an interior of the enclosure from electromagnetic fields exterior to the enclosure; and the substrate is etched in the enclosure, including removing a portion of the substrate to form a structure having at least a portion that is isolated and/or suspended over the substrate.
    Type: Application
    Filed: January 4, 2013
    Publication date: December 18, 2014
    Inventors: Marko Loncar, Mikhail D. Lukin, Michael J. Burek, Nathalie de Leon, Brendan Shields
  • Publication number: 20140367686
    Abstract: Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 8912529
    Abstract: A method for fabricating a photovoltaic device includes forming a patterned layer on a doped emitter portion of the photovoltaic device, the patterned layer including openings that expose areas of the doped emitter portion and growing an epitaxial layer over the patterned layer such that a crystalline phase grows in contact with the doped emitter portion and a non-crystalline phase grows in contact with the patterned layer. The non-crystalline phase is removed from the patterned layer. Conductive contacts are formed on the epitaxial layer in the openings to form a contact area for the photovoltaic device.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8911883
    Abstract: An organic-inorganic hybrid electroluminescent device having a semiconductor nanocrystal pattern prepared by producing a semiconductor nanocrystal film using semiconductor nanocrystals, where the nanocrystal is surface-coordinated with a compound containing a photosensitive functional group, exposing the film through a mask and developing the exposed film.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Jin Park, Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee
  • Publication number: 20140361303
    Abstract: Complementary circuits based on junction (or heterojunction) field effect transistor devices and bipolar junction (or heterojunction) transistor devices comprised of thin crystalline semiconductor-on-insulator substrates are provided which are compatible with low-cost and/or flexible substrates. Only one substrate doping type (i.e., n-type or p-type) is required for providing the complementary circuits and thus the number of masks (typically three or four) remains the same as that required for either n-channel or p-channel devices in the TFT level.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoar-Tabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8895976
    Abstract: Manufactured is a transistor including an oxide semiconductor layer, a source electrode layer and a drain electrode layer overlapping with part of the oxide semiconductor layer, a gate insulating layer overlapping with the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode overlapping with part of the oxide semiconductor layer with the gate insulating layer provided therebetween, wherein, after the oxide semiconductor layer which is to be a channel formation region is irradiated with light and the light irradiation is stopped, a relaxation time of carriers in photoresponse characteristics of the oxide semiconductor layer has at least two kinds of modes: ?1 and ?2, ?1<?2 is satisfied, and ?2 is 300 seconds or less. In addition, a semiconductor device including the transistor is manufactured.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Takayuki Inoue, Suzunosuke Hiraishi, Erumu Kikuchi, Hiromichi Godo, Shuhei Yoshitomi, Koki Inoue, Akiharu Miyanaga, Shunpei Yamazaki
  • Publication number: 20140339560
    Abstract: A semiconductor device having a structure which can prevent a decrease in electrical characteristics due to miniaturization is provided. The semiconductor device includes, over an insulating surface, a stack in which a first oxide semiconductor layer and a second oxide semiconductor layer are sequentially formed, and a third oxide semiconductor layer covering part of a surface of the stack. The third oxide semiconductor layer includes a first layer in contact with the stack and a second layer over the first layer. The first layer includes a microcrystalline layer, and the second layer includes a crystalline layer in which c-axes are aligned in a direction perpendicular to a surface of the first layer.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Masayuki SAKAKURA, Hideomi SUZAWA
  • Patent number: 8890172
    Abstract: An object of the present invention is to provide an EL display device having high operation performance and reliability. A third passivation film 45 is disposed under the EL element 203 comprising a pixel electrode (anode) 46, an EL layer 47 and a cathode 48, and diffusion of alkali metals from the EL element 203 formed by ink jet method into TFTs is prevented. Further, the third passivation film 45 prevents penetration of moisture and oxygen from the TFTs, and suppress degradation of the EL element 203 by dispersing the heat generated by the EL element 203.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20140332814
    Abstract: Methods of producing arrays of thin crystal grains of layered semiconductors, including the creation of stable atomic-layer-thick to micron-thick membranes of crystalline semiconductors by chemical vapor deposition.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 13, 2014
    Applicant: The University of Houston System
    Inventors: Haibing Peng, Guoxiong Su, Debtanu De
  • Publication number: 20140327006
    Abstract: An active device substrate includes a flexible substrate, an inorganic de-bonding layer, and at least one active device. The flexible substrate has a first surface and a second surface opposite to the first surface, wherein the first surface is a flat surface. The inorganic de-bonding layer covers the first surface of the flexible substrate, and the material of the inorganic de-bonding layer is metal, metal oxide or combination thereof. The active device is disposed on or above the second surface of the flexible substrate.
    Type: Application
    Filed: October 1, 2013
    Publication date: November 6, 2014
    Applicant: AU Optronics Corporation
    Inventor: Tsung-Ying KE
  • Publication number: 20140319524
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making substrates having an antireflective layer, substrates having an antireflective layer, devices including a substrate having an antireflective layer, and the like.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 30, 2014
    Inventors: Blayne Michael Phillips, Peng Jiang
  • Patent number: 8866132
    Abstract: Thin-film transistors and techniques for forming thin-film transistors (TFT). In some embodiments, there is provided a method of forming a TFT, comprising forming a body region of the TFT comprising an organic semiconducting material, and forming a protective layer comprising an organic insulating material. Forming the protective layer comprises contacting the body region of the TFT with a solution comprising the organic insulating material. The organic insulating material is a material that phase separates with the organic semiconducting material when the solution contacts the organic semiconducting material. In other embodiments, there is provided an apparatus comprising a TFT.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: October 21, 2014
    Assignee: Sony Corporation
    Inventor: Akihiro Nomoto
  • Patent number: 8852998
    Abstract: A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 7, 2014
    Assignee: Sandia Corporation
    Inventors: Alfredo M. Morales, Richard J. Anderson, Nancy Y. C. Yang, Jack L. Skinner, Michael J. Rye
  • Publication number: 20140295149
    Abstract: A cured film is formed by using a curable composition comprising a liquid repellent polymer having units (u1) based on a liquid repellent compound represented by the following formula (m1): wherein Cf is a C1-20 fluoroalkyl group or a C1-20 fluoroalkyl group having an etheric oxygen atom between carbon atoms, each of R1 and R2 which are independent of each other, is a hydrogen atom, a C1-6 alkyl group or a phenyl group, X is an oxygen atom, a sulfur atom, a nitrogen atom or NH, n in an integer of from 0 to 4, m is 1 when X is an oxygen atom, a sulfur atom or NH, or 2 when X is a nitrogen atom, Z is R4R5C?CR3—CO—, and each of R3, R4 and R5 which are independent of one another, is a hydrogen atom or a methyl group.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Masahiro ITO, Kaori TSURUOKA
  • Publication number: 20140291680
    Abstract: A silicon member and a method of producing the silicon member are provided. Cracking is suppressed in the silicon member even if the silicon member is used in a condition where it is heated. The silicon member 10 includes a coating layer 11 that coats a surface of the silicon member 10, wherein the coating layer 11 is composed of a product of silicon formed by reaction of the silicon on the surface, and a thickness of the coating layer is 15 nm or more and 600 nm or less. It is preferable that the coating layer is a silicon oxide film or a silicon nitride film.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventor: Yoshinobu Nakada
  • Patent number: 8847223
    Abstract: A method of forming a photosensitive pattern on a substrate with a photosensitive layer disposed thereon may include moving at least one of the substrate and a set of micro-mirrors in a first direction, the set of micro-mirrors being disposed above the substrate and being arranged as an array, the array having a first edge extending in a second direction, the second direction being at an acute angle with respect to the first direction. The method may also include selectively turning on one or more micro-mirrors of the set of micro-mirrors according to a position of the set of micro-mirrors relative to the photosensitive layer, thereby irradiating one or more spot beams on the photosensitive layer. The photosensitive layer exposed by the spot beams is developed to form a photosensitive pattern having an edge portion extending in a third direction crossing the first and second directions.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jung-In Park, Su-Yeon Sim, Sang-Hyun Yun, Cha-Dong Kim, Hi-Kuk Lee
  • Publication number: 20140284604
    Abstract: The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a front surface and a backside surface; integrated circuit features formed on the front surface of the semiconductor substrate; and a polycrystalline silicon layer disposed on the backside surface of the semiconductor substrate.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: Chia-Hao Hsu, Chia-Chen Chen, Tzung-Chi Fu, Tzu-Wei Kao, Yu Chao Lin
  • Publication number: 20140284603
    Abstract: A MEMS apparatus comprising composite vibrating unit and the manufacturing method thereof are disclosed. The vibrating unit includes a stiffness element on which a first material is disposed. A second material being a conductive material is disposed on the first material and is extended to the stiffness element to remove electric charge on first material. When a temperature is changed, a variation direction of a Young's modulus of the first material is opposite to a variation direction of a Young's modulus of the stiffness element. The unique attributes above allow vibrating unit of the MEMS apparatus such as resonator and gyroscope to have stable resonance frequency against the change of temperature.
    Type: Application
    Filed: January 8, 2014
    Publication date: September 25, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Yuan Su, Chao-Ta Huang, Tzung-Ching Lee, Yu-Wen Hsu
  • Publication number: 20140264341
    Abstract: Fabrication methods, device structures, and design structures for a bipolar junction transistor. A dielectric structure is formed that is coextensive with a single crystal semiconductor material of a substrate in an active device region. A semiconductor layer is formed that includes a single crystal section coupled with the active device region. The semiconductor layer has an edge that overlaps with a top surface of the dielectric structure. An intrinsic base layer is formed on the semiconductor layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, David L. Harame, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater
  • Publication number: 20140264342
    Abstract: A semiconductor structure includes a substrate and a resistor provided over the substrate. The resistor includes a first material layer, a second material layer, a first contact structure and a second contact structure. The first material layer includes at least one of a metal and a metal compound. The second material layer includes a semiconductor material. The second material layer is provided over the first material layer and includes a first sub-layer and a second sub-layer. The second sub-layer is provided over the first sub-layer. The first sub-layer and the second sub-layer are differently doped. Each of the first contact structure and the second contact structure provides an electrical connection to the second sub-layer of the second material layer.
    Type: Application
    Filed: February 6, 2014
    Publication date: September 18, 2014
    Applicant: Globalfoundries Inc.
    Inventor: Alexandru Romanescu
  • Patent number: 8822967
    Abstract: Phase change devices, particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. Structure allows application in which an electrical connection can be created between two active terminals, with control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals, allowing use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. Programming control can be placed outside of main signal path through the phase change device, reducing impact of associated capacitance and resistance of the device.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 2, 2014
    Assignee: Agate Logic, Inc.
    Inventors: Louis Charles Kordus, II, Antonietta Oliva, Narbeh Derhacobian, Vei-Han Chan
  • Patent number: 8822995
    Abstract: A display substrate includes a switching transistor electrically connected to a gate line and a data line, the data line extending in a first direction substantially perpendicular to the gate line extending in a second direction, the switching transistor including a switching active pattern comprising amorphous silicon, a driving transistor electrically connected to a driving voltage line and the switching transistor, the driving voltage line extended in the first direction, the driving transistor including a driving active pattern comprising a metal oxide; and a light-emitting element electrically connected to the driving transistor.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: September 2, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chun-Gi You, Kap-Soo Yoon, Gug-Rae Jo, Sung-Hoon Yang, Ki-Hun Jeong, Seung-Hwan Shim, Jae-Ho Choi
  • Publication number: 20140225115
    Abstract: Tensile polycrystalline silicon films having improved resistivity and less variability or more stable resistivity in finished semiconductors are provided. The methods of manufacturing such polycrystalline silicon films include application of protective film or film layer prior to annealing the semiconductor. Such devices and methods lead to improved stress control and resistivity.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Kuang-Hui Tai, Hung-Yu Lin, Meng Shien Hsieh, Teng-Chen Chiu, Keng Hui Su
  • Patent number: 8796687
    Abstract: A method of treating a sheet of semiconducting material comprises forming a sinterable first layer over each major surface of a sheet of semiconducting material, forming a second layer over each of the first layers to form a particle-coated semiconductor sheet, placing the particle-coated sheet between end members, heating the particle-coated sheet to a temperature effective to at least partially sinter the first layer and at least partially melt the semiconducting material, and cooling the particle-coated sheet to solidify the semiconducting material and form a treated sheet of semiconducting material.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Glen Bennett Cook, Prantik Mazumder, Mallanagouda Dyamanagouda Patil, Lili Tian, Natesan Venkataraman
  • Publication number: 20140191236
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 10, 2014
    Applicant: The Board of Trustees of the University of IIIinois
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Patent number: 8772752
    Abstract: An object is to prevent light leakage caused due to misregistration even when the width of a black matrix layer is not expanded to a designed value or larger. One embodiment of the present invention is a semiconductor device including a single-gate thin film transistor in which a first semiconductor layer is sandwiched between a bottom-gate electrode and a first black matrix layer. The first semiconductor layer and the first black matrix layer overlap with each other.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 8, 2014
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Atsushi Hirose, Yoshitaka Yamamoto, Tomohiro Kimura