Using Reduction Or Decomposition Of Gaseous Compound Yielding Solid Condensate, I.e., Chemical Deposition (epo) Patents (Class 257/E21.101)
  • Publication number: 20100311229
    Abstract: A reactive evaporation method for forming a group III-V amorphous material attached to a substrate includes subjecting the substrate to an ambient pressure of no greater than 0.01 Pa, and introducing active group-V matter to the surface of the substrate at a working pressure of between 0.05 Pa and 2.5 Pa, and group III metal vapor, until an amorphous group III-V material layer is formed on the surface.
    Type: Application
    Filed: November 19, 2008
    Publication date: December 9, 2010
    Applicant: MOSAIC CRYSTALS LTD.
    Inventor: Moshe Einav
  • Publication number: 20100289060
    Abstract: Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional mi
    Type: Application
    Filed: April 2, 2010
    Publication date: November 18, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: James L. Maxwell, Chris R. Rose, Marcie R. Black, Robert W. Springer
  • Publication number: 20100263717
    Abstract: A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.
    Type: Application
    Filed: November 9, 2007
    Publication date: October 21, 2010
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Qi Wang, Matthew Page, Eugene Iwaniczko, Tihu Wang, Yanfa Yan
  • Publication number: 20100248458
    Abstract: The present invention provides a coating apparatus capable of efficiently performing a deposition process and also provides an efficient coating method. A coating apparatus 1 for performing a deposition process on substrates W placed in a coating chamber by metalorganic chemical vapor deposition includes three or more coating chambers, e.g., a first coating chamber 2, a second coating chamber 102, and a third coating chamber 202. These coating chambers are configured such that each coating chamber is controlled independently of the other coating chambers to form a different film on the substrates W by controlling at least the composition of the material gas, the flow rate of material gas, the temperature, and the pressure in the coating chamber. A cleaning unit 5 is provided outside the coating chambers 2, 102, 202 to clean the susceptor after the deposition process.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Inventors: Shinichi MITANI, Kunihiko SUZUKI, Toshiro TSUMORI
  • Publication number: 20100244203
    Abstract: A semiconductor structure includes a substrate having a first nitride-based semiconductor layer. A pseudomorphic protective layer is formed on the first nitride-based semiconductor layer and a second nitride-based semiconductor layer is formed on the pseudomorphic protective layer. The pseudomorphic protective layer has a thickness that is less than a critical thickness so that it drives the material quality of the second nitride-based semiconductor layer to correspond with that of the first nitride-based semiconductor layer.
    Type: Application
    Filed: November 9, 2008
    Publication date: September 30, 2010
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Chantal Arena
  • Publication number: 20100213434
    Abstract: A method of synthesizing a nanowire. The method includes disposing a first oxide layer including germanium (Ge) on a substrate, forming a second oxide layer including a nucleus by annealing the first oxide layer, and growing a nanowire including Ge from the nucleus by a chemical vapor deposition (“CVD”) method.
    Type: Application
    Filed: September 16, 2009
    Publication date: August 26, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-kyung LEE, Dong-mok WHANG, Byoung-lyong CHOI, Byung-sung KIM
  • Publication number: 20100190322
    Abstract: A substrate for epitaxial growth, which is capable of improving a surface state of an epitaxial layer at microroughness level. In a substrate for epitaxial growth, when haze is defined as a value calculated by dividing intensity of scattered light obtained when light is incident from a predetermined light source onto a surface of a substrate, by intensity of the incident light from the light source, the haze is not more than 2 ppm all over an effectively used area of the substrate and an off-angle with respect to a plane direction is 0.05 to 0.10°.
    Type: Application
    Filed: April 5, 2010
    Publication date: July 29, 2010
    Inventors: Kenji SUZUKI, Ryuichi HIRANO, Masashi NAKAMURA
  • Publication number: 20100181612
    Abstract: A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 22, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaru Kito, Masaru Kidoh, Tomoko Fujiwara, Yosuke Komori, Megumi Ishiduki, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Ryota Katsumata, Ryouhei Kirisawa, Junya Matsunami, Hideaki Aochi
  • Publication number: 20100171096
    Abstract: Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au—Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 8, 2010
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Eli Anguelova Sutter, Peter Werner Sutter
  • Publication number: 20100159651
    Abstract: Nanocrystals are formed over an insulating layer by depositing a semiconductor layer over the insulating layer. The semiconductor layer is annealed to form a plurality of globules from the semiconductor layer. The globules are annealed using oxygen. Semiconductor material is deposited on the plurality of globules to add semiconductor material to the globules. After depositing the semiconductor material, the globules are annealed to form the nanocrystals. The nanocrystals can then be used in a storage layer of a non-volatile memory cell, especially a split-gate non-volatile memory cell having a select gate over the nanocrystals and a control gate adjacent to the select gate.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Inventors: Jinmiao J. Shen, Horacio P. Gasquet, Sung-Taeg Kang, Marc A. Rossow
  • Publication number: 20100151664
    Abstract: At present, a forming process of a base film through an amorphous silicon film is conducted in respective film forming chambers in order to obtain satisfactory films. When continuous formation of the base film through the amorphous silicon film is performed in a single film forming chamber with the above film formation condition, crystallization is not sufficiently attained in a crystallization process. By forming the amorphous silicon film using silane gas diluted with hydrogen, crystallization is sufficiently attained in the crystallization process even with the continuous formation of the base film through the amorphous silicon film in the single film forming chamber.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Inventors: Taketomi Asami, Mitsuhiro Ichijo, Satoshi Toriumi
  • Patent number: 7736928
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel electroplating apparatus and method to form a metal contact structure having metal lines formed using an electrochemical plating process. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation and formation steps, such as screen printing, lithographic steps and inkjet printing steps, to form a contact structure. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, John O. Dukovic, David Eaglesham, Nicolay Y. Kovarsky, Robert Bachrach, John Busch, Charles Gay
  • Publication number: 20100144124
    Abstract: Provided is a method of growing a pure germanium (Ge) thin film with low threading dislocation density using reduced pressure chemical vapor deposition (RPCVD), which includes growing a Ge thin film on a silicon (Si) substrate at a low temperature, performing real-time annealing for a short period of time, and growing the annealed Ge thin film at a high temperature. The grown Ge single crystal thin film can overcome conventional problems of generation of a Si—Ge layer due to Si diffusion, and propagation of misfit dislocation to a high-temperature Ge thin film.
    Type: Application
    Filed: August 5, 2009
    Publication date: June 10, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Hoon KIM, Dong Woo Suh, Ji Ho Joo, Gyung Ock Kim, Hyun Tak Kim
  • Patent number: 7723217
    Abstract: The present invention relates to a method for manufacturing a gallium nitride single crystalline substrate, including (a) growing a gallium nitride film on a flat base substrate made of a material having a smaller coefficient of thermal expansion than gallium nitride and cooling the gallium nitride film to bend convex upwards the base substrate and the gallium nitride film and create cracks in the gallium nitride film; (b) growing a gallium nitride single crystalline layer on the crack-created gallium nitride film located on the convex upward base substrate; and (c) cooling a resultant product having the grown gallium nitride single crystalline layer to make the convex upward resultant product flat or bend convex downwards the convex upward resultant product and at the same time to self-split the base substrate and the gallium nitride single crystalline layer from each other at the crack-created gallium nitride film interposed therebetween.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 25, 2010
    Assignee: Siltron Inc.
    Inventors: Ho-Jun Lee, Doo-Soo Kim, Dong-Kun Lee, Yong-Jin Kim
  • Patent number: 7718518
    Abstract: A doped silicon layer is formed in a batch process chamber at low temperatures. The silicon precursor for the silicon layer formation is a polysilane, such as trisilane, and the dopant precursor is an n-type dopant, such as phosphine. The silicon precursor can be flowed into the process chamber with the flow of the dopant precursor or separately from the flow of the dopant precursor. Surprisingly, deposition rate is independent of dopant precursor flow, while dopant incorporation linearly increases with the dopant precursor flow.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 18, 2010
    Assignee: ASM International N.V.
    Inventors: Peter Marc Zagwijn, Theodorus Gerardus Maria Oosterlaken, Steven R. A. Van Aerde, Pamela René Fischer
  • Publication number: 20100120233
    Abstract: Embodiments of the invention generally relate to a method for forming a multi-layered material during a continuous chemical vapor deposition (CVD) process. In one embodiment, a method for forming a multi-layered material during a continuous CVD process is provided which includes continuously advancing a plurality of wafers through a deposition system having at least four deposition zones. Multiple layers of materials are deposited on each wafer, such that one layer is deposited at each deposition zone. The methods provide advancing each wafer through each deposition zone while depositing a first layer from the first deposition zone, a second layer from the second deposition zone, a third layer from the third deposition zone, and a fourth layer from the fourth deposition zone. Embodiments described herein may be utilized to form an assortment of materials on wafers or substrates, especially for forming Group III/V materials on GaAs wafers.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 13, 2010
    Applicant: ALTA DEVICES, INC.
    Inventor: Gang He
  • Patent number: 7713874
    Abstract: Methods for performing periodic plasma annealing during atomic layer deposition are provided along with structures produced by such methods. The methods include contacting a substrate with a vapor-phase pulse of a metal source chemical and one or more plasma-excited reducing species for a period of time. Periodically, the substrate is contacted with a vapor phase pulse of one or more plasma-excited reducing species for a longer period of time. The steps are repeated until a metal thin film of a desired thickness is formed over the substrate.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 11, 2010
    Assignee: ASM America, Inc.
    Inventor: Robert B. Milligan
  • Publication number: 20100108976
    Abstract: Methods in accordance with this invention form microelectronic structures, such as non-volatile memories, that include carbon layers, such as carbon nanotube (“CNT”) films, in a way that protects the CNT film against damage and short-circuiting. Microelectronic structures, such as non-volatile memories, in accordance with this invention are formed in accordance with such techniques.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 6, 2010
    Applicant: SANDISK 3D LLC
    Inventors: Wipul Pemsiri Jayasekara, April D. Schricker
  • Patent number: 7709287
    Abstract: A method of forming a multijunction solar cell includes providing a substrate, forming a first subcell by depositing a nucleation layer over the substrate and a buffer layer including gallium arsenide (GaAs) over the nucleation layer, forming a middle second subcell having a heterojunction base and emitter disposed over the first subcell and forming first and second tunnel junction layers between the first and second subcells. The first tunnel junction layer includes GaAs over the first subcell and the second tunnel junction layer includes aluminum gallium arsenide (AlGaAs) over the first tunnel junction layer. The method further includes forming a third subcell having a homojunction base and emitter disposed over the middle subcell.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: May 4, 2010
    Assignee: Emcore Solar Power, Inc.
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan
  • Publication number: 20100105195
    Abstract: An apparatus is described for depositing a film on a substrate from a plasma. The apparatus comprises an enclosure, a plurality of plasma generator elements disposed within the enclosure, and means, also within the enclosure, for supporting the substrate. Each plasma generator element comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna, the outlet being located in, or above, the hot electron confinement envelope.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 29, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100096727
    Abstract: The invention relates to a free-standing semiconductor substrate as well as a process and a mask layer for the manufacture of a free-standing semiconductor substrate, wherein the semiconductor substrate self-separates from the starting substrate without further process steps.
    Type: Application
    Filed: August 24, 2006
    Publication date: April 22, 2010
    Inventors: Christian Hennig, Markus Weyers, Eberhard Richter, Guenther Traenkle
  • Publication number: 20100093159
    Abstract: Methods and apparatuses for selective epitaxial formation of films separately inject reactive species into a CVD chamber. The methods are particularly useful for selective deposition using volatile combinations of precursors and etchants. Formation processes include simultaneous supply of precursors and etchants for selective deposition, or sequential supply for cyclical blanket deposition and selective etching. In either case, precursors and etchants are provided along separate flow paths that intersect in the relatively open reaction space, rather than in more confined upstream locations.
    Type: Application
    Filed: December 16, 2009
    Publication date: April 15, 2010
    Applicant: ASM AMERICA, INC.
    Inventor: Matthias Bauer
  • Publication number: 20100075449
    Abstract: Methods and systems for forming an amorphous silicon layer are disclosed for one or more embodiments. For example, a substrate may be provided, and an amorphous silicon layer, in which a ratio of Si—H to Si—H2 has a value equal to or less than 4 to 1, may be formed on the substrate using chemical vapor deposition equipment.
    Type: Application
    Filed: March 5, 2009
    Publication date: March 25, 2010
    Inventors: Tae-Hyung HWANG, Hyung-Ii Jeon, Seok-Joon Hong
  • Publication number: 20100065865
    Abstract: A method of forming a nitride semiconductor through ion implantation and an electronic device including the same are disclosed. In the method, an ion implantation region composed of a line/space pattern is formed on a substrate at an ion implantation dose of more than 1E17 ions/cm2 to 5E18 ions/cm2 or less and an ion implantation energy of 30˜50 keV, and a metal nitride thin film is grown on the substrate by epitaxial lateral overgrowth, thereby decreasing lattice defects in the metal nitride thin film. Thus, the electronic device has improved efficiency.
    Type: Application
    Filed: April 28, 2009
    Publication date: March 18, 2010
    Applicant: Korea University Industrial & Academic Collaboration Foundation
    Inventors: Dong-Jin BYUN, Bum-Joon Kim, Jung-Geun Jhin, Jong-Hyeob Baek
  • Patent number: 7678614
    Abstract: A thermal interface material (100) includes a macromolecular matrix (10) and a plurality of thermally conductive fibers (20) incorporated therein. The macromolecular matrix (10) has a first surface (11) and an opposite second surface (12). Each of the thermally conductive fibers (20) is substantially parallel to each other and extends between the first and second surfaces (11), (12). A method for manufacturing the thermal interface material includes the steps of: (a) providing a number of thermally conductive fibers; (b) aligning the thermally conductive fibers uniformly and directionally to form an array of the thermally conductive fibers; (c) immersing the array of thermally conductive fibers into a liquid macromolecular material; (d) solidifying the liquid macromolecular material to obtain a macromolecular matrix having the two opposite surfaces with the thermally conductive fibers embedded therein, that is, a desired interface material is obtained.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: March 16, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hua Huang, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 7674713
    Abstract: A process for coating a substrate at atmospheric pressure comprises the steps of vaporizing a controlled mass of semiconductor material at substantially atmospheric pressure within a heated inert gas stream, to create a fluid mixture having a temperature above the condensation temperature of the semiconductor material, directing the fluid mixture at substantially atmospheric pressure onto the substrate having a temperature below the condensation temperature of the semiconductor material, and depositing a layer of the semiconductor material onto a surface of the substrate.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: March 9, 2010
    Assignee: Calyxo GmbH
    Inventors: Norman W. Johnston, Kenneth R. Kormanyos, Nicholas A. Reiter
  • Patent number: 7670881
    Abstract: At present, a forming process of a base film through an amorphous silicon film is conducted in respective film forming chambers in order to obtain satisfactory films. When continuous formation of the base film through the amorphous silicon film is performed in a single film forming chamber with the above film formation condition, crystallization is not sufficiently attained in a crystallization process. By forming the amorphous silicon film using silane gas diluted with hydrogen, crystallization is sufficiently attained in the crystallization process even with the continuous formation of the base film through the amorphous silicon film in the single film forming chamber.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: March 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Taketomi Asami, Mitsuhiro Ichijo, Satoshi Toriumi
  • Patent number: 7651935
    Abstract: A transistor structure of an electronic device can include a gate dielectric layer and a gate electrode. The gate electrode can have a surface portion between the gate dielectric layer and the rest of the gate electrode. The surface portion can be formed such that another portion of the gate electrode primarily sets the effective work function in the finished transistor structure.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: January 26, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Tien Ying Luo, Narayanan C. Ramani
  • Publication number: 20100009489
    Abstract: A process and system for producing a thin-film solar cell using atmospheric pressure plasma chemical vapor deposition is disclosed. A plasma at substantially atmospheric pressure is used to deposit P-type layers, intrinsic layers and N-type layers to form one or more P-N junctions for use in a solar cell. The surface onto which a P-N junction is deposited may be prepared or cleaned using the plasma at substantially atmospheric pressure. Alternatively, the plasma at substantially atmospheric pressure may be used to deposit other layers of the solar cell such as conductive layers in contact with a P-N junction.
    Type: Application
    Filed: July 8, 2009
    Publication date: January 14, 2010
    Inventor: Chan Albert Tu
  • Publication number: 20100009476
    Abstract: A method of removing a substrate structure is described. A plurality of pillars is formed on a substrate by using a photolithography etching process. A group III nitride semiconductor layer is grown on the plurality of pillars. The plurality of pillars is etched to separate the group III nitride semiconductor layer from the substrate by using a chemical etching process.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 14, 2010
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY INC.
    Inventors: Po Min TU, Shih Cheng HUANG, Shih Hsiung CHAN
  • Publication number: 20100006811
    Abstract: In a first aspect, a memory cell is provided that includes (1) a first conductor; (2) a reversible resistance-switching element formed above the first conductor including (a) a carbon-based resistivity switching material; and (b) a carbon-based interface layer coupled to the carbon-based resistivity switching material; (3) a steering element formed above the first conductor; and (4) a second conductor formed above the reversible resistance-switching element and the steering element. Numerous other aspects are provided.
    Type: Application
    Filed: May 13, 2009
    Publication date: January 14, 2010
    Applicant: SANDISK 3D LLC
    Inventors: Huiwen Xu, April D. Schricker, Er-Xuan Ping
  • Publication number: 20090321733
    Abstract: Methods and compositions for depositing a metal containing film on a substrate are disclosed. A reactor and at least one substrate disposed in the reactor are provided. A metal containing precursor is provided and introduced into the reactor, which is maintained at a temperature of at least 100° C. A metal is deposited on to the substrate through a deposition process to form a thin film on the substrate.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Inventors: Julien GATINEAU, Kazutaka Yanagita, Singo Okubo
  • Publication number: 20090315016
    Abstract: A method for producing a product of a functionalized nanocomposition colloidal material using atomic layer deposition to coat the colloidal material. The ALD layer comprises an inorganic material which enables improved optical and electrical properties for the nanocomposite.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 24, 2009
    Inventors: Jeffrey W. ELAM, Philippe Guyot-Sionnest
  • Patent number: 7635647
    Abstract: A process for coating a substrate at atmospheric pressure comprises the steps of vaporizing a controlled mass of semiconductor material at substantially atmospheric pressure within a heated inert gas stream, to create a fluid mixture having a temperature above the condensation temperature of the semiconductor material, directing the fluid mixture at substantially atmospheric pressure onto the substrate having a temperature below the condensation temperature of the semiconductor material, and depositing a layer of the semiconductor material onto a surface of the substrate.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: December 22, 2009
    Assignee: Calyxo GmbH
    Inventor: Norman W. Johnston
  • Patent number: 7629256
    Abstract: A method of processing semiconductor wafers is provided, comprising loading a batch of semiconductor wafers into a processing chamber; depositing titanium nitride (TiN) onto the wafers in the processing chamber; and depositing silicon onto the wafers in the processing chamber, without removing the wafers from the processing chamber between said depositing steps. In preferred embodiments, the TiN and silicon depositing steps are both conducted at temperatures within about 400-550° C., and at temperatures within 100° C. of one another.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: December 8, 2009
    Assignee: ASM International N.V.
    Inventor: Albert Hasper
  • Publication number: 20090298268
    Abstract: A method of fabricating a poly-Si thin film and a method of fabricating a poly-Si TFT using the same are provided. The poly-Si thin film is formed at a low temperature using ICP-CVD. After the ICP-CVD, ELA is performed while increasing energy by predetermined steps. A poly-Si active layer and a Si02 gate insulating layer are deposited at a temperature of about 150° C. using ICP-CVD. The poly-Si has a large grain size of about 3000 A or more. An interface trap density of the Si02 can be as high as lo?/cm2. A transistor having good electrical characteristics can be fabricated at a low temperature and thus can be formed on a heat tolerant plastic substrate.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 3, 2009
    Inventors: Jang-yeon Kwon, Min-koo Han, Se-young Cho, Kyung-bae Park, Do-young Kim, Min-cheol Lee, Sang-myeon Han, Takashi Noguchi, Young-soo Park, Ji-sim Jung
  • Publication number: 20090283745
    Abstract: Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles are disclosed. Carbon nanotube growth catalyst is applied on to a surface of a substrate. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes. Portions of the non-woven fabric are selectively removed according to a defined pattern to create the article. A non-woven fabric of carbon nanotubes may be made by applying carbon nanotube growth catalyst on to a surface of a wafer substrate to create a dispersed monolayer of catalyst. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes in contact and covering the surface of the wafer and in which the fabric is substantially uniform density.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Applicant: NANTERO, INC.
    Inventors: Jonathan W. WARD, Thomas RUECKES, Brent M. SEGAL
  • Publication number: 20090286341
    Abstract: A pixel circuit substrate includes a first interlayer insulating film which is made of an inorganic material at least in a source and drain regions of a thin film transistor. A contact hole is formed in an area above the source and drain regions of a thin film transistor in the first interlayer insulating film. A wiring layer is formed on the first interlayer insulating film, extends to an inner wall and a bottom surface of the contact hole. On a top surface of the wiring layer is formed a recess reflecting the shape of a contact hole. A second interlayer insulating film is formed on the wiring layer, embedded in the recess and has a flat top surface in an area above the thin film transistor. A storage capacitor on the second interlayer insulating film is disposed in the area above the thin film transistor.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Applicant: NEC Corporation
    Inventors: Kunihiro Shiota, Hiroshi Tanabe
  • Publication number: 20090246944
    Abstract: Methods for the heteroepitaxial growth of smooth, high quality films of N-face GaN film grown by MOCVD are disclosed. Use of a misoriented substrate and possibly nitridizing the substrate allow for the growth of smooth N-face GaN and other Group III nitride films as disclosed herein. The present invention also avoids the typical large (?m sized) hexagonal features which make N-face GaN material unacceptable for device applications. The present invention allows for the growth of smooth, high quality films which makes the development of N-face devices possible.
    Type: Application
    Filed: May 15, 2009
    Publication date: October 1, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Stacia Keller, Umesh K. Mishra, Nicholas K. Fichtenbaum
  • Publication number: 20090233425
    Abstract: By an evacuation unit including first and second turbo molecular pumps connected in series, the ultimate pressure in a reaction chamber is reduced to ultra-high vacuum. By a knife-edge-type metal-seal flange, the amount of leakage in the reaction chamber is reduced. A microcrystalline semiconductor film and an amorphous semiconductor film are stacked in the same reaction chamber where the pressure is reduced to ultra-high vacuum. By forming the amorphous semiconductor film covering the surface of the microcrystalline semiconductor film, oxidation of the microcrystalline semiconductor film is prevented.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 17, 2009
    Inventors: Makoto FURUNO, Tetsuo SUGIYAMA, Taichi NOZAWA, Mitsuhiro ICHIJO, Ryota TAJIMA, Shunpei YAMAZAKI
  • Patent number: 7589031
    Abstract: A method of PECVD deposition of silicon-containing films has been discovered and further developed. The method is particularly useful when the films are deposited on substrates having surface areas which are larger than 25,000 cm2. The method prevents the deposition of partially reacted silicon-containing species which form a powdery material or haze (contaminant compound) on the substrate surface. The contaminant compounds are avoided by assuring that the power applied to form a plasma in the PECVD process is maintained, at least at a minimal level, until reactive silicon-containing precursor gases present above the surface of the substrate have been reacted or evacuated from the plasma processing area.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 15, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Suhail Anwar, Chung-Hee Park, Beom Soo Park, Han Byoul Kim, Soo Young Choi, John M. White
  • Publication number: 20090217968
    Abstract: A solar call is provided along with a method for forming a semiconductor nanocrystalline silicon insulating thin-film with a tunable bandgap. The method provides a substrate and introduces a silicon (Si) source gas with at least one of the following source gases: germanium (Ge), oxygen, nitrogen, or carbon into a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. A SiOxNyCz thin-film embedded with a nanocrystalline semiconductor material is deposited overlying the substrate, where x, y, z?0, and the semiconductor material is Si, Ge, or a combination of Si and Ge. As a result, a bandgap is formed in the SiOxNyCz thin-film, in the range of about 1.9 to 3.0 electron volts (eV). Typically, the semiconductor nanoparticles have a size in a range of 1 to 20 nm.
    Type: Application
    Filed: May 18, 2009
    Publication date: September 3, 2009
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas
  • Publication number: 20090184342
    Abstract: A method for growing a semi-polar nitride semiconductor thin film via metalorganic chemical vapor deposition (MOCVD) on a substrate, wherein a nitride nucleation or buffer layer is grown on the substrate prior to the growth of the semi-polar nitride semiconductor thin film.
    Type: Application
    Filed: September 8, 2006
    Publication date: July 23, 2009
    Inventors: Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20090152634
    Abstract: A method of forming a semiconductor device comprises forming a control electrode over a portion of a semiconductor layer, forming recesses extending into the semiconductor layer on opposing sides of the control electrode, and forming doped regions in the semiconductor layer through the recesses. The doped regions form current electrode regions of the semiconductor device and each doped region extends into the semiconductor layer from at least a base of a recess. The method further comprises forming, after forming the doped regions, strained semiconductor regions in the recesses, wherein a junction between each doped region and the semiconductor layer is formed below an interface between a strained semiconductor region and the semiconductor layer.
    Type: Application
    Filed: April 11, 2006
    Publication date: June 18, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventor: John M. Grant
  • Publication number: 20090146142
    Abstract: Provided are a light-emitting device including a plurality of nanorods each of which comprises an active layer formed between an n-type region and a p-type region, and a method of manufacturing the same. The light-emitting device comprises: a substrate; a first electrode layer formed on the substrate; a basal layer formed on the first electrode layer; a plurality of nanorods formed vertically on the basal layer, each of which comprises a bottom part doped with first type, a top part doped with second type opposite to the first type, and an active layer between the bottom part and the top part, an insulating region formed between the nanorods, and a second electrode layer formed on the nanorods and the insulating region.
    Type: Application
    Filed: March 20, 2008
    Publication date: June 11, 2009
    Inventors: Kyoung-kook Kim, Joo-sung Kim, Young-soo Park
  • Publication number: 20090146133
    Abstract: A method for the fabrication of a semiconductor structure that includes areas that have different crystalline orientation and semiconductor structure formed thereby. The disclosed method allows fabrication of a semiconductor structure that has areas of different semiconducting materials. The method employs templated crystal growth using a Vapor-Liquid-Solid (VLS) growth process. A silicon semiconductor substrate having a first crystal orientation direction is etched to have an array of holes into its surface. A separation layer is formed on the inner surface of the hole for appropriate applications. A growth catalyst is placed at the bottom of the hole and a VLS crystal growth process is initiated to form a nanowire. The resultant nanowire crystal has a second different crystal orientation which is templated by the geometry of the hole.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 11, 2009
    Inventors: Mikael T. Bjoerk, Oliver Hayden, Heike E. Riel, Walter Heinrich Riess, Heinz Schmid
  • Publication number: 20090130829
    Abstract: Provided are a manufacturing method of a semiconductor device and a substrate processing apparatus.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 21, 2009
    Inventors: Takaaki Noda, Masami Miyamoto, Ryuji Yamamoto
  • Publication number: 20090127583
    Abstract: Provided is a semiconductor device containing a silicon single crystal substrate 101, a silicon carbide layer 102 provided on a surface of the substrate, a Group III nitride semiconductor junction layer 103 provided in contact with the silicon carbide layer, and a superlattice-structured layer 104 constituted by Group III nitride semiconductors on the Group III nitride semiconductor junction layer. In this semiconductor device, the silicon carbide layer is a layer of a cubic system whose lattice constant exceeds 0.436 nm and is not more than 0.460 nm and which has a nonstoichiometric composition containing silicon abundantly in terms of composition, and the Group III nitride semiconductor junction layer has a composition of AlxGayInzN1-?M? (0?X, Y, Z?1, X+Y+Z=1, 0??<1, M is a Group V element except nitrogen).
    Type: Application
    Filed: August 7, 2006
    Publication date: May 21, 2009
    Applicants: SHOWA DENKO K.K., THE DOSHISHA
    Inventors: Tadashi Ohachi, Takashi Udagawa
  • Publication number: 20090121240
    Abstract: There is provided a nitride semiconductor device with low leakage current and high efficiency in which, while a zinc oxide based compound such as MgxZn1-xO (0?x?0.5) is used for a substrate, crystallinity of nitride semiconductor grown thereon is improved and film separation or cracks are prevented. The nitride semiconductor device is formed by laminating nitride semiconductor layers on a substrate (1) made of a zinc oxide based compound such as MgxZn1-xO (0?x?0.5). The nitride semiconductor layers include a first nitride semiconductor layer (2) made of AlyGa1-yN (0.05?y?0.2) which is provided in contact with the substrate (1), and nitride semiconductor layers (3) to (5) laminated on the first nitride semiconductor layer (2) so as to form a semiconductor element.
    Type: Application
    Filed: October 19, 2006
    Publication date: May 14, 2009
    Applicant: ROHM CO., LTD
    Inventors: Yukio Shakuda, Masayuki Sonobe, Norikazu Ito
  • Publication number: 20090117721
    Abstract: A method of cooling a complex electronic system includes preventing system air from passing through a front side and a rear side of a server system main board, organizing a plurality of electronic segments of the server system main board, providing cool air horizontally to the server system main board through a cool air intake provided at a position located underneath the front side and at a bottom side of the server system main board, using the cool air intake to provide the cool air to a plurality of cooling segments that redirect the cool air vertically at a 90° angle, and using a hot air exhaust after the hot air reaches the top side of the server system main board to redirect the hot air horizontally at a 90° angle and exhaust the hot air.
    Type: Application
    Filed: December 22, 2008
    Publication date: May 7, 2009
    Applicant: HITACHI CABLE, LTD.
    Inventor: Hisataka Nagai