Stacked Arrangements Of Devices (epo) Patents (Class 257/E25.006)
  • Patent number: 8390130
    Abstract: A stacked assembly includes a stacked structure stacked on a through via recessed reveal structure. The through via recessed reveal structure includes recesses within a backside surface of an electronic component that expose backsides of through vias. Pillars of the stacked structure are attached to the exposed backsides of the through vias through the recesses. The recesses in combination with the pillars work as a lock and key arrangement to insure self-alignment of the pillars with the backsides of the through vias allowing fine pitch interconnections to be realized. Further, by forming the interconnections to the backsides of the through vias within the recesses, the overall thickness of the stacked assembly is minimized. Further still, by forming the interconnections to the backsides of the through vias within the recesses, shorting between adjacent through vias is minimized or eliminated.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: David Jon Hiner, Ronald Patrick Huemoeller, Michael G. Kelly
  • Patent number: 8383458
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a base package including a first integrated circuit coupled to a base substrate by an electrical interconnect formed on one side; and mounting an offset package over the base package, the offset package electrically coupled to the base substrate via a system interconnect.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 26, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: DaeSik Choi, BumJoon Hong, Sang-Ho Lee, Jong-Woo Ha, Soo-San Park
  • Patent number: 8362482
    Abstract: A semiconductor device including a first layer including first transistors, wherein first logic circuits are constructed by the first transistors, and wherein the first logic circuits include at least one of Inverter, NAND gate, or NOR gate; and a second layer overlaying said first layer, the second layer including second transistors, wherein second logic circuits are constructed by the second transistors; wherein each logic circuit in the first logic circuits has inputs and at least one first output, the inputs are connected to the second logic circuits; wherein each logic circuit in the second logic circuits has a second output, and wherein the first transistors include first selectors adapted to selectively replace at least one of the at least one first outputs with at least one of the second outputs.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 29, 2013
    Assignee: MonolithIC 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar, Paul Lim
  • Patent number: 8350373
    Abstract: A chip stacked structure and method of fabricating the same are provided. The chip stacked structure includes a first chip and a second chip stacked on the first chip. The first chip has a plurality of metal pads disposed on an upper surface thereof and grooves disposed on a side surface thereof. The metal pads are correspondingly connected to upper openings of the grooves. The second chip has a plurality of grooves on a side surface of the second chip, locations of which are corresponding to that of the grooves on the side surface of the first chip. Conductive films are formed on the grooves of the first chip and the second chip and the metal pads to electronically connect the first chip and second chip. The chip stacked structure may simplify the process and improve the process yield rate.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: January 8, 2013
    Assignees: Universal Scientific Industrial (Shanghai) Co., Ltd., Universal Global Scientific Industrial Co., Ltd.
    Inventor: Ming-Che Wu
  • Patent number: 8344519
    Abstract: A battery protection package assembly is disclosed. The assembly includes a power control integrated circuit (IC) with pins for a supply voltage input (VCC) and a ground (VSS) on a first side of the power control IC. First and second common-drain metal oxide semiconductor field effect transistors (MOSFETs) are electrically coupled to the power control IC. The power control IC and the first and second common-drain metal oxide semiconductor field effect transistors (MOSFET) are co-packaged on a common die pad. The power control IC is vertically stacked on top of one or more of the first and second common-drain MOSFETs. Leads coupled to a supply voltage input (VCC) and a ground (VSS) of the power control IC are on a first side of the common die pad.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Alpha & Omega Semiconductor Incorporated
    Inventors: Jun Lu, Allen Chang, Xiaotian Zhang
  • Patent number: 8338962
    Abstract: A semiconductor package may include a package substrate having a first surface and a boundary that may be defined by edges of the package substrate. The package further includes a first semiconductor chip having a front surface and a back surface. The back surface of a first portion of the first semiconductor chip may be disposed on the first surface of the package substrate with the back surface of a second portion of the first semiconductor chip extending beyond of the defined boundary of the package substrate. The semiconductor package may also include a second semiconductor chip disposed on the back surface of the second portion of the first semiconductor chip that extends beyond the defined boundary of the package substrate.
    Type: Grant
    Filed: March 27, 2011
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-gi Chang, Tae-sung Park
  • Patent number: 8324681
    Abstract: A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: December 4, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue, Kuang Yeu Hsieh
  • Patent number: 8319329
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Patent number: 8319326
    Abstract: Stacked die having vertically-aligned conductors and methods for making the same are disclosed for providing a non-volatile memory, such as flash memory (e.g., NAND flash memory), for use in an electronic device.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 27, 2012
    Assignee: Apple Inc.
    Inventors: Nir J. Wakrat, Nick Seroff, Anthony Fai
  • Patent number: 8304918
    Abstract: An electronic device is disclosed which can suppress the formation of voids in a region below an overhanging portion of a first semiconductor device overhanging a support member. The support member is disposed over a package substrate. The first semiconductor device is disposed over the support member and, when seen in plan, at least a part of the first semiconductor device overhangs the support member. A first resin layer fills up a space below the first semiconductor device in at least a part of the overhanging portion of the first semiconductor device around the support member. The first resin layer is in contact with the support member. A second resin layer seals the first semiconductor device and the support member.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: November 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Jun Tsukano
  • Patent number: 8299627
    Abstract: Provided are semiconductor packages and electronic systems including the same. A substrate is provided. A plurality of semiconductor chips may be stacked the substrate, and each of them may include at least one electrode pad. At least one of the plurality of semiconductor chips may include at least one redistribution pad configured to electrically connect with the at least one electrode pad.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 30, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-jin Kim, Byung-seo Kim, Sun-il Youn
  • Patent number: 8299590
    Abstract: Semiconductor assemblies having reduced thermal spreading resistance and methods of making the same are described. In an example, a semiconductor device includes a primary integrated circuit (IC) die and at least one secondary IC die mounted on the primary IC die. A heat extraction element includes a base mounted to the semiconductor device such that each of the at least one secondary IC die is between the primary IC die and the heat extraction element. At least one dummy fill is adjacent the at least one secondary IC die, and each thermally couples the primary IC die to the heat extraction element.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: October 30, 2012
    Assignee: Xilinx, Inc.
    Inventor: Arifur Rahman
  • Patent number: 8299591
    Abstract: A semiconductor package includes a substrate having a substrate body possessing a first region, a second region which is defined around the first region and a third region which is defined around the second region. Wiring lines are placed on the substrate body, and the wiring lines have first ends that extend to the third region. Connection patterns are placed in the third region and are electrically connected to the first ends of the wiring lines. A semiconductor chip is disposed in the first region and is electrically connected to the respective wiring lines, and a molding member is disposed in the first and second regions and covers the semiconductor chip.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 30, 2012
    Assignees: Hynix Semiconductor Inc.
    Inventors: Jae Sung Oh, Moon Un Hyun, Jong Hyun Kim, Jin Ho Gwon, Dong You Kim, Ki Bon Cha
  • Patent number: 8299585
    Abstract: A power semiconductor device having a first active semiconductor component and a second active semiconductor component, the electrical connections of which are routed out of the semiconductor components in the form of connecting legs is disclosed. In one embodiment, the first semiconductor component is at least partially electrically connected to the second semiconductor component by means of a plug-in connection. The plug-in connection is realized by virtue of the connecting legs of the second semiconductor component engaging in the electrical connections of the first semiconductor component.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: October 30, 2012
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 8274144
    Abstract: A first semiconductor package includes a first substrate, a first semiconductor chip attached to the first substrate, an encapsulant which covers the first semiconductor chip, and conductive elastic members which are embedded in the encapsulant but with parts thereof exposed. A package on package (POP) includes the first semiconductor package and a second semiconductor package stacked in the first semiconductor package. The second semiconductor package includes a second substrate and a second semiconductor chip attached to the second substrate. The exposed parts of the elastic members are electrically connected to the second substrate. The encapsulant of the first package is formed by a molding process while the conductive elastic members are compressed within their elastic limit by the mold.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Hoon Ro
  • Patent number: 8263438
    Abstract: A semiconductor device includes a substrate, a die assembly attachable to the substrate and a flexible strip extending over the substrate and the die assembly. The flexible strip has one or more routing circuits carried thereon. The die assembly and the substrate are arranged to be electrically connected through the one or more routing circuits carried on the flexible strip.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: September 11, 2012
    Assignee: Infineon Technologies AG
    Inventors: Alvin Seah, Elstan Anthony Fernandez
  • Patent number: 8247895
    Abstract: A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. The 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tounge and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling. The memory stack is further diced at the fixed clock-cycle distance and is flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Roy R. Yu
  • Patent number: 8232658
    Abstract: A stackable integrated circuit package system includes: forming a first integrated circuit die having a small interconnect and a large interconnect provided thereon; forming an external interconnect, having an upper tip and a lower tip, from a lead frame; mounting the first integrated circuit die on the external interconnect with the small interconnect on the lower tip and below the upper tip; and encapsulating around the small interconnect and around the large interconnect with an exposed surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 31, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Heap Hoe Kuan, Dioscoro A. Merilo, Antonio B. Dimaano, Jr.
  • Patent number: 8227905
    Abstract: A stackable semiconductor package includes a substrate with a first side surface that includes circuit patterns. Each circuit pattern includes a pad. A semiconductor die is electrically coupled to the circuit patterns. An encapsulant covers the semiconductor die and the first side surface of the substrate inward of the pads. A layer of a solder is fused to each of the pads. A lateral distance between immediately adjacent pads is selected to be greater than a lateral distance between sidewalls of the encapsulant and immediately adjacent pads, and a height of the solder layers relative to the first side surface is selected to be less than a height of the sidewalls of the encapsulant, so that misalignment of a semiconductor package stacked on the solder layers/pads is self-correcting when juxtaposed ones of the solder layers and respective solder balls of the second semiconductor package are reflowed and fused together.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 24, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Akito Yoshida, Young Wook Heo
  • Patent number: 8227296
    Abstract: A stacked semiconductor device includes a first semiconductor element bonded on a circuit base. The first semiconductor element is electrically connected to a connection part of the circuit base via a first bonding wire. A second semiconductor element is bonded on the first semiconductor element via a second adhesive layer with a thickness of 50 ?m or more. The second adhesive layer is formed of an insulating resin layer whose glass transition temperature is 135° C. or higher and whose coefficient of linear expansion at a temperature equal to or lower than the glass transition temperature is 100 ppm or less.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Hideko Mukaida
  • Patent number: 8222079
    Abstract: A semiconductor device includes a carrier, a semiconductor chip formed on the carrier, and a micro-chip which is electrically connected to the chip, and includes a thickness which is less than a thickness of the chip.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Chirag S. Patel
  • Patent number: 8212364
    Abstract: The present invention is directed to a semiconductor device having: an interposer; a wiring provided on the interposer; a first chip having a first semiconductor device, a first pad and a first solder ball over the interposer, the first semiconductor device being connected to the first pad and the first pad being connected to the first solder ball; a second chip having a second semiconductor device, a second pad and a second solder ball over the first chip, the second semiconductor device being connected to the second pad and the second pad being connected to the second solder ball; and a terminal provided at a rear side of the interposer, where the wiring and the first chip are connected via the first solder ball, where the first chip and the second chip are connected via the second solder ball, and where the terminal is connected to the first semiconductor device.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: July 3, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno, Koichiro Tanaka
  • Patent number: 8203222
    Abstract: A semiconductor device includes a substrate, a semiconductor chip, and first and second insulations. The substrate has at least a first region and a second region. The semiconductor chip structure covers the first region. The first insulation covers the second region. The first insulation has a first thermal expansion coefficient approximately equal to that of the semiconductor chip structure. The second insulation covers the semiconductor chip structure and the first insulation so that the semiconductor chip structure and the first insulation are sandwiched between the substrate and the second insulation. The second insulation has a second thermal expansion coefficient approximately equal to that of the substrate.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: June 19, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Mitsuhisa Watanabe, Koichi Hatakeyama, Keiyo Kusanagi
  • Patent number: 8193626
    Abstract: Provided is a semiconductor package including multiple semiconductor chips, and separate groups of leads connected to the semiconductor chips. The leads are exposed to the outside of the semiconductor package. The plurality of leads may include a first lead group for a first chip group and a second lead group for a second chip group. The first and second chip groups are part of the package.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul Park, Hysong-seob Kim, Kun-dae Yeom, Gwang-man Lim
  • Publication number: 20120126230
    Abstract: A method for manufacturing a semiconductor chip stack device is provided. The method includes forming a first connecting element array on a surface of a first semiconductor chip; forming a second connecting element array on a surface of a second semiconductor chip, the second array comprising more connecting elements than the first array and the pitch of the first array being a multiple of the pitch of the second array; applying the first chip against the second chip; and setting up test signals between the first and second chips to determine the matching between the connecting elements of the first array and the connecting elements of the second array.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 24, 2012
    Applicant: STMicroelectronics SA
    Inventors: Richard Fournel, Pierre Dautriche
  • Patent number: 8183679
    Abstract: A peeling off layer 18 is formed on an entire surface of one surface side of a support plate 10 including the inner wall surfaces respectively of a recessed part 12 for an electronic part and recessed parts 16 for posts in which the posts 20 are formed. Then, the recessed parts 16 are filled with metal to form the posts 20. Then, conductor patterns 28 are formed that electrically connect the electrode terminals 22a of the electronic part 22 inserted into the recessed part 12 to the posts 20. Then, an insulating layer covering the conductor patterns 28 is formed to form an electronic part package 30 on the one surface side of the support plate 10 through the peeling off layer 18. After that, the electronic part package 30 is separated from the support plate 10 by the peeling off layer 18.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 22, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Hideaki Sakaguchi, Masahiro Sunohara, Mitsutoshi Higashi
  • Patent number: 8178960
    Abstract: Provided is a stacked semiconductor package and a method of manufacturing the same. The stacked semiconductor package may include a first semiconductor package, a second semiconductor package, and at least one electrical connection device electrically connecting the first and second semiconductor packages. The first semiconductor package may include a first re-distribution pattern on a first semiconductor chip and a first sealing member on the first substrate, the first sealing member may include at least one first via to expose the first re-distribution pattern. The second semiconductor package may include a second re-distribution pattern on a second semiconductor chip and a second sealing member on a lower side of the second substrate, the second sealing member may include at least one second via to expose the second re-distribution pattern. An electrical connection device may be between the first and second vias to connect the first and the second re-distribution patterns.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 15, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-young Oh
  • Patent number: 8169065
    Abstract: Stackable circuit structures and methods of fabrication are provided employing first level metallization directly on a chips-first layer(s), which includes: a chip(s), each with a pad mask over its upper surface and openings exposing its contact pads; electrically conductive structures; and structural dielectric material surrounding the side surfaces of the chips and the conductive structures. Each chips-first layer further includes a metallization layer on the front surface of the layer, residing at least partially on the pad mask and extending over an edge of the chip. Together, the pad mask and the structural material electrically isolate the metallization layer from the chip. Input/output interconnect structures physically and electrically contact the metallization layer over the front surface and/or the lower surfaces of the electrically conductive structures at the back surface of the chips-first layer, to facilitate input/output connection to chips of the layers in a stack.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 1, 2012
    Assignee: EPIC Technologies, Inc.
    Inventors: James E. Kohl, Charles W. Eichelberger
  • Patent number: 8163600
    Abstract: A bridge stack integrated circuit package-on-package system is provided including forming a first integrated circuit package system having a first substrate, forming a second integrated circuit package system having a second substrate, and mounting a bridge integrated circuit package system on the first substrate and on the second substrate.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 24, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Il Kwon Shim, Byung Joon Han
  • Patent number: 8164171
    Abstract: System-in packages, or multichip modules, are described which can include multi-layer chips in a multi-layer polymer structure, on-chip metal bumps on the multi-layer chips, intra-chip metal bumps in the multi-layer polymer structure, and patterned metal layers in the multi-layer polymer structure. The multi-layer chips in the multi-layer polymer structure can be connected to each other or to an external circuit through the on-chip metal bumps, the intra-chip metal bumps and the patterned metal layers. The system-in packages can be connected to external circuits through solder bumps, meal bumps or wirebonded wires.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: April 24, 2012
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8148825
    Abstract: An integrated circuit package system includes: providing a lead terminal; forming a dummy lead near the lead terminal; positioning a base integrated circuit adjacent the lead terminal and the dummy lead; connecting a die connector to the base integrated circuit and the dummy lead; mounting a stackable integrated circuit over the base integrated circuit; and connecting another of the die connector to the stackable integrated circuit and the dummy lead.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: April 3, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Jairus Legaspi Pisigan, Jeffrey D. Punzalan
  • Patent number: 8148728
    Abstract: A method for fabrication of 3D semiconductor devices utilizing a layer transfer and steps for forming transistors on top of a pre-fabricated semiconductor device comprising transistors formed on crystallized semiconductor base layer and metal layer for the transistors interconnections and insulation layer. The advantage of this approach is reduction of the over all metal length used to interconnect the various transistors.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 3, 2012
    Assignee: Monolithic 3D, Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8143726
    Abstract: A semiconductor device includes a semiconductor chip, and a micro-chip which is electrically connected to the chip, and includes a thickness which is less than a thickness of the chip.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: March 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Chirag S. Patel
  • Patent number: 8138611
    Abstract: A first semiconductor chip and a second semiconductor chip which form a stack are mounted on a module substrate by deflecting a center position of the semiconductor chips from the module substrate. In the side where the distance from the edge of the deflected semiconductor chip to the edge of a module substrate is shorter, the electrode pad on the first semiconductor chip and the electrode pad on the second semiconductor chip are directly connected with a wire. In the side where the distance from the edge of the deflected semiconductor chip to the edge of a module substrate is longer, the electrode pad on the first semiconductor chip and the electrode pad on the second semiconductor chip are combined with the corresponding bonding lead on the module substrate with a wire.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: March 20, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Kuroda, Katsuhiko Hashizume
  • Patent number: 8138023
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) preparing a wafer including a first circuit formation region and a first surrounding region, (b) laminating a first chip on the first circuit formation region, (c) pouring a first underfill into a first space between the first circuit formation region and the first chip from the first surrounding region, (d) hardening the first underfill, (e) forming a laminated structure comprised of a first chip block that includes a second chip including the first circuit formation region, the first chip, and the first underfill by conducting dicing with respect to the wafer; and (f) laminating the laminated structure on a substrate.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 20, 2012
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Yoshimi Egawa
  • Patent number: 8125063
    Abstract: A Chip-On-Lead (COL) type semiconductor package having small chip hidden between leads is revealed. The lower surfaces of the leadframe's leads are attached to a wiring substrate and the leads are horizontally bent to form a die-holding cavity. A smaller chip is disposed on the wiring substrate by passing through the die-holding cavity to be on the same disposing level with the leads. At least a larger chip is disposed on the leads to overlap the smaller chip so that the small chip does not extrude from the leads. The encapsulant encapsulates a plurality of internal parts of the leads, the wiring substrate, and the larger chip. Therefore, the conventional unbalance issue of mold flow above and below the leads leading to cause excessive warpage can be avoided and numbers of stacked larger chips can be increased to have larger memory capacities.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 28, 2012
    Assignee: Powertech Technology, Inc.
    Inventor: Chin-Fa Wang
  • Patent number: 8120186
    Abstract: An integrated circuit and method of fabricating an integrated circuit. One embodiment includes a circuit chip, a contact pad, and a projecting top contact. A signal line couples the contact pad to the projecting top contact, the contact pad, the projecting top contact. The signal line is arranged on a top face of the circuit chip. A substrate and a lower contact pad, the lower contact pad is arranged on a bottom face of the substrate and the circuit chip is arranged on a top face of the substrate. A bottom face of the circuit chip is facing the top face of the substrate. A connection couples the contact pad on the circuit chip to the lower contact pad.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 21, 2012
    Assignee: Qimonda AG
    Inventor: Kimyung Yoon
  • Patent number: 8110909
    Abstract: A semiconductor package including top-surface terminals for mounting another semiconductor package provides a three-dimensional circuit configuration that can provide removable connection of existing grid-array packages having a standard design. A semiconductor die is mounted on an electrically connected to a circuit substrate having terminals disposed on a bottom side for connection to an external system. The die and substrate are encapsulated and vias are laser-ablated or otherwise formed through the encapsulation to terminals on the top surface of the substrate that provide a grid array mounting lands to which another grid array semiconductor package may be mounted. The bottom side of the vias may terminate and electrically connect to terminals on the substrate, terminals on the bottom of the semiconductor package (through terminals) or terminals on the top of the semiconductor die.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 7, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: David Jon Hiner, Ronald Patrick Huemoeller, Sukianto Rusli
  • Patent number: 8110929
    Abstract: A semiconductor module includes: a substrate having a wiring layer; a first rectangular-shaped semiconductor device mounted on one surface of the substrate; a second rectangular-shaped semiconductor device mounted on the other surface of the substrate. The first semiconductor device is arranged such that each side thereof is not parallel to that of the second semiconductor device, and that the first semiconductor device is superimposed on the second semiconductor device, when seen from the direction perpendicular to the surface of the substrate.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 7, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Toshikazu Imaoka, Tetsuro Sawai, Kenichi Kobayashi, Atsushi Nakano
  • Patent number: 8097940
    Abstract: A stack package may include a substrate having first and second faces opposite each other and an opening formed therein. The first semiconductor chip may be mounted on the first face of the substrate and include a through electrode in the middle region of the first semiconductor chip that is exposed through the opening. The second semiconductor chip may be stacked on the first semiconductor chip and electrically connected to the first semiconductor chip by the through electrode of the first semiconductor chip. The circuit pattern may be formed on the second face of the substrate and include a bonding pad arranged adjacent to the opening and electrically connected to the through electrode of the first semiconductor chip through the opening, an outer connection pad spaced apart from the bonding pad and a connection wiring extending from the opening to the outer connection pad via the bonding pad.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: January 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Duk Baek, Sun-Won Kang, Jong-Joo Lee
  • Patent number: 8076784
    Abstract: Stacked semiconductor chips are disclosed. One embodiment provides a method including a first substrate having a first surface and an opposing second surface. The first substrate includes an array of first connection elements on the first surface of the first substrate. A second substrate has a first surface and an opposing second surface. The second substrate includes an array of second connection elements on the first surface of the second substrate. The first connection elements is attached to the second connection elements; and is thinning at least one of the first substrate and the second substrate after the attachment of the first connection elements to the second connection elements.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: December 13, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Brunnbauer, Recai Sezi, Thorsten Meyer, Gottfried Beer
  • Patent number: 8072055
    Abstract: A stacked semiconductor die assembly includes at least two partially offset semiconductor dice with bond pads located adjacent at least one peripheral side thereof supported on a redistribution element formed of a material of substantially similar CTE to that of the dice, and a paddle-less lead frame secured to the redistribution element during fabrication, including encapsulation. The assembly is configured to be substantially vertically symmetrical with respect to inner ends of lead fingers of the lead frame to facilitate uniform encapsulant flow. The semiconductor die assembly may be configured in a package with leads extending from two sides thereof, such as a thin small outline package (TSOP), or four sides thereof, such as a quad flat pack (QFP).
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Tongbi Jiang, Shijian Luo
  • Patent number: 8072057
    Abstract: A semiconductor device includes a first die pad, a first semiconductor chip provided on the first die pad, a second die pad, a second semiconductor chip provided on the second die pad, and a sealing resin made of a first resin material, sealing the first die pad, the first semiconductor chip, the second die pad and the second semiconductor chip. A lower surface of the first semiconductor chip is connected to the first die pad. A first portion of a lower surface of the second semiconductor chip is connected to the second die pad, and a second portion not connected to the second die pad of the lower surface of the second semiconductor chip is connected to an upper surface of the first semiconductor chip via a second resin material different from the first resin material.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: December 6, 2011
    Assignee: Panasonic Corporation
    Inventor: Kazuhiko Matsumura
  • Patent number: 8067829
    Abstract: A system and method are provided in which a first chip in a stacked multi-chip module configuration is affixed via one or more adhesion layers to a first portion of a partitioned interposer unit. Planar partitions of the interposer are physically bonded via multiple solder “bumps,” which possess high tensile strength but low resistance to horizontal shear force or torque. A second chip is affixed via one or more adhesion layers to the second portion of the partitioned interposer. The chips may thus be separated by horizontally and oppositely shearing or twisting the first and second portions of the partitioned interposer away from one another.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: November 29, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Hughes, Thomas E. Love, Eugene Lemoine, David H. Lee, Christopher Ebel
  • Patent number: 8053903
    Abstract: A method of creating a semiconductor chip having a substrate, a doped semiconductor material abutting the substrate and a device pad at an outer side of the doped semiconductor material involves creating a via through at least a portion of the substrate, the via having a periphery and a bottom at a location and depth sufficient to bring the via into proximity with the device pad but be physically spaced apart from the device pad, introducing an electrically conductive material into the via, and connecting the electrically conductive material to a signal source so the signal will deliberately be propagated from the electrically conductive material to the device pad without any direct electrical connection existing between the electrically conductive material and the device pad.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: November 8, 2011
    Assignee: Cufer Asset Ltd. L.L.C.
    Inventor: John Trezza
  • Patent number: 8049322
    Abstract: A method for making an integrated circuit package-in-package system includes: forming a first integrated circuit package including a first device and a first substrate and having a first interface; stacking a second integrated circuit package including a second device and a second substrate and having a second interface above the first integrated circuit package; and fitting the first interface directly on the second interface.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: November 1, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Choong Bin Yim, Hyeog Chan Kwon, Jong-Woo Ha
  • Patent number: 8039928
    Abstract: A chip stack package includes a plurality of chips that are stacked by using adhesive layers as intermediary media, and a through via electrode formed through the chips to electrically couple the chips. The through via electrode is classified as a power supply through via electrode, a ground through via electrode, or a signal transfer through via electrode. The power supply through via electrode and the ground through via electrode are formed of a first material such as copper, and the signal transfer through via electrode is formed of second material such as polycrystalline silicon doped with impurities. The signal transfer through via electrode may have a diametrically smaller cross section than that of each of the power supply through via electrode and the ground through via electrode regardless of their resistivities.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Won Kang, Seung-Duk Baek, Jong-Joo Lee
  • Patent number: 8039943
    Abstract: A semiconductor device is provided that includes a semiconductor chip and a resin section that molds the semiconductor chip and has a first through-hole. A through electrode that is electrically coupled to the semiconductor chip, extends through the resin section, and extends between a top edge and a bottom edge of an inner surface of the first through-hole. A cavity which extends between planes corresponding to an upper surface and a lower surface of the resin section is formed inside the first through-hole.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 18, 2011
    Assignee: Spansion, LLC
    Inventors: Masahiko Harayama, Kouichi Meguro, Junichi Kasai
  • Patent number: 8030748
    Abstract: A stackable microelectronic package includes a first microelectronic die attached to and electrically connecting with a first substrate. A second microelectronic die is attached to the first die on one side, and to a second substrate on the other side. Electrical connections are made between the first die and the first substrate, between the second die and the second substrate, and between the first and second substrates, e.g., via wire bonding. The electrical connecting elements are advantageously encased in a molding compound. Exposed contacts on the first and/or second substrates, not covered by the molding compound, provide for electrical connections between the package, and another package stacked onto the package. The package may avoid coplanarity factors, can be manufactured using existing equipment, allows for intermediate testing, and can also offer a thinner package height.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong
  • Patent number: RE43536
    Abstract: Layers suitable for stacking in three dimensional, multilayer modules are formed by interconnecting a ball grid array electronic package to an interposer layer which routes electronic signals to an access plane. The layers are underfilled and may be bonded together to form a stack of layers. The leads on the access plane are interconnected among layers to form a high-density electronic package.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 24, 2012
    Assignee: Aprolase Development Co., LLC
    Inventor: Floyd Eide