Silicide Of Refractory Or Platinum Group Metal Patents (Class 257/757)
  • Patent number: 7719035
    Abstract: A low contact resistance CMOS integrated circuit and method for its fabrication are provided. The CMOS integrated circuit comprises a first transition metal electrically coupled to the N-type circuit regions and a second transition metal different than the first transition metal electrically coupled to the P-type circuit regions. A conductive barrier layer overlies each of the first transition metal and the second transition metal and a plug metal overlies the conductive barrier layer.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: May 18, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Paul R. Besser
  • Patent number: 7704871
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W Beach
  • Patent number: 7701059
    Abstract: A process for forming a local interconnect includes applying a layer of metal over a semiconductor layer. A layer of metal silicide is formed over the layer of metal. The layer of metal silicide is patterned to define the boundaries of the local interconnect. The metal silicide is reacted with the layer of metal to form a composite structure. The composite structure includes the metal silicide, another metal silicide formed as silicon from the metal silicide reacts with the underlying layer of metal and an intermetallic compound of the metal from the layer of metal and metal from the layer of metal silicide. The unreacted layer of metal is removed with the composite structure remaining as the local interconnect.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Jigish D. Trivedi
  • Patent number: 7679192
    Abstract: A semiconductor device includes a semiconductor substrate, an interlayer insulating film formed over the substrate, a trench formed in the interlayer insulating film, a cover film formed over the inside surface of the trench, a barrier layer formed over the cover film; and a metal line formed over the barrier layer which fills and seals the trench. The metal line is in direct contact with the semiconductor substrate.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 16, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Han-Choon Lee
  • Patent number: 7649263
    Abstract: A semiconductor device including at least one conductive structure is provided. The conductive structure includes a silicon-containing conductive layer, a refractory metal salicide layer and a protection layer. The refractory metal salicide layer is disposed over the silicon-containing conductive layer. The protection layer is disposed over the refractory metal salicide layer. Another semiconductor device including at least one conductive structure is also provided. The conductive structure includes a silicon-containing conductive layer, a refractory metal alloy salicide layer and a protection layer. The refractory metal alloy salicide layer is disposed over the silicon-containing conductive layer. The refractory metal alloy salicide layer is formed from a reaction of silicon of the silicon-containing conductive layer and a refractory metal alloy layer which includes a first refractory metal and a second refractory metal. The protection layer is disposed over the refractory metal alloy salicide layer.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: January 19, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Yu-Lan Chang, Chao-Ching Hsieh, Yi-Yiing Chiang, Yi-Wei Chen, Tzung-Yu Hung
  • Patent number: 7649232
    Abstract: A p-channel MOS transistor includes source and drain regions of p-type formed in a silicon substrate at respective lateral sides of a gate electrode wherein each of the source and drain regions of p-type includes any of a metal film region and a metal compound film region as a compressive stress source accumulating therein a compressive stress.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 19, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Naoyoshi Tamura, Kazuo Kawamura, Akira Katakami
  • Patent number: 7638433
    Abstract: A method of fabricating a semiconductor device includes forming a preliminary gate pattern on a semiconductor substrate. The preliminary gate pattern includes a gate oxide pattern, a conductive pattern, and a sacrificial insulating pattern. The method further includes forming spacers on opposite sidewalls of the preliminary gate pattern, forming an interlayer dielectric pattern to expose the sacrificial insulating pattern, removing the sacrificial insulating pattern to form an opening to expose the conductive pattern, transforming the conductive pattern into a metal silicide layer and forming a metal barrier pattern along an inner profile of the opening and a metal conductive pattern to fill the opening including the metal barrier pattern. The metal silicide layer and the metal conductive pattern constitute a gate electrode.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Yun, Gil-Heyun Choi, Byung-Hee Kim, Hyun-Su Kim, Eun-Ok Lee
  • Patent number: 7618890
    Abstract: A method for forming a metal/metal oxide structure that includes forming metal oxide regions, e.g. ruthenium oxide regions, at grain boundaries of a metal layer, e.g., platinum. Preferably, the metal oxide regions are formed by diffusion of oxygen through grain boundaries of the metal layer, e.g., platinum, to oxidize a metal layer thereon, e.g, ruthenium layer. The structure is particularly advantageous for use in capacitor structures and memory devices, such as dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: November 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Publication number: 20090267231
    Abstract: In one embodiment, a lower interlayer dielectric layer, and first and second landing pads penetrating the lower interlayer dielectric layer are formed on a substrate. Interconnection patterns covering the second landing pads are formed on the lower interlayer dielectric layer. An etch stop layer is formed over the interconnection patterns. An upper interlayer dielectric layer filling a gap region between the interconnection patterns is formed on the etch stop layer. The upper interlayer dielectric layer is patterned to form a preliminary contact hole between the interconnection patterns, where the etch stop layer is exposed at the bottom of the preliminary contact hole. The preliminary contact hole is extended and the etch stop layer exposed by the extended preliminary contact hole is removed to form a first contact hole exposing the first landing pad. A buried contact plug is then formed within the first contact hole.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Si-Youn KIM
  • Publication number: 20090218695
    Abstract: A semiconductor structure and methods of making the same. The semiconductor structure includes a substrate having a silicide region disposed above a doped region, and a metal contact extending through the silicide region and being in direct contact with the doped region.
    Type: Application
    Filed: May 12, 2009
    Publication date: September 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Patent number: 7566651
    Abstract: A semiconductor structure and methods of making the same. The semiconductor structure includes a substrate having a silicide region disposed above a doped region, and a metal contact extending through the silicide region and being in direct contact with the doped region.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Chih-Chao Yang, Haining S Yang
  • Patent number: 7557446
    Abstract: A semiconductor device formed by the steps of forming a contact hole in an insulation film so as to extend therethrough and so as to expose a conductor body at a bottom part of the contact hole, forming a barrier metal film of tungsten nitride on the bottom part and a sidewall surface of the contact hole with a conformal shape to the bottom part and the sidewall surface of the contact hole, forming a tungsten layer so as to fill the contact hole via the barrier metal film, and forming a tungsten plug in the contact hole by the tungsten layer by polishing away a part of the tungsten film on the insulation film until a surface of the insulation film is exposed, wherein there is conducted a step of cleaning a surface of the conductor body prior to the forming step of the barrier metal film.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 7, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Takeshi Ito, Satoshi Inagaki, Yasunori Uchino, Kazuo Kawamura
  • Patent number: 7538016
    Abstract: The present invention describes a method including the steps of providing a single crystal semiconductor substrate, forming a layer of rare earth silicide on a surface of the semiconductor substrate, forming a first layer of insulating material on the layer of rare earth silicide, forming a layer of electrically conductive material on the first layer of insulating material, and forming a second layer of insulating material on the layer of electrically conductive material. In one embodiment the step of forming the layer of rare earth silicide includes depositing a layer of rare earth metal on a surface of the semiconductor substrate depositing a layer of insulating material on the layer of rare earth metal, and annealing the structure to form a layer of rare earth silicide in conjunction with the surface of the semiconductor substrate and a rare earth doped insulating layer in conjunction with the layer of insulating material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 26, 2009
    Assignee: Translucent, Inc.
    Inventors: Petar B. Atanakovic, Michael Lebby
  • Patent number: 7485569
    Abstract: A printed circuit board having embedded chips, composed of a central layer having an embedded chip, an insulating layer formed on one surface or both surfaces of the central layer and having a via hole filled with conductive ink, and a circuit layer formed on the insulating layer and having a via hole and a circuit pattern electrically connected to the chip of the central layer through the via hole of the insulating layer. In addition, a method of fabricating a printed circuit board including embedded chips is provided.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: February 3, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Sup Ryu, Doo Hwan Lee, Jin Yong Ahn, Myung Sam Kang, Suk Hyeon Cho
  • Patent number: 7479682
    Abstract: A field effect transistor having metallic silicide layers is formed in a semiconductor layer on an insulating layer of an SOI substrate. The metallic silicide layers are composed of refractory metal and silicon. The metallic silicide layers extend to bottom surfaces of source and drain regions. A ratio of the metal to the silicon in the metallic silicide layers is X to Y. A ratio of the metal to the silicon of metallic silicide having the lowest resistance among stoichiometric metallic silicides is X0 to Y0. X, Y, X0 and Y0 satisfy the following inequality: (X/Y)>(X0/Y0).
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: January 20, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Norio Hirashita, Takashi Ichimori
  • Publication number: 20090001588
    Abstract: Methods and apparatus relating to a single silicon wafer having metal and alloy silicides are described. In one embodiment, two different silicides may be provided on the same wafer. Other embodiments are also disclosed.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 1, 2009
    Inventor: Pushkar Ranade
  • Patent number: 7468557
    Abstract: An ultra thin film with very low electrical resistance is produced by forming a substrate of a substrate material which forms a metastable bond and depositing a conducting film on the substrate in a vacuum environment in which a base pressure is reduced to a value below 10?5 Torr. The film is a metal, metallic alloy, or multilayered film which includes at least one metallic layer. A 0.1 nm thick manganese film deposited in this way on a germanium substrate has a resistivity which at room temperature is lower than the resistivity of metal films of aluminum and copper with the same thickness prepared the same way.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: December 23, 2008
    Assignee: Syracuse University
    Inventor: Klaus Schroder
  • Publication number: 20080284025
    Abstract: The invention includes an electrically conductive line, methods of forming electrically conductive lines, and methods of reducing titanium silicide agglomeration in the fabrication of titanium silicide over polysilicon transistor gate lines. In one implementation, a method of forming an electrically conductive line includes providing a silicon-comprising layer over a substrate. An electrically conductive layer is formed over the silicon-comprising layer. An MSixNy-comprising layer is formed over the electrically conductive layer, where “x” is from 0 to 3.0, “y” is from 0.5 to 10, and “M” is at least one of Ta, Hf, Mo, and W. An MSiz-comprising layer is formed over the MSixNy-comprising layer, where “z” is from 1 to 3.0. A TiSia-comprising layer is formed over the MSiz-comprising layer, where “a” is from 1 to 3.0.
    Type: Application
    Filed: July 15, 2008
    Publication date: November 20, 2008
    Inventors: Qi Pan, Jiutao Li, Yongjun Jeff Hu, Allen McTeer
  • Patent number: 7446043
    Abstract: A contact structure having silicide layers, a semiconductor device employing the same, and methods of fabricating the contact structure and semiconductor device are provided. The contact structure includes a first conductive region and a second conductive region on a substrate. An insulating layer covers the first and second conductive regions. A first contact hole and a second contact hole are formed through the insulating layer and expose the first and second conductive regions, respectively. A first silicide layer having a first thickness is on the first conductive region exposed by the first contact hole. A second silicide layer having a second thickness different than the first thickness is on the second conductive region exposed by the second contact hole.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: November 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Min Park, Byung-Yoon Kim
  • Patent number: 7436067
    Abstract: A method for forming a metal/metal oxide structure that includes forming metal oxide regions, e.g., ruthenium oxide regions, at grain boundaries of a metal layer, e.g., platinum. Preferably, the metal oxide regions are formed by diffusion of oxygen through grain boundaries of the metal layer, e.g., platinum, to oxidize a metal layer thereon, e.g., ruthenium layer. The structure is particularly advantageous for use in capacitor structures and memory devices, such as dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: October 14, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Patent number: 7432559
    Abstract: A semiconductor structure includes a first silicon-containing layer comprising an element selected from the group consisting essentially of carbon and germanium wherein the silicon-containing layer has a first atomic percentage of the element to the element and silicon, a second silicon-containing layer comprising the element over the first silicon-containing layer, and a silicide layer on the second silicon-containing layer. The element in the second silicon-containing layer has a second atomic percentage of the element to the element and silicon, wherein the second atomic percentage is substantially lower than the first atomic percentage.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 7, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jerry Lai, Chii-Ming Wu, Chih-Wei Chang, Shau-Lin Shue
  • Publication number: 20080237867
    Abstract: A semiconductor structure and methods of making the same. The semiconductor structure includes a substrate having a suicide region disposed above a doped region, and a metal contact extending through the silicide region and being in direct contact with the doped region.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Publication number: 20080239792
    Abstract: A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: International Business Machines Corporation
    Inventors: Clement H. Wann, Haining S. Yang
  • Publication number: 20080230911
    Abstract: A semiconducting structure includes a thinned silicon substrate (110), a silicide layer (120) over the thinned silicon substrate, a metal layer (130) over the silicide layer, a solder interface layer (140) over the metal layer, and a cap layer (150) over the solder interface layer. The thinned silicon substrate is no thicker than approximately 500 micrometers. The silicide layer is formed using a rapid thermal processing procedure that locally heats the interface between the metal layer and the silicon substrate but causes no more than negligible thermal impact to other areas of the silicon wafer.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Inventor: Eric J. Li
  • Patent number: 7414291
    Abstract: A method includes the steps of: implanting boron into a surface region of a silicon substrate to form a p+ diffused region; implanting indium into the surface of the p+ diffused region, to form an indium-implanted layer; forming a contact metal layer on the indium-implanted layer; and reacting silicon in the silicon substrate including the indium-implanted layer with metal in the contact metal layer to form a titanium silicide layer.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: August 19, 2008
    Assignee: Elpida Memory, Inc.
    Inventors: Shigetomi Michimata, Ryo Nagai, Satoru Yamada, Yoshitaka Nakamura, Ryoichi Nakamura
  • Patent number: 7400042
    Abstract: A metallization layer that includes a tantalum layer located on the component, a tantalum silicide layer located on the tantalum layer, and a platinum silicide layer located on the tantalum silicide layer. In another embodiment the invention is a component having a metallization layer on the component. In another embodiment, the metallization layer has a post-annealing adhesive strength to silicon of at least about 100 MPa as measured by a mechanical shear test after exposure to a temperature of about 600° C. for about 30 minutes, and the metallization layer remains structurally intact after exposure to a temperature of about 600° C. for about 1000 hours. The metallization is useful for bonding with brazing alloys.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: July 15, 2008
    Assignee: Rosemount Aerospace Inc.
    Inventors: Odd Harald Steen Eriksen, Kimiko Jane Childress
  • Publication number: 20080136028
    Abstract: The invention includes a method of forming a metal-containing film over a surface of a semiconductor substrate. The surface is exposed to a supercritical fluid. The supercritical fluid has H2, at least one H2-activating catalyst, and at least one metal-containing precursor dispersed therein. A metal-containing film is formed across the surface of the semiconductor substrate from metal of the at least one metal-containing precursor. The invention also includes semiconductor constructions having metal-containing layers which include one or more of copper, cobalt, gold and nickel in combination with one or more of palladium, platinum, iridium, rhodium and ruthenium.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 12, 2008
    Inventors: Chien M. Wai, Hiroyuki Ohde, Steve Kramer
  • Patent number: 7378720
    Abstract: A semiconductor die having an integrated circuit region formed in a substrate comprises at least one die-corner-circuit-forbidden (DCCF) region disposed in the substrate, proximate to the integrated circuit region; and at least one registration feature formed within the at least one DCCF region. The at least one registration feature comprises a structure selected from the group consisting of a laser fuse mark, an alignment mark, and a monitor mark.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: May 27, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-min Fu, Huang-Sheng Lin, Yu-Chyi Harn, Hsien-Wei Chen
  • Patent number: 7368801
    Abstract: A fuse link is formed between first and second terminals. The first and second terminals and fuse link have a polysilicon layer and a layer formed on the polysilicon layer and containing a metal element. At least a portion of the fuse link is an amorphous silicon layer.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: May 6, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuaki Otsuka, Takahiko Sasaki, Shuso Fujii
  • Patent number: 7348265
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the semiconductor device. The semiconductor device (100), among other possible elements, includes a gate oxide (140) located over a substrate (110), and a silicided gate electrode (150) located over the gate oxide (140), wherein the silicided gate electrode (150) includes a first metal and a second metal.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 25, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Jiong-Ping Lu
  • Patent number: 7332435
    Abstract: A method of forming a semiconductor device comprising: forming a gate dielectric layer over a channel region; forming a gate electrode on the gate dielectric layer; forming source/drain regions substantially aligned with respective edges of the gate electrode with the channel region therebetween; forming a thin metal layer on the source/drain regions; forming a metal alloy layer on the thin metal layer; and transforming the thin metal layer into a low resistance metal silicide.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 19, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hsueh Shih, Shih-Wei Chou, Hung-Wen Su, Minghsing Tsai
  • Patent number: 7294893
    Abstract: A method for use in the fabrication of a gate electrode includes providing a gate oxide layer and forming a titanium boride layer on the oxide layer. An insulator cap layer is formed on the titanium boride layer and thereafter, the gate electrode is formed from the titanium boride layer. A barrier layer may be formed on the oxide layer prior to forming the titanium boride layer with the gate electrode being formed from the barrier layer and the titanium boride layer. Further, a polysilicon layer may be formed on the gate oxide layer prior to forming the titanium boride layer with the gate electrode being formed from the titanium boride layer and the polysilicon layer. Yet further, a polysilicon layer may be formed on the gate oxide layer and a barrier layer formed on the polysilicon layer prior to forming the titanium boride layer. The gate electrode is then formed from the polysilicon layer, the barrier layer, and the titanium boride layer.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: November 13, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Ravi Iyer
  • Patent number: 7294570
    Abstract: A method of making a contact plug and a metallization line structure is disclosed in which a substrate is provided with at least one contact hole within an insulation layer situated on a semiconductor substrate of a semiconductor wafer. A first metal layer is deposited upon the semiconductor wafer within the contact hole. A planarizing step isolates the first metal layer within the insulation layer in the form of a contact plug within the contact hole. A second metal layer is then deposited upon the semiconductor wafer over and upon the contact plug. Metallization lines are patterned and etched from the second metal layer. The contact hole may also be lined with a refractory metal nitride layer, with a refractory metal silicide interface being formed at the bottom of the contact hole as an interface between the contact plug and a silicon layer on the semiconductor substrate.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: November 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Richard L. Elliott, Guy F. Hudson
  • Patent number: 7282803
    Abstract: An electronic circuit includes a substrate. A capacitor and at least one semiconductor component are supported by a surface of the substrate. A substantially planar screen, oriented parallel to the surface of the substrate and made of metallic material, is placed between the capacitor and the semiconductor component. Preferably, the semiconductor component is placed in proximity to the surface of the substrate and several superposed layers of insulating material cover the surface of the substrate and the semiconductor component. The capacitor is then placed within at least one layer of insulating material above the semiconductor component, and the screen is placed within an intermediate layer of insulating material between the layer incorporating the capacitor and the surface of the substrate.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: October 16, 2007
    Assignee: STMicroelectronics S. A.
    Inventors: Andréa Cathelin, Christophe Bernard, Philippe Delpech, Pierre Troadec, Laurent Salager, Christophe Garnier
  • Patent number: 7279732
    Abstract: A method of enhanced atomic layer deposition is described. In an embodiment, the enhancement is the use of plasma. Plasma begins prior to flowing a second precursor into the chamber. The second precursor reacts with a prior precursor to deposit a layer on the substrate. In an embodiment, the layer includes at least one element from each of the first and second precursors. In an embodiment, the layer is TaN. In an embodiment, the precursors are TaF5 and NH3. In an embodiment, the plasma begins during the purge gas flow between the pulse of first precursor and the pulse of second precursor. In an embodiment, the enhancement is thermal energy. In an embodiment, the thermal energy is greater than generally accepted for ALD (>300 degrees Celsius). The enhancement assists the reaction of the precursors to deposit a layer on a substrate.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Shuang Meng, Garo J. Derderian, Gurtej Singh Sandhu
  • Patent number: 7271486
    Abstract: A method for providing a low resistance non-agglomerated Ni monosilicide contact that is useful in semiconductor devices. Where the inventive method of fabricating a substantially non-agglomerated Ni alloy monosilicide comprises the steps of: forming a metal alloy layer over a portion of a Si-containing substrate, wherein said metal alloy layer comprises of Ni and one or multiple alloying additive(s), where said alloying additive is Ti, V, Ge, Cr, Zr, Nb, Mo, Hf, Ta, W, Re, Rh, Pd or Pt or mixtures thereof; annealing the metal alloy layer at a temperature to convert a portion of said metal alloy layer into a Ni alloy monosilicide layer; and removing remaining metal alloy layer not converted into Ni alloy monosilicide. The alloying additives are selected for phase stability and to retard agglomeration. The alloying additives most efficient in retarding agglomeration are most efficient in producing silicides with low sheet resistance.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, James M. E. Harper, Christian Lavoie
  • Patent number: 7244996
    Abstract: A field effect transistor having metallic silicide layers is formed in a semiconductor layer on an insulating layer of an SOI substrate. The metallic silicide layers are composed of refractory metal and silicon. The metallic silicide layers extend to bottom surfaces of a source and a drain regions. A ratio of the metal to the silicon in the metallic silicide layers is X to Y. A ratio of the metal to the silicon of metallic silicide having the lowest resistance among stoichiometaric metallic silicides is X0 to Y0. X, Y, X0 and Y0 satisfy the following inequity: (X/Y)>(X0/Y0).
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: July 17, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Norio Hirashita, Takashi Ichimori
  • Publication number: 20070145492
    Abstract: A method of manufacturing a semiconductor device includes forming an insulating layer over the semiconductor substrate and the gate electrode. An insulating layer may have a via hole connected to the semiconductor substrate or the gate electrode and a trench connected to the via hole. A first barrier layer and a second barrier layer may be formed. The first barrier layer and the second barrier layer may be annealed to form a silicide and combine the first barrier layer and the second barrier layer to form a metal compound.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 28, 2007
    Inventor: Chee-Hong Choi
  • Patent number: 7233037
    Abstract: A solid-state imaging device including a photoelectric conversion portion and a charge transfer portion equipped with charge transfer electrodes to transfer the charge generated in the photoelectric conversion portion, wherein the charge transfer portion is provided with a charge transfer electrodes having a first electrode including a first layer electric conductive film, and a second electrode having a second layer electric conductive film provided contiguously to the first electrode with an electrode insulating film therebetween, and the first electrode is coated with a silicon oxide film that is the electrode insulating film formed by side wall oxidation in the state that the upside is coated with an antioxidizing film so as to coat the side wall.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: June 19, 2007
    Assignee: Fujifilm Corporation
    Inventors: Yousuke Nakahashi, Hiroaki Takao, Makoto Shizukuishi
  • Patent number: 7224046
    Abstract: A multilayer wiring board (X1) comprises a core portion (100) and out-core wiring portion (30). The core portion (100) comprises a carbon fiber reinforced portion (10) composed of a carbon fiber material (11) and resin composition (12), and an in-core wiring portion (20) which has a laminated structure of at least one insulating layer (21) containing a glass fiber material (21a) and a wiring pattern (22) composed of a conductor having an elastic modulus of 10 to 40 GPa and which is bonded to the carbon fiber reinforced portion (10). The out-core wiring portion (30) has a laminated structure of at least one insulating layer (31) and a wiring pattern (32) and is bonded to the core portion (100) at the in-core wiring portion (20).
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 29, 2007
    Assignee: Fujitsu Limited
    Inventors: Tomoyuki Abe, Nobuyuki Hayashi, Motoaki Tani
  • Patent number: 7218400
    Abstract: A semiconductor wafer is disclosed that includes a plurality of fields, including a plurality of alignment fields. Each alignment field includes a plurality of intra-field small scribe lane primary mark (SSPM) overlay mark pairs there around. The SSPM mark pairs allow for in-situ, non-passive intra-field alignment correction. In one embodiment, there may be between two and four alignment fields, and between two and four SSPM mark pairs around each alignment field. The SSPM marks of each mark pair may be extra scribe-lane marks.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: May 15, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Grace H. Ho, Ming-Che Wu, Li-Heng Chou, Hung-Chang Hsieh, Jung Ting Chen, Yao-Ching Ku
  • Patent number: 7215027
    Abstract: A process of making an electrical coupling stack is disclosed. A conductive structure is coupled to a substrate. The coupling includes a crystalline salicide first structure above the conductive structure, a nitrogen-containing amorphous salicide second structure above the crystalline salicide first structure, and a refractory metal third film above the nitrogen-containing amorphous salicide second structure. Processing includes depositing a refractory metal silicide first film over the conductive structure, depositing a refractory metal nitride second film over the refractory metal silicide first film, and depositing the refractory metal third film over the refractory metal nitride second film. Thermal processing is carried out to achieve the electrical coupling stack.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: May 8, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Y. Jeff Hu
  • Patent number: 7208402
    Abstract: An apparatus comprising: a die having a top metal layer, the top metal layer comprised of at least a first metal line and a second metal line; a passivation layer covering the top metal layer; a C4 bump on the passivation layer; and a first passivation opening and a second passivation opening in the passivation layer, the first passivation opening to connect the first metal line to the C4 bump, and the second passivation opening to connect the second metal line to the C4 bump.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 24, 2007
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Robert W. Martell
  • Patent number: 7196421
    Abstract: An integrated circuit is provided that includes at least one metallization level having a plurality of dummy conductors. At least one of the dummy conductors has an oriented shape made up of a plurality of non-parallel rectangles in mutual contact. In one embodiment, the at least one dummy conductor is in the form of an “L”. In another embodiment, the at least one dummy conductor is in the form of a Latin cross. In yet another embodiment, the at least one dummy conductor is in the form of a “T”.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: March 27, 2007
    Assignee: STMicroelectronics SA
    Inventor: Michel Vallet
  • Patent number: 7180195
    Abstract: An apparatus comprising: a die having a top metal layer, the top metal layer comprised of at least a first metal line and a second metal line; a passivation layer covering the top metal layer; a C4 bump on the passivation layer; and a first passivation opening and a second passivation opening in the passivation layer, the first passivation opening to connect the first metal line to the C4 bump, and the second passivation opening to connect the second metal line to the C4 bump.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 20, 2007
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Robert W. Martell
  • Patent number: 7180189
    Abstract: An aberration mark for use in an optical photolithography system, and a method for estimating overlay errors and optical aberrations. The aberration mark includes an inner polygon pattern and an outer polygon pattern, wherein each of the inner and outer polygon patterns include a center, and two sets of lines and spaces having a different feature size and pitch that surround the outer polygon pattern. The aberration mark can be used to estimate overlay errors and optical aberrations. In some embodiments, the mark can also be used with scatterometry or scanning electron microscope devices. In other embodiments, the mark can be used to monitor aberrations of a lens in an optical photolithography system.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Steve W. Bowes
  • Patent number: 7173312
    Abstract: A semiconductor structure and method that is capable of generating a local mechanical gate stress for channel mobility modification are provided. The semiconductor structure includes at least one NFET and at least one PFET on a surface of a semiconductor substrate. The at least one NFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer, a Si-containing second gate electrode layer and a compressive metal, and the at least one PFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer and a tensile metal or a silicide.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Bruce B. Doris, Thomas S. Kanarsky, Xiao H. Liu, Huilong Zhu
  • Patent number: 7160800
    Abstract: Disclosed herein are various embodiments of semiconductor devices and related methods of manufacturing a semiconductor device. In one embodiment, a method includes providing a semiconductor substrate and forming a metal silicide on the semiconductor substrate. In addition, the method includes treating an exposed surface of the metal silicide with a hydrogen/nitrogen-containing compound to form a treated layer on the exposed surface, where the composition of the treated layer hinders oxidation of the exposed surface. The method may then further include depositing a dielectric layer over the treated layer and the exposed surface of the metal silicide.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: January 9, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhen-Cheng Wu, Cheng-Hung Chang, Yu-Lien Huang, Shwang-Ming Cheng
  • Patent number: 7102234
    Abstract: A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: September 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Patent number: 7092273
    Abstract: A p-channel non-volatile memory (NVM) transistor is programmed by shifting the threshold voltage of the transistor. The threshold voltage is shifted by introducing a programming current to the gate electrode of the transistor, and simultaneously introducing a negative bias to the transistor. The threshold voltage of the p-channel NVM transistor is shifted in response to the negative bias condition and the heat generated by the programming current. The high temperature accelerates the threshold voltage shift. The threshold voltage shift is accompanied by an agglomeration of material in the gate electrode. The agglomeration of material in the gate electrode is an indication of the high temperature reached during programming. The threshold voltage shift of the p-channel NVM transistor is permanent.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: August 15, 2006
    Assignee: Xilinx Inc.
    Inventor: Kevin T. Look