Passive Components In Ics Patents (Class 257/528)
  • Patent number: 9029980
    Abstract: A semiconductor device includes a semiconductor substrate, an element isolating trench structure that includes an element isolating trench formed in one main surface of the semiconductor substrate, an insulating material that is formed within the element isolating trench, element formation regions that are surrounded by the element isolating trench, and semiconductor elements that are respectively formed in the element formation regions. The element isolating trench includes first element isolating trenches extending in a first direction, second element isolating trenches extending in a second direction that are at a right angle to the first direction, and third element isolating trenches extending in a third direction inclined at an angle ? (0°<?<90°) from the first direction.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: May 12, 2015
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Takao Kaji, Katsuhito Sasaki, Takaaki Kodaira, Yuuki Doi, Minako Oritsu
  • Patent number: 9000562
    Abstract: A method for forming a metal-insulator-metal (MIM) capacitor includes forming a capacitor bottom plate and a metal interconnect feature on a substrate. A dielectric layer having a predetermined thickness is then formed. The dielectric layer has a first portion overlying the capacitor bottom plate and a second portion overlying the metal interconnect feature. The dielectric layer is processed to adjust the thickness of the first portion of the dielectric layer relative the thickness of the second portion of the dielectric layer. Processing can include etching the first portion of the dielectric layer or adding dielectric material to the second portion of the dielectric layer. A capacitor top plate is formed over the first portion of the dielectric layer to complete the MIM structure.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shean-Ren Horng, Kuo-Nan Hou, Feng-Liang Lai
  • Patent number: 8994048
    Abstract: A semiconductor device has a substrate with a first and second recess formed in a surface of the substrate using a wet etch process. The second recess can have a size different from a size of the first recess. A plurality of conductive vias are formed in a surface of the first and second recesses using a dry etch process. A first conductive layer is formed over the surface of the substrate, over curved side walls of the first and second recesses, and electrically connected to the plurality of conductive vias. A first and second semiconductor die are mounted into the first and second recesses respectively. The second semiconductor die can have a size different from a size of the first semiconductor die. The first and second semiconductor die are electrically connected to the first conductive layer. An interconnect structure is electrically connected to the plurality of conductive vias.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JoonYoung Choi, YongHee Kang
  • Publication number: 20150084156
    Abstract: Memory cell architectures and methods of forming the same are provided. An example memory cell can include a switch element and a memory element. A middle electrode is formed between the memory element and the switch element. An outside electrode is formed adjacent the switch element or the memory element at a location other than between the memory element and the switch element. A lateral dimension of the middle electrode is different than a lateral dimension of the outside electrode.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Marcello Ravasio, Samuele Sciarrillo, Andrea Gotti
  • Publication number: 20150084157
    Abstract: According to various embodiments, an electronic structure may be provided, the electronic structure may include: a semiconductor carrier, and a battery structure monolithically integrated with the semiconductor carrier, the battery structure including a plurality of thin film batteries.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: Infineon Technologies AG
    Inventors: Stefan Tegen, Marko Lemke
  • Patent number: 8975677
    Abstract: A decoupling capacitor cell includes: a first decoupling capacitor formed by only a pMOS transistor; and a second decoupling capacitor formed by two metal layers. The decoupling capacitor cell is arranged in an unused region not occupied by basic cells in a cell-based IC and is connected to a power wiring and a ground wiring.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: March 10, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Yoshiharu Kito
  • Patent number: 8975725
    Abstract: A bias circuit according to the present invention includes a resistor layer 2 which is placed above a substrate 1 and connected to a ground potential, and a conductor 4 for forming an inductor 5 placed above the resistor layer 2. Further, a manufacturing method of the bias circuit according to the present invention generates the resistor layer 2 above the substrate 1 and is connected to the ground potential, and generates the conductor 4 for forming the inductor 5 above the resistor layer 2. The present invention can provide a bias circuit and a manufacturing method of the bias circuit that enables easy integration on a semiconductor substrate and prevents parasitic oscillation.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 10, 2015
    Assignee: NEC Corporation
    Inventors: Yasuhiro Hamada, Shuya Kishimoto, Kenichi Maruhashi
  • Patent number: 8970000
    Abstract: A signal transmission arrangement is disclosed. A voltage converter includes a signal transmission arrangement.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: March 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Kerber, Jens-Peer Stengl, Uwe Wahl
  • Publication number: 20150054056
    Abstract: A nonvolatile semiconductor memory device includes a charge storage layer on a first insulating film, a second insulating film which is provided on the charge storage layer, formed of layers, and a control gate electrode on the second insulating film. The second insulating film includes a bottom layer (A) provided just above the charge storage layer, a top layer (C) provided just below the control gate electrode, and a middle layer (B) provided between the bottom layer (A) and the top layer (C). The middle layer (B) has higher barrier height and lower dielectric constant than both the bottom layer (A) and the top layer (C). The average coordination number of the middle layer (B) is smaller than both the average coordination number of the top layer (C) and the average coordination number of the bottom layer (A).
    Type: Application
    Filed: October 3, 2014
    Publication date: February 26, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Naoki YASUDA
  • Patent number: 8963314
    Abstract: Packaged semiconductor product (2) including a first semiconductor device (4A) and a packaging structure with a protective envelope (6) and a first and second external electrode (8,10). The first semiconductor device (4A) has a first substrate (11A) and is provided with a first passivation layer (12A) and a first electronic structure. The first substrate has a first main surface (14). The first substrate (11A) is embedded in the protective envelope (6) and the first main surface (14) faces a first opening (23) of the protective envelope (6). The first electronic structure has a first and a second contact region (20, 22) for electrically contacting the first electronic structure. The first passivation layer (12A) substantially covers the first main surface (14) and the first electronic structure. The protective envelope (6) extends between the first passivation layer (12A) and the first external electrode (8) towards the first contact region (20).
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Eric Pieraerts, Jean-Marc Yannou, Stephane Bellenger, Mickael Pommier
  • Patent number: 8963236
    Abstract: Provided are data storage devices and methods of manufacturing the same. The device may include a plurality of cell selection parts formed in a substrate, a plate conductive pattern covering the cell selection parts and electrically connected to first terminals of the cell selection parts, a plurality of through-pillars penetrating the plate conductive pattern and insulated from the plate conductive pattern, and a plurality of data storage parts directly connected to the plurality of through-pillars, respectively. The data storage parts may be electrically connected to second terminals of the cell selection parts, respectively.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jungwoo Song, Jaekyu Lee
  • Patent number: 8957497
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 17, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8957499
    Abstract: A method of manufacturing a capacitor includes forming a first ceramic film on a first base made of a metal, forming a second ceramic film on a second base made of a metal, forming a first copper electrode pattern and a first copper via-plug on a surface of one of the first and second ceramic films, the electrode pattern and the via-plug being separate from each other, bonding the first and second ceramic films together with the first electrode pattern and the via-plug therebetween, by applying a pulsed voltage between the first base and the second base while the first base and the second base are pressed so that the first ceramic film and the second ceramic film are pressed on each other, and removing the second base.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 17, 2015
    Assignee: Fujitsu Limited
    Inventors: Yoshihiko Imanaka, Hideyuki Amada, Fumiaki Kumasaka
  • Patent number: 8951812
    Abstract: The present disclosure involves a semiconductor device. The semiconductor device includes a substrate. The semiconductor device includes an electronic device positioned over the substrate. The electronic device includes an opening. The semiconductor device includes a shielding device positioned over the substrate and surrounding the electronic device. The shielding device includes a plurality of elongate members. A subset of the plurality of elongate members extend through the opening of the electronic device. At least one of the electronic device and the shielding device is formed in an interconnect structure positioned over the substrate.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsiu-Ying Cho
  • Publication number: 20150035114
    Abstract: An integrated circuit device includes a semiconductor substrate, an active element and a passive element. The active element is made of the semiconductor substrate. The passive element includes a functional element filled in a groove or hole provided in the semiconductor substrate along a thickness direction thereof and is electrically connected to the active element. The functional element has a Si—O bond region obtained by reacting Si particles with an organic Si compound.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Applicant: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Yurina Sekine
  • Patent number: 8946880
    Abstract: A semiconductor system (100) has a first planar leadframe (101) with first leads (102) and pads (103) having attached electronic components (120), the first leadframe including a set of elongated leads (104) bent at an angle away from the plane of the first leadframe; a second planar leadframe (110) with second leads (112) and pads (113) having attached electronic components (114); the bent leads of the first leadframe conductively connected to the second leadframe, forming a conductively linked 3-dimensional network between components and leads in two planes; and packaging material (140) encapsulating the 3-dimensional network.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: February 3, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Richard J. Saye
  • Patent number: 8941213
    Abstract: A semiconductor device includes: a spiral-shaped inductor formed to include a metal wire; and a horseshoe-shaped inductor formed to include the metal wire. The horseshoe-shaped inductor is arranged such that an opening of the horseshoe-shaped inductor is disposed opposite to the spiral-shaped inductor. Accordingly, unnecessary wave (spurious) output from a transmitting unit can be reduced as small as possible.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: January 27, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Takao Kihara
  • Patent number: 8941212
    Abstract: The present disclosure relates to a multi-level integrated inductor that provides for a good inductance and Q-factor. In some embodiments, the integrated inductor has a first inductive structure with a first metal layer disposed in a first spiral pattern onto a first IC die and a second inductive structure with a second metal layer disposed in a second spiral pattern onto a second IC die. The first IC die is vertically stacked onto the second IC die. A conductive interconnect structure is located vertically between the first and second IC die and electrically connects the first metal layer to the second metal layer. The conductive interconnect structure provides for a relatively large distance between the first and second inductive structures that provides for an inductance having a high Q-factor over a large range of frequencies.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Chin-Wei Kuo, Min-Chie Jeng
  • Patent number: 8933514
    Abstract: The orientation polarization (positive and negative) of the Si—N bonds and the Si—O bonds is canceled, thereby enabling to minimize the polarization in a capacitive insulating film. As a result, a silicon oxynitride film with a small voltage secondary coefficient is formed, and is applied as a capacitive insulating film for use in a MIM capacitor. Specifically, the refractive index “n” of the silicon oxynitride film satisfies 1.47?n?1.53, for light with a wavelength of 633 nm.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 13, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Kiyohiko Sato, Ryohei Maeno, Tsuyoshi Fujiwara, Akira Otaguro, Yukino Ishii, Kiyomi Katsuyama, Hidenori Sato, Daichi Matsumoto
  • Patent number: 8916426
    Abstract: Device structures, design structures, and fabrication methods for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A device region is formed in a trench and is coupled with a handle wafer of a semiconductor-on-insulator substrate. The device region extends through a buried insulator layer of the semiconductor-on-insulator substrate toward a top surface of a device layer of the semiconductor-on-insulator substrate. The device region is comprised of lightly-doped semiconductor material. The device structure further includes a doped region formed in the device region and that defines a junction. A portion of the device region is laterally positioned between the doped region and the buried insulator layer of the semiconductor-on-insulator substrate. Another region of the device layer may be patterned to form fins for fin-type field-effect transistors.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Robert J. Gauthier, Jr., Terence B. Hook, Junjun Li, Theodorus E. Standaert, Thomas A. Wallner
  • Publication number: 20140360851
    Abstract: An integrated circuit includes an interconnection part with several metallization levels. An electrically activatable switching device within the interconnection part has an assembly that includes a beam held by a structure. The beam and structure are located within the same metallization level. Locations of fixing of the structure on the beam are arranged so as to define for the beam a pivot point situated between these fixing locations. The structure is substantially symmetric with respect to the beam and to a plane perpendicular to the beam in the absence of a potential difference. The beam is able to pivot in a first direction in the presence of a first potential difference applied between a first part of the structure and to pivot in a second direction in the presence of a second potential difference applied between a second part of the structure.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 11, 2014
    Applicant: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Christian Rivero, Pascal Fornara, Antonio di-Giacomo, Brice Arrazat
  • Patent number: 8907446
    Abstract: An integrated circuit structure with a metal-to-metal capacitor and a metallic device such as a resistor, effuse, or local interconnect where the bottom plate of the capacitor and the metallic device are formed with the same material layers. A process for forming a metallic device along with a metal-to-metal capacitor with no additional manufacturing steps.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Byron L. Williams, Scott K. Montgomery, James Klawinsky, Asad M. Haider
  • Patent number: 8901704
    Abstract: An integrated circuit and a manufacturing method thereof are provided. A chip size can be reduced by forming a memory device in which a ferroelectric capacitor region is laminated on a DRAM. The integrated circuit includes a cell array region having a capacitor, a peripheral circuit region, and a ferroelectric capacitor region being formed on an upper layer of the cell array region and the peripheral circuit region, and having a ferroelectric capacitor device.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8901532
    Abstract: Provided is a non-volatile programmable device including a first terminal, a first threshold switching layer connected to part of the first terminal, a phase change layer connected to the first threshold switching layer, a second threshold switching layer connected to the phase change layer, a second terminal connected to the second threshold switching layer, and third and fourth terminals respectively connected to a side portion of the phase change layer and the other side portion opposite to the side portion of the phase change layer.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Yun Lee, Young Sam Park, Sung Min Yoon, Soonwon Jung, Sang Hoon Cheon, Byoung Gon Yu
  • Patent number: 8896094
    Abstract: Methods and apparatus for forming a semiconductor device package with inductors and transformers using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top die and a bottom die, or between a die and an interposer. An inductor can be formed by a redistribution layer within a bottom device and a micro-bump line above the bottom device connected to the RDL. The inductor may be a symmetric inductor, a spiral inductor, a helical inductor which is a vertical structure, or a meander inductor. A pair of inductors with micro-bump lines can form a transformer.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chung-Yu Lu, Chin-Wei Kuo, Tzuan-Horng Liu, Hsien-Pin Hu, Min-Chie Jeng
  • Patent number: 8890285
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8890286
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8890284
    Abstract: A number of semiconductor chips each include a first main face and a second main face opposite to the first main face. A first encapsulation layer is applied over the second main faces of the semiconductor chips. An electrical wiring layer is applied over the first main faces of the first semiconductor chips. A second encapsulation layer is applied over the electrical wiring layer. The thickness of the first encapsulation layer and the thicknesses of the first semiconductor chips is reduced. The structure can be singulated to obtain a plurality of semiconductor devices.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: November 18, 2014
    Assignee: Infineon Technologies AG
    Inventors: Thomas Kilger, Ulrich Wachter, Dominic Maier, Gottfried Beer
  • Patent number: 8884400
    Abstract: A device includes a metal pad and a passivation layer having a portion overlapping the metal pad. A capacitor includes a bottom capacitor electrode underlying the passivation layer, wherein the bottom capacitor includes the metal pad. The capacitor further includes a top capacitor electrode over the portion of the passivation layer; and a capacitor insulator including the portion of the passivation layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Hsien-Wei Chen, Hung-Yi Kuo, Tung-Liang Shao, Ying-Ju Chen, Tsung-Yuan Yu, Jie Chen
  • Patent number: 8878336
    Abstract: A fuse includes a first conductor, an insulating film on the first conductor, a second conductor on the insulating film, a first plug coupled to the first conductor, a second plug and a third plug each coupled to the second conductor, and a cover film formed on the second conductor and having tensile strength.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Makoto Yasuda, Kazuyoshi Arimura, Yoshiharu Kato
  • Patent number: 8878334
    Abstract: Integrated circuits that include resistors are provided. An integrated circuit resistor may include a conductive structure disposed over a semiconductor substrate. An oxide layer may be interposed between the conductive structure and a top surface of the semiconductor substrate. A shallow trench isolation structure may be formed in the substrate directly beneath the oxide layer. The shallow trench isolation structure may be formed in a given region in the substrate that is contained within a surrounding n-well and a deep n-well. The given region within which the shallow trench isolation structure is formed may exhibit native substrate dopant concentration levels; the given region is neither an n-well nor a p-well. The surrounding n-well and the deep n-well may be reversed biased to help fully deplete the given region so that parasitic capacitance levels associated with the resistor are minimized.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 4, 2014
    Assignee: Altera Corporation
    Inventors: Albert Ratnakumar, Peter Smeys
  • Publication number: 20140319649
    Abstract: A lithium battery includes a cathode, an anode including a component made of silicon, a separator element disposed between the cathode and the anode, an electrolyte, and a substrate. The anode is disposed over the substrate or the anode is integrally formed with the substrate.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 30, 2014
    Inventors: Magdalena Forster, Katharina Schmut, Bernhard Goller, Guenter Zieger, Michael Sorger, Philemon Schweizer, Michael Sternad
  • Patent number: 8860179
    Abstract: The present invention discloses an inductive element formed by through silicon via interconnections. The inductive element formed by means of the special through silicon via interconnection by using through silicon via technology features advantages such as high inductance and density. Moreover, the through silicon via interconnection integrated process forming the inductive element is compatible with the ordinary through silicon interconnection integrated process without any other steps, thus making the process simple and steady. The inductive element using the present invention is applicable to the through silicon via package manufacturing of various chips, especially the package manufacturing of power control chips and radio-frequency chips.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Fudan University
    Inventors: Pengfei Wang, Qingqing Sun, Wei Zhang
  • Patent number: 8853802
    Abstract: A method that includes forming a first layer having a first dopant concentration, the first layer having an integrated circuit region and a micro-electromechanical region and doping the micro-electromechanical region of the first layer to have a second dopant concentration is presented. The method includes forming a second layer having a third dopant concentration overlying the first layer, doping the second layer that overlies the micro-electromechanical region to have a fourth dopant concentration, forming a micro-electromechanical structure in the micro-electromechanical region using the first and second layers, and forming active components in the integrated circuit region using the second layer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 7, 2014
    Assignees: STMicroelectronics, Inc., STMicroelectronics Asia Pacific PTE, Ltd.
    Inventors: Venkatesh Mohanakrishnaswamy, Olivier Le Neel, Loi N. Nguyen
  • Publication number: 20140291800
    Abstract: When a conductive layer occupying a large area is provided in a coiled antenna portion, it has been difficult to supply power stably. A memory circuit portion and a coiled antenna portion are disposed by being stacked together; therefore, it is possible to prevent a current from flowing through a conductive layer occupying a large area included in the memory circuit portion, and thus, power saving can be achieved. In addition, the memory circuit portion and the coiled antenna portion are disposed by being stacked together, and thus, it is possible to use a space efficiently. Therefore, downsizing can be realized.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: Tamae TAKANO, Nobuharu OHSAWA, Kiyoshi KATO
  • Patent number: 8847351
    Abstract: A compact integrated power amplifier is described herein. In an exemplary design, an apparatus includes (i) an integrated circuit (IC) die having at least one transistor for a power amplifier and (ii) an IC package having a load inductor for the power amplifier. The IC die is mounted on the IC package with the transistor(s) located over the load inductor. In an exemplary design, the IC die includes a transistor manifold that is placed over the load inductor on the IC package. The transistor(s) are fabricated in the transistor manifold, have a drain connection in the center of the transistor manifold, and have source connections on two sides of the transistor manifold. The IC die and the IC package may include one or more additional power amplifiers. The transistor(s) for each power amplifier may be located over the load inductor for that power amplifier.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 30, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Guy Klemens, Thomas A Myers, Norman L Frederick, Jr., Yu Zhao, Babak Nejati, Nathan M Pletcher, Aristotele Hadjichristos
  • Patent number: 8847349
    Abstract: An integrated circuit (IC) package including an IC die and a conductive ink printed circuit layer electrically connected to the IC die.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Matthew David Romig, Lance Cole Wright, Leslie Edward Stark, Frank Stepniak, Screenivasan K. Koduri
  • Publication number: 20140284760
    Abstract: Integrated passive devices for silicon on insulator (SOI) FinFET technologies and methods of manufacture are disclosed. The method includes forming a passive device on a substrate on insulator material. The method further includes removing a portion of the insulator material to expose an underside surface of the substrate on insulator material. The method further includes forming material on the underside surface of the substrate on insulator material, thereby locally thickening the substrate on insulator material under the passive device.
    Type: Application
    Filed: March 20, 2013
    Publication date: September 25, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Thomas N. Adam, Balasubramanian Pranatharthi Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20140284764
    Abstract: Provided is a semiconductor package including a substrate, a semiconductor chip and a passive device disposed on the substrate, and a heat slug configured to cover the semiconductor chip and the passive device. The substrate and a first electrode of the passive device are electrically connected to each other, and the heat slug and a second electrode of the passive device are electrically connected to each other. The semiconductor package may include multiple passive devices in which a vertical height of each passive device is greater than a horizontal width thereof. Also disclosed is an electronic system, which may include a power supply unit, a microprocessor unit, a function unit, and a display controller unit to receive one or more power supply voltages from the power supply unit. At least one of the microprocessor unit, the function unit, or the display controller unit may further include the described semiconductor package.
    Type: Application
    Filed: December 3, 2013
    Publication date: September 25, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: JONG-WON LEE
  • Patent number: 8835895
    Abstract: A resistive-change memory element-containing memory device including: a first memory element that includes a first resistive-change layer and a first electrode connected to the first resistive-change layer; and a second memory element that includes a second resistive-change layer and a second electrode connected to the second resistive-change layer, wherein at least one of the thickness and the material of the second resistive-change layer and the area of the second electrode in contact with the second resistive-change layer is different from the corresponding one of the thickness and the material of the first resistive-change layer and the area of the first electrode in contact with the first resistive-change layer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: September 16, 2014
    Assignee: Sony Corporation
    Inventors: Jun Sumino, Shuichiro Yasuda
  • Publication number: 20140252537
    Abstract: In various embodiments, a package arrangement is provided. The package arrangement may include a first package. The package arrangement may further include a through hole package including at least one contact terminal. The first package may include at least one hole in an encapsulant to receive the at least one contact terminal of the through hole package. The received at least one contact terminal may provide a solder contact.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Juergen Schredl, Xaver Schloegel, Klaus Schiess
  • Patent number: 8829582
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 8824163
    Abstract: Provided is a structure and disposing method of a radio frequency (RF) layered module using three dimensional (3D) vertical wiring. A first wafer in the RF layered module having the 3D vertical wiring may include a first RF device and at least one first via-hole. A second wafer may include a second RF device and at least one second via-hole disposed at a location corresponding to the at least one first via-hole. A vertical wiring may connect the at least one first via-hole and the at least one second via-hole. The vertical wiring may be configured to be connected to an external device through a bottom surface of the at least one first via-hole or a top surface of the at least one second via-hole.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Il Kim, In Sang Song, Duck Hwan Kim, Chul Soo Kim, Yun Kwon Park, Jea Shik Shin, Hyung Rak Kim, Jae Chun Lee
  • Patent number: 8822996
    Abstract: A semiconductor device including a memory cell is provided. The memory cell comprises a transistor, a memory element and a capacitor. One of first and second electrodes of the memory element and one of first and second electrodes of the capacitor are formed by a same metal film. The metal film functioning as the one of first and second electrodes of the memory element and the one of first and second electrodes of the capacitor is overlapped with a film functioning as the other of first and second electrodes of the capacitor.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takayuki Abe, Yasuyuki Takahashi
  • Publication number: 20140240944
    Abstract: A microelectronic circuit having at least one component adjacent a carrier which is not a semiconductor or sapphire.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: ANALOG DEVICES TECHNOLOGY
    Inventors: Bernard P. Stenson, Michael Morrissey, Seamus A. Lynch
  • Publication number: 20140239438
    Abstract: A number of semiconductor chips each include a first main face and a second main face opposite to the first main face. A first encapsulation layer is applied over the second main faces of the semiconductor chips. An electrical wiring layer is applied over the first main faces of the first semiconductor chips. A second encapsulation layer is applied over the electrical wiring layer. The thickness of the first encapsulation layer and the thicknesses of the first semiconductor chips is reduced. The structure can be singulated to obtain a plurality of semiconductor devices.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Kilger, Ulrich Wachter, Dominic Maier, Gottfried Beer
  • Patent number: 8815653
    Abstract: Embodiments of a method for packaging cMUT arrays allow packaging multiple cMUT arrays on the same packaging substrate introduced over a side of the cMUT arrays. The packaging substrate is a dielectric layer on which openings are patterned for depositing a conductive layer to connect a cMUT array to VO pads interfacing with external devices. Auxiliary system components may be packaged together with the cMUT arrays. Multiple cMUT arrays and optionally multiple auxiliary system components can be held in place by a larger support structure for batch production. The support structure can be made of an arbitrary size using inexpensive materials.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 26, 2014
    Assignee: Kolo Technologies, Inc.
    Inventor: Yongli Huang
  • Publication number: 20140231954
    Abstract: A memory device includes an array of NAND strings of memory cells. The device includes a plurality of stacks of conductive strips separated by insulating material, including at least a bottom plane of conductive strips, a plurality of intermediate planes of conductive strips, and a top plane of conductive strips. The device includes charge storage structures in interface regions at cross-points between side surfaces of the conductive strips in the plurality of intermediate planes in the stacks and inter-stack semiconductor body elements of a plurality of bit line structures. At least one reference line structure is arranged orthogonally over the stacks, including vertical conductive elements between the stacks in electrical communication with a reference conductor between the bottom plane of conductive strips and a substrate, and linking elements over the stacks connecting the vertical conductive elements. The vertical conductive elements have a higher conductivity than the semiconductor body elements.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Inventor: Hang-Ting Lue
  • Patent number: 8811027
    Abstract: A DC-DC converter includes an insulating substrate with an inductor provided on the top surface thereof, a switching control IC provided therein, and a ground electrode pattern provided on the bottom surface thereof. The ground electrode pattern includes a first pattern and a second pattern separated from each other and a bridge pattern that connects the first and second patterns to each other. A capacitor and the switching control IC is connected to each of the first and second patterns. The bridge pattern faces the inductor and has a smaller width than that of the first and second patterns.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Noboru Kato
  • Patent number: 8809996
    Abstract: An embodiment is a device comprising a substrate, a metal pad over the substrate, and a passivation layer comprising a portion over the metal pad. The device further comprises a metal pillar over and electrically coupled to the metal pad, and a passive device comprising a first portion at a same level as the metal pillar, wherein the first portion of the passive device is formed of a same material as the metal pillar.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Mao Chen, Der-Chyang Yeh, Li-Hsien Huang