Stacked Arrangements Of Devices (epo) Patents (Class 257/E25.006)
  • Patent number: 8698297
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; applying a molded under-fill on the base substrate; forming a substrate contact extender through the molded under-fill and in direct contact with the base substrate; mounting a stack device over the molded under-fill; attaching a coupling connector from the substrate contact extender to the stack device; and forming a base encapsulation on the stack device, the substrate contact extender, and encapsulating the coupling connector.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: JoHyun Bae, In Sang Yoon, DaeSik Choi
  • Patent number: 8680667
    Abstract: A package stack structure may an upper package include an upper package substrate having a first edge and a second edge opposite to the first edge. The upper package substrate has a first region arranged near the first edge and a second region arranged near the second edge. A first upper semiconductor device is mounted on the upper package substrate. The package stack structure may also include a lower package having a lower package substrate and a lower semiconductor device. The lower package is connected to the upper package through a plurality of inter-package connectors. The plurality of the inter-package connectors may include first inter-package connectors configured to transmit data signals; second inter-package connectors configured to transmit address/control signals; third inter-package connectors configured to provide a supply voltage for an address/control circuit; and fourth inter-package connectors configured to provide a supply voltage for a data circuit.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Seong-Ho Shin, Yun-Seok Choi, Yong-Hoon Kim
  • Patent number: 8664755
    Abstract: Disclosed herein is a power module package including: a first substrate; a second substrate having a pad for connection to the first substrate formed on one side or both sides of one surface thereof and having external connection terminals for connection to the outside formed on the other surface thereof; and a lead frame having one end bonded to the first substrate and the other end bonded to the pad of the second substrate to thereby vertically connect the first and second substrates to each other.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 4, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd
    Inventors: Chang Hyun Lim, Young Ki Lee, Kwang Soo Kim, Seog Moon Choi
  • Patent number: 8659141
    Abstract: A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 25, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8659140
    Abstract: A microelectronic package can include a microelectronic element having a face and a plurality of element contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with at least one external component. The substrate can have substrate contacts on the first surface facing the element contacts of the microelectronic element and joined thereto. The terminals can include first terminals arranged at positions within first and second parallel grids. The first terminals of each grid can be configured to carry address information usable by circuitry within the microelectronic package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. The signal assignments of the first terminals in the first grid can be a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: February 25, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8659142
    Abstract: A microelectronic assembly can include a circuit panel having first and second surfaces and panel contacts at each surface, and first and second microelectronic packages having terminals mounted to the panel contacts at the first and second surfaces, respectively. The circuit panel can electrically interconnect terminals of the first package with corresponding terminals of the second package. Each package can include a substrate having first and second surfaces, a microelectronic element, conductive structure extending above a front face of the microelectronic element, and parallel columns of terminals at the second surface. The terminals of each package can include first terminals in a central region of the respective second surface and configured to carry address information usable by circuitry within the package to determine an addressable memory location within the respective microelectronic element.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 25, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8659139
    Abstract: A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: February 25, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8659143
    Abstract: A microelectronic package can include a substrate and a microelectronic element having a rear face facing a first surface of the substrate, a front face, and a column of element contacts extending in a first direction. The microelectronic element can include stacked electrically interconnected semiconductor chips. Edges of the microelectronic element can define an axial plane extending in the first direction and a third direction normal to the rear face. The package can include columns of terminals extending in the first direction at a second surface of the substrate. The terminals can include first terminals exposed in a central region of the second surface and configured to carry address information usable by circuitry within the package to determine an addressable memory location. The central region may have a width not more than 3.5 times a minimum pitch between adjacent terminal columns. The axial plane can intersect the central region.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 25, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8653642
    Abstract: Systems and methods of the present disclosure provide for three-dimensional stacks of microelectromechanical (MEMS) systems, such as sensors. The stacks may be encapsulated and sealed, and can be positioned within biological tissue, for example to monitor biological signals within the volume of the sensor, provide stimulating signals to a brain, and so forth.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: February 18, 2014
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, acting for and on behalf of Arizona State University
    Inventors: Jemmy Sutanto, Jitendran Muthuswamy
  • Patent number: 8653646
    Abstract: A microelectronic element having a memory storage array has a front face facing away from a substrate of a microelectronic package, and is electrically connected with the substrate through conductive structure extending above the front face. First terminals are disposed at locations within first and second parallel grids of the package. The first terminals of each grid are configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8643193
    Abstract: A plurality of semiconductor chips may be stacked on the substrate, and each of them may include at least one electrode pad. At least one of the plurality of semiconductor chips may include at least one redistribution pad configured to electrically connect with the at least one electrode pad.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Jin Kim, Byung-Seo Kim, Sunpil Youn
  • Patent number: 8637969
    Abstract: A method of forming a semiconductor package having a large capacity and a reduced or minimized volume includes: attaching a semiconductor substrate on a support substrate using an adhesive layer, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region, wherein first and second ones of the plurality of first semiconductor chips are separated each other by the chip cutting region, and the semiconductor substrate includes a first surface on which an active area is formed and a second surface opposite to the first surface; forming a first cutting groove having a first kerf width, between the first and second ones of the plurality of first semiconductor chips, so that the semiconductor substrate is separated into a plurality of first semiconductor chips; attaching a plurality of second semiconductor chips corresponding to the first semiconductor chips, respectively, to the plurality of first semiconductor chips; forming a molding layer so as to fill the first
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Teak-hoon Lee, Won-keun Kim, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im
  • Patent number: 8633576
    Abstract: A module can include a module card and first and second microelectronic elements having front surfaces facing a first surface of the module card. The module card can also have a second surface and a plurality of parallel exposed edge contacts adjacent an edge of at least one of the first and second surfaces for mating with corresponding contacts of a socket when the module is inserted in the socket. Each microelectronic element can be electrically connected to the module card. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: January 21, 2014
    Assignee: Tessera, Inc.
    Inventors: Wael Zohni, Belgacem Haba
  • Patent number: 8618672
    Abstract: This disclosure related to a stacked chip package structure having a sloped dam structure located on the substrate and beside the chip stack. The dam structure can facilitate the dispensing process of the underfill.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 31, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wei Huang, Tsung-Fu Yang
  • Patent number: 8618670
    Abstract: A system and method prevent corrosive elements (or at least the oxidizing agent) from making contact with metal connections at the interface between two layers of a stacked IC device. When layers are positioned in proximity to each other, a cavity is formed at the boundary of the planar surfaces of the layers. This cavity is bounded by a peripheral seal between the layers. In one embodiment, a vacuum is created within the cavity thereby reducing the corrosive atmosphere within the cavity. In another embodiment, the cavity is filled with an inert gas, such as argon. Once the cavity has oxidizing elements reduced, the peripheral seal can be encapsulated to prevent seepage of contaminants into the cavity.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: December 31, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Matthew Nowak
  • Patent number: 8581417
    Abstract: In a semiconductor device of the present invention, a second semiconductor chip is stacked on a first semiconductor chip having a plurality of bonding pads in its central region, with a bonding layer interposed therebetween. A plurality of wires respectively connected to the plurality of bonding pads of the first semiconductor chip are led out to the outside over a peripheral edge of the first semiconductor chip by passing through a space between the first and second semiconductor chips. A retaining member for retaining at least a subset of the plurality of wires is provided in a region on the first semiconductor chip including a middle point between the bonding pads and the peripheral edge of the first semiconductor chip by using a material different from the bonding layer so that the subset of the wires is positioned generally at a center of the spacing between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Yu Hasegawa, Mitsuaki Katagiri, Satoshi Isa, Ken Iwakura, Dai Sasaki
  • Patent number: 8575762
    Abstract: A package and method of making thereof. The package includes a first plated area, a second plated area, a die, a bond, and a molding. The die is attached to the first plated area, and the bond couples the die to the first and/or the second plated areas. The molding encapsulates the die, the bonding wire, and the top surfaces of the first and second plated areas, such that the bottom surfaces of the first and second plated areas are exposed exterior to the package.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: November 5, 2013
    Assignee: UTAC Thai Limited
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul
  • Patent number: 8569885
    Abstract: The present stacked semiconductor packages include a bottom package and a top package. The bottom package includes a substrate, a solder mask layer, a plurality of conductive pillars and a die electrically connected to the substrate. The solder mask layer has a plurality of openings exposing a plurality of pads on the substrate. The conductive pillars are disposed on at least a portion of the pads, and protrude from the solder mask layer.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Cheng-Yi Weng
  • Patent number: 8558369
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a post of multiple plating layers having a base end with an inward protrusion, a connect riser, and a top end opposite the base end; positioning an integrated circuit device having a perimeter end facing the connect riser and the inward protrusion; attaching a bond wire directly on the inward protrusion and the integrated circuit device; and applying an encapsulation over the integrated circuit device, the bond wire, the inward protrusion, and around the post, the encapsulation exposing a portion of the base end and the top end of the post.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 15, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Frederick Rodriguez Gahilig, Jairus Legaspi Pisigan
  • Patent number: 8551830
    Abstract: There is provided a small-type semiconductor integrated circuit whose circuit area is small and whose wiring length is short. The semiconductor integrated circuit is constructed in a multi-layer structure and is provided with a first semiconductor layer, a first semiconductor layer transistor formed in the first semiconductor layer, a wiring layer which is deposited on the first semiconductor layer and in which metal wires are formed, a second semiconductor layer deposited on the wiring layer and a second semiconductor layer transistor formed in the second semiconductor layer. It is noted that insulation of a gate insulating film of the first semiconductor layer transistor is almost equal with that of a gate insulating film of the second semiconductor layer transistor and the gate insulating film of the second semiconductor layer transistor is formed by means of radical oxidation or radical nitridation.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: October 8, 2013
    Assignees: Advantest Corporation, National University Corporation Tohoku University
    Inventors: Tadahiro Ohmi, Koji Kotani, Kazuyuki Maruo, Takahiro Yamaguchi
  • Patent number: 8546930
    Abstract: Three dimensional integrated circuits with double sided power, coolant, and data features and methods of constructing same are provided. According to some embodiments, an integrated circuit package can generally comprise one or more semiconductor wafers and opposing end substrates. The semiconductor wafers can each have a top exterior surface and a bottom exterior surface. The plurality of semiconductor wafers can form a multi-dimensional wafer stack of die wafers such that adjacent wafers have facing surfaces. Each of the semiconductor wafers can comprise one or more channels formed through the wafers. A portion of the channels can extend generally between the top and bottom exterior surfaces of the semiconductor wafers. A portion of the channels can carry conductors for coupling the wafers and/or coolant for cooling the wafers. The opposing end substrates can be disposed proximate opposing ends of the multi-dimensional stack.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Muhannad S. Bakir, Gang Huang
  • Patent number: 8546956
    Abstract: At least one metal adhesion layer is formed on at least a Cu surface of a first device wafer. A second device wafer having another Cu surface is positioned atop the Cu surface of the first device wafer and on the at least one metal adhesion layer. The first and second device wafers are then bonded together. The bonding includes heating the devices wafers to a temperature of less than 400° C., with or without, application of an external applied pressure. During the heating, the two Cu surfaces are bonded together and the at least one metal adhesion layer gets oxygen atoms from the two Cu surfaces and forms at least one metal oxide bonding layer between the Cu surfaces.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventor: Son V. Nguyen
  • Patent number: 8546929
    Abstract: An embedded integrated circuit package-on-package system is provided forming a first integrated circuit package system, forming a second integrated circuit package system, and mounting the second integrated circuit package system over the first integrated circuit package system with the first integrated circuit package system, the second integrated circuit package system, or a combination thereof being an embedded integrated circuit package system or an embedded stacked integrated circuit package system.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: October 1, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: You Yang Ong, Dioscoro A. Merilo, Seng Guan Chow
  • Patent number: 8546932
    Abstract: A PoP (package-on-package) package includes a bottom package with a substrate encapsulated in an encapsulant with a die coupled to the top of the substrate. At least a portion of the die is exposed above the encapsulant on the bottom package substrate. A top package includes a substrate with encapsulant on both the frontside and the backside of the substrate. The backside of the top package substrate is coupled to the topside of the bottom package substrate with at least part of the die being located in a recess in the encapsulant on the backside of the top package substrate.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Apple Inc.
    Inventor: Chih-Ming Chung
  • Patent number: 8536712
    Abstract: A memory device has a laminated chip package and a controller plate. In the laminated chip package, a plurality of memory chips are laminated. An interposed chip is laminated between the laminated chip package and the controller plate. A plurality of opposing wiring electrodes are formed at an opposing surface of the controller plate. A plurality of outside wiring electrodes are formed on the rear side of the opposing surface. Connection electrodes connecting the opposing wiring electrodes and the outside wiring electrodes are formed on the side surface of the controller plate. The interposed chip has a plurality of interposed wiring electrodes. The plurality of interposed wiring electrodes are formed with a common arrangement pattern common with an arrangement pattern of the plurality of opposing wiring electrodes. The controller plate is laid on the interposed chip.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: September 17, 2013
    Assignees: SAE Magnetics Ltd., Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8531021
    Abstract: A package stack device includes a first package structure having a plurality of first metal posts and a first electronic element disposed on a surface thereof, a second package structure having a plurality of second metal posts and a second electronic element disposed on opposite surfaces thereof, and an encapsulant formed between the first and second package structures for encapsulating the first electronic element. By connecting the first and second metal posts, the second package structure is stacked on the first package structure with the support of the metal posts and the encapsulant filling the gap therebetween so as to prevent warpage of the substrate.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Unimicron Technology Corporation
    Inventors: Chu-Chin Hu, Shih-Ping Hsu, Yi-Ju Chen
  • Patent number: 8530276
    Abstract: The invention pertains to a method for manufacturing a microelectronic device on a substrate comprising at least one first electrical component and one second electrical component distributed respectively in first and second levels stacked one on top of the other on the substrate, this method comprising: the manufacture of at least one first arm and one second arm of different lengths, each of these arms directly and mechanically linking an electrical pad to a fixed anchoring point on the substrate, and the electrical pad is made inside the first level and then shifted, prior to the electrical connection of the second component, to a position of connection wherein the upper face of the electrical pad is in contact with the interior of the second level parallel to the substrate.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 10, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Thierry Hilt, Herve Boutry, Remy Franiatte, Stephane Moreau
  • Patent number: 8531034
    Abstract: A semiconductor package and a package on package are provided. The semiconductor package includes a substrate; a semiconductor chip attached to a surface of the substrate; connecting conductors disposed on the surface of the substrate; a mold formed on the substrate and in which the connecting conductors and the semiconductor chip are provided; and connecting via holes extending through the mold and exposing the connecting conductors. With respect to a first connecting via hole of the connecting via holes, a planar distance between a first connecting conductor exposed by the first connecting via hole and an entrance of the first connecting via hole is not uniform.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hak-Kyoon Byun, Dae-Young Choi, Mi-Yeon Kim
  • Patent number: 8525320
    Abstract: Microelectronic die packages, stacked systems of die packages, and methods of manufacturing thereof are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes stacking a first die package having a first dielectric casing on top of a second die package having a second dielectric casing, aligning first metal leads at a lateral surface of the first casing with second metal leads at a second lateral surface of the second casing, and forming metal solder connectors that couple individual first leads to individual second leads. In another embodiment, the method of manufacturing the microelectronic device may further include forming the connectors by applying metal solder to a portion of the first lateral surface, to a portion of the second lateral surface, and across a gap between the first die package and the second die package so that the connectors are formed by the metal solder wetting to the individual first leads and the individual second leads.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Meow Koon Eng, Yong Poo Chia, Suan Jeung Boon, Wuu Yean Tay
  • Patent number: 8519523
    Abstract: A stackable microelectronic package includes a first microelectronic die attached to and electrically connecting with a first substrate. A second microelectronic die is attached to the first die on one side, and to a second substrate on the other side. Electrical connections are made between the first die and the first substrate, between the second die and the second substrate, and between the first and second substrates, e.g., via wire bonding. The electrical connecting elements are advantageously encased in a molding compound. Exposed contacts on the first and/or second substrates, not covered by the molding compound, provide for electrical connections between the package, and another package stacked onto the package. The package may avoid coplanarity factors, can be manufactured using existing equipment, allows for intermediate testing, and can also offer a thinner package height.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong
  • Patent number: 8502370
    Abstract: A stack package structure is provided, including: a substrate; an insulating layer formed on the substrate and having openings for exposing die attach pads and conductive pads of the substrate, respectively; a plurality of first and second conductive terminals formed on the insulating layer and electrically connected to the die attach pads and the conductive pads, respectively; a dielectric layer formed on the insulating layer and having a cavity for exposing the first conductive terminals and a plurality of openings exposing the second conductive terminals; copper pillars formed respectively in the openings of the dielectric layer; a semiconductor chip disposed in the cavity and electrically connected to the first conductive terminals; solder balls formed respectively on the copper pillars that are located proximate to the die attach area; and a package structure disposed on and electrically connected to the solder balls.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Unimicron Technology Corporation
    Inventors: Ying-Chih Chan, Jiun-Ting Lin
  • Patent number: 8487452
    Abstract: A semiconductor package includes a substrate, a first semiconductor chip stacked on the substrate and a second semiconductor chip stacked on the first semiconductor chip. In the semiconductor package, the second semiconductor chip is rotated to be stacked on the first semiconductor chip. The semiconductor package is used in an electronic system.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 16, 2013
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Jin-Yang Lee, Chan-Min Han, Kil-Soo Kim
  • Patent number: 8487421
    Abstract: A microelectronic package may include a stacked microelectronic unit including at least first and second vertically stacked microelectronic elements each having a front face facing a top surface of the package. The front face of the first element may be adjacent the top surface, and the first element may overlie the front face of the second element such that at least a portion of the front face of the second element having an element contact thereon extends beyond an edge of the first element. A conductive structure may electrically connect a first terminal at the top surface to an element contact at the front face of the second element, and include a continuous monolithic metal feature extending along the top surface and through at least a portion of an encapsulant, which is between the top surface and the front face of the second element, towards the element contact.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: July 16, 2013
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Norihito Masuda, Belgacem Haba, Ilyas Mohammed
  • Patent number: 8482111
    Abstract: A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 8482133
    Abstract: A semiconductor package is provided. The semiconductor package includes a package substrate, a plurality of semiconductor chips, and a plurality of connection terminals. The package substrate includes a center portion, which has a first recess with a portion of a top of the package substrate removed, and an edge portion that has a plurality of second recesses. Each second recess has a portion of a bottom of the package substrate removed. The plurality of semiconductor chips are mounted in the first recess, and the plurality of connection terminals are respectively disposed in the second recesses.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-young Ko, Jae-yong Park
  • Patent number: 8455301
    Abstract: A method of forming a semiconductor package includes attaching a semiconductor substrate on a support substrate, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region that separates respective ones of the semiconductor chips. A first cutting groove is formed that has a first kerf width between first and second ones of the plurality of first semiconductor chips. A plurality of second semiconductor chips is attached to the plurality of first semiconductor chips. A molding layer is formed so as to fill the first cutting groove and a second cutting groove having a second kerf width that is less than the first kerf width is formed in the molding layer so as to form individual molding layers covering one of the plurality of first semiconductor chips and one of the plurality of second semiconductor chips.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 4, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Teak-hoon Lee, Won-keun Kim, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im
  • Patent number: 8450839
    Abstract: Stacked microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a stacked microelectronic device assembly can include a first known good packaged microelectronic device including a first interposer substrate. A first die and a first through-casing interconnects are electrically coupled to the first interposer substrate. A first casing at least partially encapsulates the first device such that a portion of each first interconnect is accessible at a top portion of the first casing. A second known good packaged microelectronic device is coupled to the first device in a stacked configuration. The second device can include a second interposer substrate having a plurality of second interposer pads and a second die electrically coupled to the second interposer substrate. The exposed portions of the first interconnects are electrically coupled to corresponding second interposer pads.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 8445322
    Abstract: A stacked semiconductor package having a unit package, cover substrates, adhesive members and connection electrodes is presented. The unit package includes a substrate, a first circuit pattern and a second circuit pattern. The first circuit pattern is disposed over an upper face of the substrate. The second circuit pattern is disposed over a lower face of the substrate. The lower and upper faces of the substrate oppose each other. The first and second semiconductor chips are respectively electrically connected to the first and second circuit patterns. The cover substrates are opposed to the first semiconductor chip and the second semiconductor chip. The adhesive members are respectively interposed between the unit package and the cover substrates. The connection electrodes pass through the unit package, the cover substrates and the adhesive members and are electrically connected to the first and second circuit patterns.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 21, 2013
    Assignee: SK Hynix Inc.
    Inventors: Woong Sun Lee, Qwan Ho Chung
  • Patent number: 8446000
    Abstract: A package process includes following steps. A circuit mother board comprising a plurality of circuit boards is disposed on a carrier. Semiconductor devices are provided, wherein each of the semiconductor devices has a top surface and a bottom surface opposite thereto. Each of the semiconductor devices has conductive vias each having a first end surface and a second end surface exposed by the bottom surface of the semiconductor device. The semiconductor devices are connected to the corresponding circuit boards through their conductive vias with their bottom surface facing the circuit mother board. An insulating paste is formed between each of the semiconductor devices and its corresponding circuit board. A protection layer is formed on the circuit mother board to cover the semiconductor devices. Then, the protection layer and the semiconductor devices are thinned to expose the first end surface of each of the conductive vias.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Inventors: Chi-Chih Shen, Jen-Chuan Chen, Tommy Pan, Hui-Shan Chang, Chia-Lin Hung
  • Patent number: 8446016
    Abstract: A chip stack package includes a plurality of chips that are stacked by using adhesive layers as intermediary media, and a through via electrode formed through the chips to electrically couple the chips. The through via electrode is classified as a power supply through via electrode, a ground through via electrode, or a signal transfer through via electrode. The power supply through via electrode and the ground through via electrode are formed of a first material such as copper, and the signal transfer through via electrode is formed of second material such as polycrystalline silicon doped with impurities. The signal transfer through via electrode may have a diametrically smaller cross section than that of each of the power supply through via electrode and the ground through via electrode regardless of their resistivities.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Won Kang, Seung-Duk Baek, Jong-Joo Lee
  • Patent number: 8426958
    Abstract: A chip package comprises a first chip having a first side and a second side, wherein said first chip comprises a first pad, a first trace, a second pad and a first passivation layer at said first side thereof, an opening in said first passivation layer exposing said first pad, said first trace being over said first passivation layer, said first trace connecting said first pad to said second pad; a second chip having a first side and a second side, wherein said second chip comprises a first pad at said first side thereof, wherein said second side of said second chip is joined with said second side of side first chip; a substrate joined with said first side of said first chip or with said first side of said second chip; a first wirebonding wire connecting said second pad of said first chip and said substrate; and a second wirebonding wire connecting said first pad of said second chip and said substrate.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 23, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Shih-Hsiung Lin, Hsin-Jung Lo, Ying-Chih Chen, Chiu-Ming Chou
  • Patent number: 8426979
    Abstract: A composite layered chip package includes a plurality of subpackages stacked on each other. Each subpackage includes a main body and wiring. The main body includes a main part including a plurality of layer portions, and further includes first terminals and second terminals that are disposed on top and bottom surfaces of the main part, respectively. The wiring is electrically connected to the first and second terminals. The number of the plurality of layer portions included in the main part is the same for all the plurality of subpackages, and the plurality of layer portions in every subpackage include at least one first-type layer portion. In each of at least two of the subpackages, the plurality of layer portions further include at least one second-type layer portion. The first-type layer portion includes a semiconductor chip connected to the wiring, whereas the second-type layer portion includes a semiconductor chip not connected to the wiring.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: April 23, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Patent number: 8426947
    Abstract: In a laminated semiconductor substrate, a plurality of semiconductor substrates are laminated. Each of the semiconductor substrate has a plurality of scribe-groove parts formed along scribe lines. Further, each of the semiconductor substrate has a plurality of device regions insulated from each other and has a semiconductor device formed therein. Further, an uppermost substrate and a lowermost substrate have an electromagnetic shielding layer formed using a ferromagnetic body. The electromagnetic shielding layer is formed in a shielding region except the extending zone. The extending zone is set a part which the wiring electrode crosses, in a peripheral edge part of the device region.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 23, 2013
    Assignees: Headway Technologies, Inc., SAE Magentics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8415202
    Abstract: A semiconductor device manufacturing method of stacking semiconductor chips in layers over a semiconductor substrate having, close to its main surface, semiconductor chips, connecting semiconductor chips in different layers to enable signal transmission, and singularizing the layered semiconductor chips into pieces.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 9, 2013
    Assignee: The University of Tokyo
    Inventor: Takayuki Ohba
  • Patent number: 8415674
    Abstract: Methods of forming a semiconductor device include forming an insulation layer on a semiconductor structure, forming an opening in the insulation layer, the opening having a sidewall defined by one side of the insulation layer, forming a first metal layer in the opening, at least partially exposing the sidewall of the opening by performing a wet-etching process on the first metal layer, and selectively forming a second metal layer on the etched first metal layer. An average grain size of the first metal layer is smaller than an average grain size of the second metal layer. Related semiconductor devices are also disclosed.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Soo Lim, HyunSeok Lim, Shin-Jae Kang, Kyung-Tae Jang
  • Patent number: 8405221
    Abstract: Disclosed herein is a semiconductor device including: an input terminal receiving, if a preceding-stage semiconductor device is layered on a predetermined one of an upper layer and a lower layer, a bit train outputted from the preceding-stage semiconductor device; a semiconductor device identifier hold block holding a semiconductor device identifier for uniquely identifying the semiconductor device; a semiconductor device identifier computation block executing computation by using the semiconductor device identifier to update the semiconductor device identifier held in the semiconductor device identifier hold block according to a result of the computation; a control block once holding data of a bit train entered from the input terminal to control updating of the semiconductor device identifier executed by the semiconductor device identifier computation block based on the held data; and an output terminal outputting the bit train held in the control block to a succeeding-stage semiconductor device layered on a
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: March 26, 2013
    Assignee: Sony Corporation
    Inventor: Makoto Imai
  • Patent number: 8405226
    Abstract: A method of fabricating a semiconductor device including forming a micro-chip comprising a thinned-wafer having one or more components fabricated thereon disposed between a carrier and a semiconductor chip, the micro-chip being electrically connected to the semiconductor chip under a higher consumption macro of the semiconductor chip and including a thickness which is less than a thickness of the semiconductor chip, forming an interconnect between the semiconductor chip and the carrier, forming an interconnect between the micro-chip and the semiconductor chip, and forming an interconnect between the micro-chip and the carrier. The micro-chip includes a thinned micro-chip having a thickness of less than 20 microns and the semiconductor chip includes plural semiconductor chips formed as a chip stack. The micro-chip includes a plurality of micro-chips formed on the plural semiconductor chips, such that the semiconductor device is a three-dimensional integrated circuit.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Chirag S. Patel
  • Patent number: 8399287
    Abstract: A solar cell that is readily manufactured using processing techniques which are less expensive than microelectronic circuit processing. In preferred embodiments, printing techniques are utilized in selectively forming masks for use in etching of silicon oxide and diffusing dopants and in forming metal contacts to diffused regions. In a preferred embodiment, p-doped regions and n-doped regions are alternately formed in a surface of the wafer through use of masking and etching techniques. Metal contacts are made to the p-regions and n-regions by first forming a seed layer stack that comprises a first layer such as aluminum that contacts silicon and functions as an infrared reflector, second layer such titanium tungsten that acts as diffusion barrier, and a third layer functions as a plating base. A thick conductive layer such as copper is then plated over the seed layer, and the seed layer between plated lines is removed.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: March 19, 2013
    Assignee: SunPower Corporation
    Inventors: William P. Mulligan, Michael J. Cudzinovic, Thomas Pass, David D. Smith, Neil Kaminar, Keith McIntosh, Richard M. Swanson
  • Patent number: 8399973
    Abstract: A first memory device and second memory device have a same input/output layout configuration. To form a stack, the second memory device is secured to the first memory device. To facilitate connectivity, the second memory device is rotationally offset with respect to the first memory device in the stack to align outputs of the first memory device with corresponding inputs of the second memory device. The rotational offset of the second memory device with respect to the first memory device aligns one or more outputs of the first memory device with one or more respective inputs of the second memory device. Based on links between outputs and inputs from one memory device to another in the stack, the stack of memory devices can include paths facilitating one or more series connection configurations through he memory devices.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: March 19, 2013
    Assignee: Mosaid Technologies Incorporated
    Inventors: HakJune Oh, Jin-Ki Kim, Hong Beom Pyeon
  • Patent number: 8389333
    Abstract: A semiconductor device has a first semiconductor die and first encapsulant deposited around the first semiconductor die. A first insulating layer is formed over the first semiconductor die and first encapsulant. A first conductive layer is formed over the first insulating layer and electrically connected to a contact pad of the first semiconductor die. A second semiconductor die is mounted to the first insulating layer and first conductive layer. A second encapsulant is deposited around the second semiconductor die. A second insulating layer is formed over the second semiconductor die and second encapsulant. A second conductive layer is formed over the second insulating layer and electrically connected to a contact pad of the second semiconductor die. A plurality of conductive vias is formed continuously through the first and second encapsulants outside a footprint of the first and second semiconductor die electrically connected to the first and second conductive layers.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Zigmund R. Camacho