With Multiple Collectors Or Emitters Patents (Class 257/560)
  • Patent number: 11152430
    Abstract: The disclosure relates to integrated circuits and methods including one or more rows of transistors. In an embodiment, an integrated circuit includes a row of bipolar transistors including a plurality of first conduction regions, a second conduction region, and a common base between the first conduction regions and the second conduction region. An insulating trench is in contact with each bipolar transistor of the row of bipolar transistors. A conductive layer is on the insulating trench and the common base between the first conduction regions. A spacer layer is between the conductive layer and the first conduction regions.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 19, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Boivin, Jean Jacques Fagot, Emmanuel Petitprez, Emeline Souchier, Olivier Weber
  • Patent number: 10991759
    Abstract: Methods of forming a memory device having an array portion including a plurality of array transistors and a periphery region including peripheral circuit transistor structures of the memory device, where an upper surface of the periphery region and an upper surface of the array portion are planar (or nearly planar) after formation of the peripheral circuit transistor structures and a plurality of memory cells (formed over the array transistors). The method includes forming the peripheral circuit transistor structures in the periphery region, forming the plurality of array transistors in the array portion and forming a plurality of memory cells over respective vertical transistors. Structures formed by the method have planar upper surfaces of the periphery and array regions.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 27, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Sanh D. Tang, David H. Wells
  • Patent number: 10325905
    Abstract: In a constant voltage clamping circuit, a p-type anode region and an n-type pickup region are provided separated from each other in an n?-type well region. In the p-type anode region, a p?-type low-concentration anode region is provided. In the p?-type low-concentration anode region, an n+-type cathode region is provided. A first Zener diode of a highest potential of the constant voltage clamping circuit is formed by a pn junction of the p-type anode region, the p?-type low-concentration anode region and the n+-type cathode region. An n+-type pickup contact region in the n-type pickup region is arranged at a position near the n+-type cathode region and separated farther the n+-type cathode region, from p+-type anode contact region. The n+-type pickup contact region and the p+-type anode contact region are short-circuited.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 18, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Masaru Saito
  • Patent number: 10056372
    Abstract: The present application discloses new approaches to providing “passive-off” protection for a B-TRAN-like device. Even if the control circuitry is inactive, AC coupling uses transient voltage on the external terminals to prevent forward biasing an emitter junction. Preferably the same switches which implement diode-mode and pre-turnoff operation are used as part of the passive-off circuit operation.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 21, 2018
    Assignee: Ideal Power Inc.
    Inventor: William C. Alexander
  • Patent number: 10044967
    Abstract: A method for interacting with a graphical user interface (GUI) of a television operating in a step mode in which movement of a cursor among menu items displayed on the GUI is performed stepwise in accordance with a manipulation of a direction key of the remote controller, the method including receiving, by the television, from a remote controller a signal corresponding to spatial movement of the remote controller detected by the remote controller that instructs the television to switch from (i) the step mode to (ii) a position mode of the GUI in which the movement of the cursor among the menu items is performed in accordance with the spatial movement of the remote controller and switching from the step mode of the GUI to the position mode of the GUI based on the signal.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: August 7, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-yeol Park, Young-hwa Yun
  • Patent number: 9018705
    Abstract: An ESD transistor is provided. The ESD transistor includes a collector region on a substrate, a base contact region on the substrate, an emitter region spaced apart from the base contact region, a sink region disposed vertically below the collector region, and a buried layer disposed horizontally under the sink region.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: April 28, 2015
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Kyong Jin Hwang
  • Patent number: 8847358
    Abstract: A bipolar transistor having an upper surface, comprises a multilevel collector structure formed in a base region of opposite conductivity type and having a first part of a first vertical extent coupled to a collector contact, an adjacent second part having a second vertical extent a third part of a third vertical extent and desirably of a depth different from a depth of the second part, coupled to the second part by a fourth part desirably having a fourth vertical extent less than the third vertical extent. A first base region portion overlies the second part, a second base region portion separates the third part from an overlying base contact region, and other base region portions laterally surround and underlie the multilevel collector structure. An emitter proximate the upper surface is laterally spaced from the multilevel collector structure. This combination provides improved gain, Early Voltage and breakdown voltages.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J Blomberg, Jiang-Kai Zuo
  • Patent number: 8212291
    Abstract: Disclosed is a device structure using an inverse-mode cascoded Silicon-Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) beneficial in applications requiring radiation hardened circuitry. The device comprises a forward-mode common-emitter HBT cascoded with a common-base inverse-mode HBT, sharing a common sub-collector. An exemplary device was measured to have over 20 dB of current gain, and over 30 dB of power gain at 10 GHz, thus demonstrating the use of these circuits for high-frequency circuit applications. In addition, the radiation response and voltage limits were characterized and showed to have negligible performance effects in typical operating conditions. Due to the unique topology, the disclosed device has the benefit of being a more compact cascode design and the additional benefit of providing significantly improved radiation tolerance.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: July 3, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Tushar K. Thrivikraman, Aravind Appaswamy, John D. Cressler
  • Patent number: 8030167
    Abstract: Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Louis D. Lanzerotti, Bradley A. Orner, Jay S. Rascoe, David C. Sheridan, Stephen A. St. Onge
  • Patent number: 8022496
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 8004022
    Abstract: A field effect transistor includes a GaN epitaxial substrate, a gate electrode formed on an electron channel layer of the substrate, and source and drain electrodes arranged spaced apart by a prescribed distance on opposite sides of the gate electrode. The source and drain electrodes are in ohmic contact with the substrate. At an upper portion of the gate electrode, a field plate is formed protruding like a visor to the side of drain electrode. Between the electron channel layer of the epitaxial substrate and the field plate, a dielectric film is formed. The dielectric film is partially removed at a region immediately below the field plate, to be flush with a terminal end surface of the field plate. The dielectric film extends from a lower end of the removed portion to the drain electrode, to be overlapped on the drain electrode.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Norimasa Yafune, John Kevin Twynam
  • Patent number: 7893478
    Abstract: This disclosure concerns a semiconductor storage device comprising a semiconductor layer provided on the insulation layer provided on the semiconductor substrate; a source layer and a drain layer provided in the semiconductor layer; a body provided between the source layer and the drain layer, the body being in an electrically floating state; an emitter layer contacting with the source layer, the emitter layer having an opposite conductive type to the source layer; a word line including the source layer, the drain layer, and the body, the word line being provided to memory cells arrayed in a first direction in a plurality of tow-dimensionally arranged memory cells; a source line connected to the source layers of the memory cells arrayed in the first direction; and a bit line connected to the drain layers of the memory cells arrayed in a second direction intersecting the first direction.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoki Higashi, Takashi Ohsawa, Ryo Fukuda
  • Patent number: 7859082
    Abstract: Emitter and collector regions of the bipolar transistor are formed by doped regions of the same type of conductivity, which are separated by doped semiconductor material of an opposite type of conductivity, the separate doped regions being arranged at a surface of a semiconductor body and being in electric contact with electrically conductive material that is introduced into trenches at the surface of the semiconductor body.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies AG
    Inventor: Matthias Stecher
  • Patent number: 7847374
    Abstract: A semiconductor device comprising a memory region including one or more transistor string arrays, a logic region including one or more logic transistors and an isolation region for isolating the logic transistors. The string array includes a plurality, T, of bipolar junction transistors. The string array includes a common collector region for the T bipolar junction transistors, a common base region for the T bipolar junction transistors, a plurality of emitters, one emitter for each of the T bipolar junction transistors, a number, B, of base contacts for the T bipolar junction transistors where the base contacts electrically couple the common base region and where the number of base contacts, B, is less than the number of transistors, T.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: December 7, 2010
    Inventor: Chih-Hsin Wang
  • Patent number: 7843038
    Abstract: Variable gain amplifiers offering high frequency response with improved linearity and reduced power dissipation are provided. An amplifier is disclosed that is constructed from a one-stage topology with multiple signal paths and compensation networks for improved linearity and stable operation. In this amplifier, improved performance is obtained by replacing single transistor components with enhanced active devices which incorporate local negative feedback. One embodiment of the invention is a transconductance enhancement circuit that improves transconductance and input impedance relative to the prior art. A further development is an enhanced active cascode circuit that provides improved linearity. A high frequency bipolar transistor switch is also disclosed that incorporates lateral PNP transistors as high frequency switches with improved OFF-state to ON-state impedance ratio to realize a variable gain function.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: November 30, 2010
    Assignee: Linear Technology Corporation
    Inventor: Dorin Seremeta
  • Patent number: 7704824
    Abstract: The present invention provides a highly doped semiconductor layer. More specifically, the present invention provides a semiconductor layer that includes at least two impurities. Each impurity is introduced at a level below its respective degradation concentration. In this manner, the two or more impurities provide an additive conductivity to the semiconductor layer at a level above the conductivity possible with any one of the impurities alone, due to the detrimental effects that would be created by increasing the concentration of any one impurity beyond its degradation concentration.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: April 27, 2010
    Assignee: RF Micro Devices, Inc.
    Inventors: Matthew L. Seaford, Arthur E. Geiss, Wayne Lewis, Larry W. Kapitan, Thomas J. Rogers
  • Patent number: 7576409
    Abstract: A wafer comprising at least one high Ft HBT and at least one high BVceo HBT having various collector profiles on a common III-V compound semiconductor based wafer. The N+ implant in the collector varies the collector profiles of individual HBTs on the wafer. The method for preparing the device comprises forming of HBT layers up to and including collector layer on non-silicon based substrate, performing ion implantation, annealing for implant activation, and forming remaining HBT layers.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: August 18, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: Mary Chen, Marko Sokolich
  • Patent number: 7414298
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 7329925
    Abstract: A device for electrostatic discharge (ESD) protection is disclosed. The device for electrostatic discharge protection includes a lateral bipolar transistor and a diode. The semiconductor transistor has an emitter, a base and a collector electrically connected to a first power line (such as Vdd), a second power line (such as Vss) and a bond pad of an integrated circuit respectively. The diode has an n electrode and a p electrode electrically connected to the first power line and the bond pad respectively.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: February 12, 2008
    Assignee: Winbond Electronics Corporation
    Inventor: Jen-Chou Tseng
  • Patent number: 7276744
    Abstract: This invention is intended to provide an HBT capable of achieving, if the HBT is a collector-up HBT, the constriction of the emitter layer disposed directly under an external base layer, and reduction in base-emitter junction capacity, or if the HBT is an emitter-up HBT, reduction in base-collector junction capacity. For the collector-up HBT, window structures around the sidewalls of a collector are used to etch either the emitter layer disposed directly under the external base layer, or an emitter contact layer For the emitter-up HBT, window structures around the sidewalls of an emitter are used to etch either the collector layer disposed directly under the external base layer, or a collector contact layer. In both HBTs, the external base layer is supported by a columnar structure to ensure mechanical strength.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: October 2, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Kenichi Tanaka, Tomonori Tanoue, Hidetoshi Matsumoto, Hiroshi Ohta, Kazuhiro Mochizuki, Hiroyuki Uchiyama
  • Patent number: 7239007
    Abstract: A modified bipolar transistor defined for providing a larger emitter current than a basic emitter current from a basic bipolar transistor is provided. The modified transistor has an improved emitter structure comprising plural divided sub-emitter regions electrically isolated and spatially separated from each other. The plural divided sub-emitter regions may typically have a uniform emitter size identical with a basic emitter size of the basic bipolar transistor. A set of the plural divided sub-emitter regions provides an intended emitter current distinctly larger than the basic emitter current by a highly accurate direct current amplification factor corresponding to an intended emitter-size magnification factor.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: July 3, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Masaru Ohki
  • Patent number: 7235860
    Abstract: A modified bipolar transistor defined for providing a larger emitter current than a basic emitter current from a basic bipolar transistor is provided. The modified transistor has an improved emitter structure comprising plural divided sub-emitter regions electrically isolated and spatially separated from each other. The plural divided sub-emitter regions may typically have a uniform emitter size identical with a basic emitter size of the basic bipolar transistor. A set of the plural divided sub-emitter regions provides an intended emitter current distinctly larger than the basic emitter current by a highly accurate direct current amplification factor corresponding to an intended emitter-size magnification factor.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: June 26, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Masaru Ohki
  • Patent number: 7173320
    Abstract: A lateral bipolar transistor includes an emitter region, a base region, a collector region, and a gate disposed over the base region. A bias line is connected to the gate for applying a bias voltage thereto during operation of the transistor. The polarity of the bias voltage is such as to create an accumulation layer in the base under the gate. The accumulation layer provides a low-resistance path for the transistor base current, thus reducing the base resistance of the transistor.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 6, 2007
    Assignee: Altera Corporation
    Inventor: Irfan Rahim
  • Patent number: 7098113
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 29, 2006
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Patent number: 7075156
    Abstract: Electrostatic discharge (ESD) devices for protection of integrated circuits are described. ESD devices may be configured to provide uniform breakdown of finger regions extending through a first region of a substrate having a first conductivity type and into a second region of the substrate more lightly doped with impurities of the first conductivity type. Such an EDS device may include a collector region having a middle region highly doped with impurities of the first conductivity type. The middle region may be proximate to a layer that is lightly doped with impurities of the first conductivity type and a layer that is doped with impurities of the second conductivity type. The collector region may decrease the breakdown voltage of the EDS device. The lightly doped region may be eliminated in the collector region and an interlayer insulating layer is formed in contact with the top side regions and the middle region.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: July 11, 2006
    Assignee: Marvell International Ltd.
    Inventors: Choy Li, Xin-Yi Zhang
  • Patent number: 7071500
    Abstract: A bipolar semiconductor device including a collector layer covered at a portion of an outer periphery thereof with an insulating film and having a shape extending in an upper direction and a horizontal direction, with a gap being formed between the collector layer and the insulating film, and further including a base layer and an emitter layer disposed over the collector layer, and a manufacturing method of the semiconductor device. Since the collector layer has a shape extending in a portion thereof in the upward direction and the horizontal direction, an external collector region can be deleted, and both the parasitic capacitance and the collector capacitance in the intrinsic portion attributable to the collector can be decreased and, accordingly, a bipolar transistor capable of high speed operation at a reduced consumption power can be constituted.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: July 4, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Makoto Miura, Katsuyoshi Washio, Hiromi Shimamoto
  • Patent number: 6962842
    Abstract: A method of removing a sacrificial emitter feature in a bipolar complementary metal oxide semiconductor (BICMOS) process with a super self-aligned bipolar junction transistor (BJT) is disclosed. According to the new method, a mask layer, such as an oxide deposited using high density plasma (HDP) techniques, is deposited over an extrinsic base layer and over a sacrificial emitter structure. Because of the particular characteristic of the HDP oxide, the deposition of HDP oxide forms a triangular-like structure over the sacrificial emitter structure having a maximum thickness less than the thickness of the HDP oxide over the extrinsic base layer. This facilitates the complete removal of the HDP oxide above the sacrificial emitter layer without the complete removal of the HDP oxide above the extrinsic base layer. This allows the removal of the sacrificial emitter structure while the remaining HDP oxide, serving as a mask, protects the underlying extrinsic base layer.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 8, 2005
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Sang H. Park, Viktor Zekeriya, Larry Wang
  • Patent number: 6906410
    Abstract: A semiconductor device includes a power supply semiconductor chip that has a plurality of current passing electrodes and a plurality of control electrodes. Conductive plates are disposed on the current electrodes and the control electrodes, and extend to regions for external connections. The conductive plates also includes connecting regions that are suspended between the chip and the external connection regions and suppers vibration propagating to the chip. One conductive plate unit for the current passing electrodes and another conductive plate unit for the control electrodes are separately soldered on the corresponding electrodes. Alternatively, only one unit may be soldered on the semiconductor chip, and portions of the unit may be removed to fabricate the device. Because of the absence of wire-bonding steps, the semiconductor chip does not receive impact of wire-bonding during the manufacturing process.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: June 14, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tsutomu Aono, Kikuo Okada
  • Patent number: 6870242
    Abstract: A method including a buried layer formed on a semiconductor substrate, an active region formed adjacent to at least a portion of the buried layer, an isolation structure formed adjacent to at least a portion of the active region, and a gate oxide formed adjacent to at least a portion of the active region. The method also includes a polysilicon layer formed adjacent to at least a portion of the gate oxide having a portion removed to form a polysilicon definition structure that substantially surrounds and defines an emitter contact region. The method also includes forming a self-aligned implant region of the emitter contact region.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: March 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Xiaoju Wu
  • Patent number: 6864538
    Abstract: An ESD protection device encompassing a vertical bipolar transistor that is connected as a diode and has an additional displaced base area. The assemblage has a space-saving configuration and a decreased difference between snapback voltage and breakdown voltage.
    Type: Grant
    Filed: April 14, 2001
    Date of Patent: March 8, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Stephan Mettler, Wolfgang Wilkening
  • Patent number: 6841829
    Abstract: In a BSCR and method of making a BSCR, a npn BJT structure is created and a p+ region is provided that is connected to the collector of the BJT, and one or more of the NBL, sinker and n+ collector of the BJT are partially blocked. In this way the NBL is formed into a comb-like NBL with a plurality of tines in one embodiment. The sinker and n+ collector may also be formed into a plurality islands. Furthermore, the period of the tines and islands may be varied to provide the desired BSCR characteristics.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: January 11, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Ann Concannon, Peter J. Hopper, Marcel ter Beek
  • Patent number: 6798040
    Abstract: An IGBT structure includes successive regions whose conductivities have alternating signs. The structure is dimensioned for punch-through and is provided with two buffer layers. As a result, the component becomes symmetrically blocking and is suitable as a semiconductor switch, e.g., for converters.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: September 28, 2004
    Assignee: Infineon Technologies AG
    Inventor: Daniel Reznik
  • Patent number: 6770953
    Abstract: A bipolar transistor is provided in which the product of base-collector capacitance and collector resistance can be reduced through a layout optimization, which leads to an improvement of the critical transistor parameters. The bipolar transistor has an emitter formed from a plurality of emitter elements, a plurality of base contacts and a plurality of collector contacts, these elements being provided in a specific arrangement with respect to one another for the formation of the transistor layout. The invention provides for the emitter to have at least one closed emitter configuration, the at least one emitter configuration bounding at least one emitter inner space, which can in turn be divided into a plurality of partial spaces. At least one of the base contacts is arranged in the emitter inner space, while at least one other base contact and the collector contacts are arranged outside the emitter configuration.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: August 3, 2004
    Assignee: Infineon Technologies AG
    Inventors: Josef Boeck, Klaus Aufinger, Markus Zeiler
  • Patent number: 6768183
    Abstract: An NPN bipolar transistor and a PNP bipolar transistor are formed in a semiconductor substrate. The NPN bipolar transistor has a p type emitter region, a p type collector region and an n type base region and is formed in an NPN forming region. The PNP bipolar transistor has an n type emitter region, an n type collector region and a p type base region and is formed in a PNP forming region. Only one conductive type burying region is formed in at least one of the NPN forming region and the PNP forming region. A current that flows from the p type emitter region to the n type base region flows in the n type base region in a direction perpendicular to the substrate.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 27, 2004
    Assignee: Denso Corporation
    Inventors: Shigeki Takahashi, Satoshi Shiraki, Hiroaki Himi, Hiroyuki Ban, Osamu Seya
  • Patent number: 6753592
    Abstract: A dual polysilicon emitter, complementary output is provided which utilizes a buried power buss. While providing these advantages, the process is not complicated. The process has the speed performance of the ASSET technology with an easier process to produce. In addition, the process described in the present invention provides additional advantages that the ASSET process does not have.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: June 22, 2004
    Assignee: Micrel, Inc.
    Inventor: John Durbin Husher
  • Patent number: 6703647
    Abstract: A high gain phototransistor uses lateral and vertical transistor structures and a triple base. The base regions of two vertical structures are in the bulk of a semiconductor substrate while the base of a single lateral structure is adjacent a light receiving phototransistor surface. Minority carrier generation extends from the base region of the lateral transistor to the base regions of the vertical transistors and is present in the vertical regions within a diffusion length of the optically generated carriers of the lateral base. The bases of all three transistor structures are electrically connected. The collector electrodes of one of the vertical structures and the lateral structure are electrically connected, while the emitter electrodes of the other of the vertical structures and the lateral structures are electrically connected. Finally, the remaining vertical collector and emitter electrodes are electrically connected via a buried layer adjacent the phototransistor wafer substrate.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: March 9, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Graham A. Garcia, George P. Imthurn
  • Patent number: 6703685
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 9, 2004
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 6674147
    Abstract: Formed on the surface of an n-type semiconductor layer (21) taken as a collector region is a base region (22) consisting of a p-type region, and formed in the p-type region is an emitter region (23) consisting of an n+-type region. Further, provided in the base region is a base electrode connecting portion (24) consisting of an n+-type region, and a base electrode (26) is connected to the surface of the base electrode connecting portion, and an emitter electrode (27) and a collector electrode (28) are provided and connected electrically to the emitter region and the collector region (21), respectively. As a result, a semiconductor device is obtained which has the transistor in which the reduction in power consumption with a high withstand voltage can be achieved, and the fast switching speed is possible and the large current is obtained. Further a voltage-drive type bipolar transistor such as a digital transistor is obtained which is small in load capacity while establishing a desired drive voltage.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: January 6, 2004
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 6664609
    Abstract: Disclosed is a circuit layout of a differential amplification circuit that constitutes a Gilbert cell, in which two multiple finger bipolar transistors forming a differential amplifier are positioned substantially axially symmetrical to each other. The longitudinal direction of each finger is orthogonal to the axis of symmetry. A wiring connected to an emitter electrode of each one of the transistors is laid so as to extend in a direction opposite to the other one of the transistors.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: December 16, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junji Ito, Ikuo Imanishi
  • Patent number: 6624502
    Abstract: A substrate potential limiting device for an integrated circuit that includes a semiconductor substrate is provided. The device includes at least one unidirectional element connected between a substrate contact on the semiconductor substrate and a reference potential. The unidirectional element may be a bipolar transistor. The bipolar transistor includes a base and a collector connected to the at least one substrate contact and an emitter connected to the reference potential.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: September 23, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventor: Filippo Alagi
  • Patent number: 6570240
    Abstract: In order to form a semiconductor device including a lateral bipolar transistor which is a match in the device performance for a vertical bipolar transistor, an electrically conductive film which is formed by filling a trench reaching a buried oxide film in an SOI substrate with an electrically conductive film is utilized for an emitter and/or a collector, whereby a bipolar transistor is formed through a simple process.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: May 27, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takasumi Ohyanagi, Atsuo Watanabe
  • Patent number: 6566733
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: May 20, 2003
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Publication number: 20020149089
    Abstract: A transistor includes a substrate region (14) of a first type (P) of conductivity in a semiconductor material layer of the same type (P) of conductivity, at least a first contact region (13) of the first type (P+) of conductivity inside the substrate region (14) and adjacent to a first terminal (C) of the transistor, a well (11) of second type (N) of conductivity placed inside the substrate region (14), wherein the well (11) of second type (N) of conductivity includes at least a second contact region (12) of a second type of conductivity (N+) adjacent to a region of a second terminal (B) of the transistor, and a plurality of third contact regions (10) of the first type of conductivity (P+) adjacent to a plurality of regions of a third terminal (E1, . . . , E3) of the transistor interposed each one (10) and other (12) by proper insulating shapes (20).
    Type: Application
    Filed: December 27, 2001
    Publication date: October 17, 2002
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Loris Vendrame, Paolo Caprara, Giorgio Oddone, Antonio Barcella
  • Patent number: 6384433
    Abstract: A voltage variable resistor formed on heterojunction bipolar transistor epitaxial material includes a current channel made on emitter material. Emitter mesas separated by a recess provide the contacts for the voltage variable resistor. Each mesa is topped with emitter metal forming the resistor contacts. The emitter mesas are layered on top of the current channel that is layered atop of a base layer. The voltage variable resistor's control contact is provided by a base contact located on the base layer and separated from the current channel.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 7, 2002
    Assignee: RF Micro Devices, Inc.
    Inventors: Curtis A. Barratt, Arthur E. Geissberger, Larry W. Kapitan, Michael T. Fresina, Ramond Jeffrey Vass
  • Patent number: 6365957
    Abstract: An object of the present invention is to provide a lateral bipolar transistor having a high current driving capacity and a high current amplification factor as well as a high cut-off frequency. A device area 13 surrounded by an isolating insulation layer is formed on the surface of a semiconductor substrate 11. A base area 15 is formed in the device area 13 to a specified depth from the surface of the semiconductor substrate 11. A core insulation layer 25 is formed in the base area 15 with a depth shallower than the base area 15 from the surface of the semiconductor substrate 11. Around the core insulation layer 25, there are formed emitter areas 26. A collector area 17 is formed at a specified distance from the emitter area 26. Since the bottom area of the emitter area 26 is reduced by being provided with the core insulation layer 25 without reducing the side area of the emitter area 26, the current driving capacity and the current amplification factor of the transistor are thus improved.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: April 2, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Miyakawa
  • Patent number: 6323538
    Abstract: An n-type first single crystal silicon layer is provided as collector region over a silicon substrate with a first insulating film interposed therebetween. A p-type first polysilicon layer is provided as an extension of a base region over the first single crystal silicon layer with a second insulating film interposed therebetween. A p-type second single crystal silicon layer is provided as intrinsic base region on a side of the first single crystal silicon layer, second insulating film and first polysilicon layer. An n-type third single crystal silicon layer is provided as emitter region on a side of the second single crystal silicon layer. And an n-type third polysilicon layer is provided on the first insulating film as extension of an emitter region and is connected to a side of the third single crystal silicon layer.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: November 27, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takeshi Fukuda, Daisuke Ueda, Kaoru Inoue, Katsunori Nishii, Toshinobu Matsuno
  • Patent number: 6303973
    Abstract: A power transistor comprising a collector region formed in a semiconductor substrate, a base region formed within the collector region, and a hoop-shaped emitter region formed within the base region. The hoop-shaped emitter region divides the base region into an external section and at least one internal section surrounded by the emitter region on the substrate surface, the external and internal base sections being connected within the substrate. A base contact is formed on the surface of each internal base section surrounded by the emitter region. By this design, the electric current is more uniform within the emitter region, and safe operating area (SOA) destruction can be prevented. The invention is also directed to semiconductor integrated circuit devices using the above power transistor, and a method of forming the same.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: October 16, 2001
    Assignee: Rohm Co., Ltd.
    Inventors: Eiji Nakagawa, Seiichi Yamamoto
  • Publication number: 20010017398
    Abstract: A substrate potential limiting device for an integrated circuit that includes a semiconductor substrate is provided. The device includes at least one unidirectional element connected between a substrate contact on the semiconductor substrate and a reference potential. The unidirectional element may be a bipolar transistor. The bipolar transistor includes a base and a collector connected to the at least one substrate contact and an emitter connected to the reference potential.
    Type: Application
    Filed: February 27, 2001
    Publication date: August 30, 2001
    Applicant: STMicroelectronics S.r. I.
    Inventor: Filippo Alagi
  • Patent number: 6245609
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6236072
    Abstract: A power transistor includes a plurality of emitter regions and a plurality of base contacts. In order to decrease base resistance, each of the plurality of emitter regions is adjacent to at least four base contacts. The entire transistor includes multiple emitter regions, e.g., greater than or equal to about 1,000 with no upper limit wherein the actual number of emitter regions is dependent on the desired current carrying capacity. The emitter regions are directly connected in parallel to the high current carrying metal layer of the transistor through vias or metal contact studs. The size of the emitter regions should be made as small as the process design rules will allow in order to allow an increase in the perimeter to area ratio of the emitter region which, for a given current, decreases the peak current density.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: May 22, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Lars Tilly, Per-Olof Magnus Brandt