Stacked Arrangements Of Nonapertured Devices (epo) Patents (Class 257/E25.018)
  • Patent number: 8035205
    Abstract: A semiconductor package can comprise a die stack attached to a substrate, with bond wires electrically connecting the two. Often multiple die stacks are adhered to a single substrate so that several semiconductor packages can be manufactured at once. A molding compound flow controller is optimally associated with the substrate or semiconductor package at one or more various locations. Flow controllers can control or direct the flow of the molding compound during the encapsulation process. Flow controllers can be sized, shaped, and positioned in order to smooth out the flow of the molding compound, such that the speed of the flow is substantially equivalent over areas of the substrate containing dies and over areas of the substrate without dies. In this manner, defects such as voids in the encapsulation, wire sweeping, and wire shorts can be substantially avoided during encapsulation.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 11, 2011
    Assignee: Stats Chippac, Inc.
    Inventors: Seong Won Park, Cheng Yu Hsia, Yong Suk Kim
  • Publication number: 20110241206
    Abstract: A semiconductor device is provided by the present invention. The semiconductor device includes a first semiconductor die comprising at least a first bond pad; and a second semiconductor die comprising at least a second bond pad with voltage level equivalent to the first bond pad of the first semiconductor die; wherein the first bond pad of the first semiconductor die is electrically connected to the second bond pad of the second semiconductor die via at least a bond wire. The semiconductor device of the present invention is capable of solving the IR drop of the semiconductor die with low cost.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 6, 2011
    Inventors: Che-Yuan Jao, Sheng-Ming Chang
  • Publication number: 20110215471
    Abstract: A package on package structure is provided. The package on package structure may include a first substrate having a first center region and a first C-shaped edge region at a first end of the first center region. In example embodiments, the first C-shaped edge region may faun a first space. The package structure may further include at least two first connection pads on an inner surface of the first C-shaped edge region and the at least two first connection pads may be arranged to face one another. In example embodiments, at least one first solder ball may be arranged in the first space and the at least one first solder ball may be connected to the at least two first connection pads.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 8, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-Jae Kim, Young-Hoon Ro, Sung-Woo Park
  • Publication number: 20110215464
    Abstract: Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
    Type: Application
    Filed: December 29, 2009
    Publication date: September 8, 2011
    Inventors: John Stephen Guzek, Javier Soto Gonzalez, Nicholas R. Watts, Ravi K. Nalla
  • Patent number: 8008763
    Abstract: A stacked electronic component comprises a first electronic component adhered on a substrate via a first adhesive layer, and a second electronic component adhered by using a second adhesive layer thereon. The second adhesive layer has a two-layer structure formed by a same material and having different modulus of elasticity. The second adhesive layer of the two-layer structure has a first layer disposed at the first electronic component side and a second layer disposed at the second electronic component side. The first layer softens or melts at an adhesive temperature. The second layer maintains a layered shape at the adhesive temperature. According to the stacked electronic component, occurrences of an insulation failure and a short circuiting are prevented, and in addition, a peeling failure between the electronic components, an increase of a manufacturing cost, and so on, can be suppressed.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Naoyuki Komuta, Hideo Numata
  • Publication number: 20110193209
    Abstract: The present invention relates to a semiconductor package, comprising a carrier, a semiconductor device, a first wire and a second wire. The carrier has a first electrically connecting portion and a second electrically connecting portion. The semiconductor device has a plurality of pads. The first wire electrically connects one of the pads of the semiconductor device and the first electrically connecting portion of the carrier, and the first wire has a first length. The second wire electrically connects one of the pads of the semiconductor device and the second electrically connecting portion of the carrier, and the second wire has a second length. The second length is larger than the first length, and the diameter of the second wire is larger than that of the first wire. Thus, the material usage for the wire is reduced, and the manufacturing cost is reduced.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Sung-Ching Hung, Wen-Pin Huang
  • Patent number: 7994620
    Abstract: A stacked semiconductor device includes a first semiconductor element bonded on a circuit base. The first semiconductor element is electrically connected to a connection part of the circuit base via a first bonding wire. A second semiconductor element is bonded on the first semiconductor element via a second adhesive layer with a thickness of 50 ?m or more. The second adhesive layer is formed of an insulating resin layer whose glass transition temperature is 135° C. or higher and whose coefficient of linear expansion at a temperature equal to or lower than the glass transition temperature is 100 ppm or less.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: August 9, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Hideko Mukaida
  • Patent number: 7994627
    Abstract: A substrate includes a substrate; a number of pad redistribution chips stacked on the substrate and on one another after being rotated 90° in a predetermined direction relative to one another, the pad redistribution chips having a number of center pads positioned at the center thereof, a number of (+) edge pads positioned on an end thereof while corresponding to those of the center pads lying in (+) direction from a middle center pad located in the middle of the center pads, a number of (?) edge pads positioned on the other end thereof while corresponding to those of the center pads lying in (?) direction with symmetry to those of the center pads lying in the (+) direction, and a number of traces for electrically connecting the center pads to the corresponding (±) edge pads, respectively; a flexible PCB for electrically connecting the substrate to the pad redistribution chips; and an anisotropic dielectric film for electrically connecting the pad redistribution chips to the flexible PCB and the substrate to t
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: August 9, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae Min Kang
  • Publication number: 20110180927
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device having a semiconductor chip with electrodes, a stress-relieving layer prepared on the semiconductor chip, a wire formed across the electrodes and the stress-relieving layer, and solder balls formed on the wire over the stress-relieving layer; and a bare chip as a second semiconductor device to be electrically connected to the first semiconductor device.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 28, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Nobuaki HASHIMOTO
  • Patent number: 7982298
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a package-in-package semiconductor device including shortened electrical signal paths to optimize electrical performance. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In certain embodiments, a semiconductor package and one or more semiconductor dies are vertically stacked upon the substrate, and placed into electrical communication with the conductive pattern thereof. One or more of the semiconductor dies may include through-silicon vias formed therein for facilitating the electrical connection thereof to the conductive pattern of the substrate or to other electronic components within the vertical stack. Similarly, the semiconductor package may be provided with through-mold vias to facilitate the electrical connection thereof to other electronic components within the vertical stack.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Dae Byoung Kang, Sung Jin Yang, Jung Tae Ok, Jae Dong Kim
  • Publication number: 20110156275
    Abstract: A method for manufacture of an integrated circuit packaging system includes: mounting an integrated circuit, having a planar interconnect, over a carrier with the planar interconnect at a non-active side of the integrated circuit and an active side of the integrated circuit facing the carrier; connecting the integrated circuit and the carrier; connecting the planar interconnect and the carrier; and forming an encapsulation over the integrated circuit, the carrier, and the planar interconnect.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Inventors: Reza Argenty Pagaila, Byung Tai Do, Heap Hoe Kuan
  • Patent number: 7964950
    Abstract: An electronic parts packaging structure of the present invention includes a wiring substrate having a wiring pattern, a first insulating film which is formed on the wiring substrate and which has an opening portion in a packaging area where an electronic parts is mounted, the electronic parts having a connection terminal flip-chip mounted on the wiring pattern exposed in the opening portion of the first insulating film, a second insulating film for covering the electronic parts, a via hole formed in a predetermined portion of the first and second insulating films on the wiring pattern, and an upper wiring pattern formed on the second insulating film and connected to the wiring pattern through the via hole.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: June 21, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Masahiro Sunohara, Kei Murayama, Toshinori Koyama, Kazutaka Kobayashi, Mitsutoshi Higashi
  • Publication number: 20110108976
    Abstract: A method for manufacturing a stacked integrated circuit and package system includes: attaching a high temperature resistant layer on a top substrate; mounting a first top integrated circuit on the high temperature resistant layer; mounting a second top integrated circuit on the first top integrated circuit; molding an encapsulant over the first top integrated circuit, the second top integrated circuit and the top substrate; mounting a third top integrated circuit over the first top integrated circuit on a surface opposite the second top integrated circuit; mounting a fourth top integrated circuit on the third top integrated circuit; molding an encapsulant over the third top integrated circuit, the fourth top integrated circuit and the top substrate; forming top electrical connectors on a lower surface of the top substrate; and mounting a bottom package to the top electrical connectors.
    Type: Application
    Filed: January 13, 2011
    Publication date: May 12, 2011
    Inventors: Tae Sung Jeong, Hyeog Chan Kwon, Youngcheol Kim
  • Publication number: 20110062597
    Abstract: A package structure includes a substrate, a first die and at least one second die. The substrate includes a first pair of parallel edges and a second pair of parallel edges. The first die is mounted over the substrate. The first die includes a third pair of parallel edges and a fourth pair of parallel edges, wherein the third pair of parallel edges and the fourth pair of parallel edges are not parallel to the first pair of parallel edges and the second pair of parallel edges, respectively. The at least one second die is mounted over the first die.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 17, 2011
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Benson LIU, Hsien-Wei Chen, Shin-Puu Jeng, Hao-Yi Tsai
  • Publication number: 20110062598
    Abstract: Method and apparatus are provided for semiconductor device packages. In an example, an apparatus can include a first semiconductor device, a ground pad situated on an uppermost portion of the first semiconductor device and configured to electrically couple portions of the first semiconductor device to aground potential, and a second semiconductor device having at least a portion in electrical communication with an uppermost face of the first semiconductor device through a first electrically-conductive adhesive. In an example, the first electrically-conductive adhesive can be electrically coupled to the ground bond pad on the first semiconductor device.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: Atmel Corporation
    Inventor: Ken M. Lam
  • Patent number: 7906854
    Abstract: A semiconductor device includes a semiconductor chip, a supporting body that is disposed below the semiconductor chip and supports the semiconductor chip, a spacer that is fixed onto the first semiconductor chip, and a substrate that is located below the first semiconductor chip and electrically connected to the semiconductor chip with a wire. At least a part of the peripheral portion of the semiconductor chip is an overhang portion that projects more laterally than the peripheral portion of the supporting body. A covering portion that covers a part of the upper surface of the overhang portion is formed in the spacer. The wire is connected to a region in the upper surface of the overhang portion, the region being lateral to the outermost periphery of the covering portion of the spacer and not being covered with the covering portion of the spacer.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Miyagawa
  • Patent number: 7898075
    Abstract: In one embodiment, a semiconductor package disclosed herein can be generally characterized as including a resin substrate having a first recess, a first interconnection disposed on a surface of the first recess, a first semiconductor chip disposed in the first recess, and an underfill resin layer substantially filling the first recess and covering a side surface of the first semiconductor chip. The first semiconductor chip is electrically connected to the first interconnection.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-Yong Jang, Eun-Chul Ahn, Pyoung-Wan Kim, Taek-Hoon Lee
  • Publication number: 20110038127
    Abstract: Stacking techniques are illustrated in example embodiments of the present invention wherein semiconductor dies are mounted in a module to become a MCM which serves as the basic building block. A combination of these modules and dies in a substrate creates a package with specific function or a range of memory capacity. Several example system configurations are provided using BGA and PGA to illustrate the stacking technique. Several pin assignment and signal routing techniques are illustrated wherein internal and external signals are routed from main board to various stacked modules. Expansion can be done both on the vertical and horizontal orientations.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 17, 2011
    Inventors: Rey BRUCE, Ricardo Bruce, Patrick Digamon Bugayong, Joel Alonzo Baylon
  • Patent number: 7884483
    Abstract: A method of electrically joining a first contact on a first wafer with a second contact on a second wafer, the first contact, a rigid material, and the second contact, a material that is malleable relative to the rigid material, such that when brought together the rigid material will penetrate the malleable material, the rigid and malleable materials both being electrically conductive involves bringing the rigid material into contact with the malleable material, applying a force to one of the first contact or the second contact so as to cause the rigid material to penetrate the malleable material, heating the rigid and malleable material so as to cause the malleable material to soften, and constraining the malleable material to within a pre-specified area.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 8, 2011
    Assignee: Cufer Asset Ltd. L.L.C.
    Inventors: John Trezza, John Callahan, Gregory Dudoff
  • Patent number: 7872340
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a base package including a first integrated circuit coupled to a base substrate by an electrical interconnect formed on one side; and mounting an offset package over the base package, the offset package electrically coupled to the base substrate via a system interconnect.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 18, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: DaeSik Choi, BumJoon Hong, Sang-Ho Lee, Jong-Woo Ha, Soo-San Park
  • Patent number: 7863721
    Abstract: A semiconductor device has first and second wafers having bond pads. The bond pad of the second wafer is connected to the bond pad of the first wafer using a conductive adhesive. A first interconnect structure is formed within the second wafer and includes a first via formed in a back surface of the second wafer to expose the bond pad of the second wafer. A first metal layer is formed conformally over the first via and is in electrical contact with the bond pad of the second wafer. A third wafer is mounted over the second wafer by connecting a bond pad formed over a front surface of the third wafer to the first metal layer. A second interconnect structure is formed over a backside of the third wafer opposite the front surface. The second interconnect structure is electrically connected to the first metal layer.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: January 4, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Nathapong Suthiwongsunthorn, Pandi Chelvam Marimuthu
  • Patent number: 7851900
    Abstract: In a stacked semiconductor package, since electric power is supplied to a second semiconductor package through a first semiconductor package, a power supply path becomes complicated and fluctuation of its inductance becomes large, whereby power bounce occurs to reduce signal quality and also prevent high speed signal communication. Therefore, according to the present invention, a first solder ball group for joint to a printed wiring board is attached to a second layer of the first semiconductor package, and a second solder ball group for joint to the first semiconductor package and a solder group for power supply for direct joint to the printed wiring board are provided on the second layer of the second semiconductor package, whereby electric power can be directly supplied from the printed wiring board.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: December 14, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Ohsaka, Hiroshi Kondo
  • Publication number: 20100289156
    Abstract: According to an aspect of the invention, a semiconductor device includes a substrate having an opening area, a first semiconductor chip, and a second semiconductor chip. The first semiconductor chip has a first electrode for high-speed communication and that is disposed around the opening area on the substrate. The second semiconductor chip has a second electrode and third electrode for power and low-speed communication and that is disposed on the first semiconductor chip so that the first electrode is coupled with the second electrode by electrostatic coupling and dielectric coupling, the third electrode facing the opening area.
    Type: Application
    Filed: November 24, 2009
    Publication date: November 18, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Daisuke IGUCHI, Kanji OTSUKA, Yutaka AKIYAMA
  • Patent number: 7834464
    Abstract: A method for fabricating a device, a semiconductor chip package, and a semiconductor chip assembly is disclosed. One embodiment includes applying at least one semiconductor chip on a first form element. At least one element is applied on a second form element. A material is applied on the at least one semiconductor chip and on the at least one element.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 16, 2010
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Markus Brunnbauer, Jens Pohl
  • Publication number: 20100244233
    Abstract: Provided is a chip stack package and a method of manufacturing the same. A chip stack package may include a base chip including a base substrate, a base through via electrode penetrating the base substrate, a base chip pad connected to the base through via electrode, and a base encapsulant. The chip stack package may further include at least one stack chip on a surface of the base substrate. The chip stack package may also include an external connection terminal connected to the base through via electrode and the base chip pad and protruding from the base encapsulant, and an external encapsulant surrounding and protecting outer surfaces of the base chip and the at least one stack chip, wherein the chip through via electrode and the chip pad are connected to the base through via electrode and the base chip pad of the base chip.
    Type: Application
    Filed: January 26, 2010
    Publication date: September 30, 2010
    Inventors: Pyoung-wan Kim, Min-seung Yoon, Nam-seog Kim, Keum-hee Ma
  • Patent number: 7786562
    Abstract: A stackable layer and stacked multilayer module are disclosed. Individual integrated circuit die are tested and processed at the wafer level to create vertical area interconnect vias for the routing of electrical signals from the active surface of the die to the inactive surface. Vias are formed at predefined locations on each die on the wafer at the reticle level using a series of semiconductor processing steps. The wafer is passivated and the vias are filled with a conductive material. The bond pads on the die are exposed and a metallization reroute from the user-selected bond pads and vias is applied. The wafer is then segmented to form thin, stackable layers that can be stacked and vertically electrically interconnected using the conductive vias, forming high-density electronic modules which may, in turn, be further stacked and interconnected to form larger more complex stacks.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: August 31, 2010
    Inventors: Volkan Ozguz, Angel Pepe, James Yamaguchi, W. Eric Boyd, Douglas Albert, Andrew Camien
  • Publication number: 20100213594
    Abstract: A semiconductor device having a structure in which the structure is laminated in many stages is made thin. A reforming area is formed by irradiating a laser beam, where a condensing point is put together with the inside of the semiconductor substrate of a semiconductor wafer. Then, after applying the binding material of liquid state to the back surface of a semiconductor wafer by a spin coating method, this is dried and a solid-like adhesive layer is formed. Then, a semiconductor wafer is divided into each semiconductor chip by making the above-mentioned reforming area into a division origin. By pasting up this semiconductor chip on the main surface of the other semiconductor chip by the adhesive layer of the back surface, a semiconductor device having a structure in which the semiconductor device is laminated in many stages is manufactured.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 26, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Tomoko Higashino, Chuichi Miyazaki, Yoshiyuki Abe
  • Publication number: 20100213596
    Abstract: A stack package includes a substrate having an upper surface and a lower surface which faces away from the upper surface, a lower stack group, an upper stack group, and connection members. The lower stack group is attached to the upper surface of the substrate and includes at least two semiconductor chips which are stacked in a face-up type to form on or more steps. The upper stack group is disposed over the lower stack group and includes at least two semiconductor chips which are stacked in a face-down type in such a way as to form one or more steps whose direction mirrors the direction of the at least one step of the lower stack group. The connection members electrically connect the semiconductor chips of the lower and upper stack groups to the substrate.
    Type: Application
    Filed: December 28, 2009
    Publication date: August 26, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Seong Cheol KIM
  • Patent number: 7767494
    Abstract: A manufacturing method for a layered chip package including a stack of a plurality of layer portions includes the steps of: fabricating a layered substructure by stacking a plurality of substructures each including a plurality of layer portions corresponding to the plurality of layer portions of the layered chip package; and fabricating a plurality of layered chip packages by using the layered substructure.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 3, 2010
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Tatsuya Harada, Nobuyuki Okuzawa, Satoru Sueki
  • Publication number: 20100148349
    Abstract: A semiconductor package having a support chip and a fabrication method thereof. The semiconductor package includes a circuit substrate having a conductive pattern on the top surface. A first semiconductor die is attached on top of the circuit substrate. A second semiconductor die is attached on top of the first semiconductor die. Each of the first and second semiconductor dies has a plurality of bond pads on the top surface. A support chip is attached on top of the first semiconductor die and has a plurality of bond pads provided on the top surface. The conductive wires electrically connect the first semiconductor die and the second semiconductor die to the circuit substrate, the second semiconductor die to the support chip, the bond pads of the support chip to each other, and the support chip to the circuit substrate. An encapsulant encloses, as in a capsule, the foregoing components.
    Type: Application
    Filed: October 22, 2009
    Publication date: June 17, 2010
    Applicant: HANA MICRON CO., LTD.
    Inventors: Dong Hee Kim, Hyun Oh Yoo, Hyun Woo Lee
  • Patent number: 7737542
    Abstract: A stackable semiconductor package includes a substrate with a first side surface that includes circuit patterns. Each circuit pattern includes a pad. A semiconductor die is electrically coupled to the circuit patterns. An encapsulant covers the semiconductor die and the first side surface of the substrate inward of the pads. A layer of a solder is fused to each of the pads. A lateral distance between immediately adjacent pads is selected to be greater than a lateral distance between sidewalls of the encapsulant and immediately adjacent pads, and a height of the solder layers relative to the first side surface is selected to be less than a height of the sidewalls of the encapsulant, so that misalignment of a semiconductor package stacked on the solder layers/pads is self-correcting when juxtaposed ones of the solder layers and respective solder balls of the second semiconductor package are ref lowed and fused together.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: June 15, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Akito Yoshida, Young Wook Heo
  • Patent number: 7705468
    Abstract: A stacked semiconductor package includes a substrate having first and second contact pads. A first stacked package group is disposed on the substrate, and the first stacked package group includes first semiconductor chips stacked in a stair form to expose first edge bonding pads. First conductive wires are used to electrically couple the first edge bonding pads and the first contact pads. An adhesive member is disposed on the uppermost first semiconductor chip, and a second stacked package group is disposed on the adhesive member. The second stacked package group includes second semiconductor chips that are stacked in a stair form to expose second edge bonding pads. When the second stacked package group is disposed on the adhesive member, the bottommost second semiconductor chips is aligned with the uppermost first semiconductor chip. Second conductive wires are used to electrically couple the second edge bonding pads and the second contact pads.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: April 27, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cheol Ho Joh
  • Patent number: 7696616
    Abstract: A stacked type semiconductor device includes semiconductor devices, interposers by which the semiconductor devices are stacked, the interposers having electrodes provided on sides thereof, and a connection substrate connecting the electrodes together. The electrodes provided on the sides of the interposers may be connected to the connection substrate by one of an electrically conductive adhesive or an anisotropically conductive film.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: April 13, 2010
    Assignee: Spansion LLC
    Inventors: Yasuhiro Shinma, Masanori Onodera, Kouichi Meguro, Koji Taya, Junji Tanaka, Junichi Kasai
  • Publication number: 20100078830
    Abstract: The present invention relates to an adhesive tape for electrically connecting semiconductor chips in a chip-on-chip type semiconductor device. The adhesive tape comprising: (A) 10 to 50 wt % of film forming resin; (B) 30 to 80 wt % of curable resin; and (C) 1 to 20 wt % of curing agent having flux activity.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 1, 2010
    Applicant: SUMITOMO BAKELITE CO., LTD.
    Inventors: Satoru Katsurayama, Tomoe Yamashiro, Takashi Hirano
  • Patent number: 7679176
    Abstract: A semiconductor device has a substrate with an electronic circuit, a semiconductor element provided at a first surface of the substrate and electrically connected by wire bonding to the electronic circuit, a metallic core layer electrically connected to the semiconductor element. A plurality of conductive bumps provided opposite the first surface of the substrate. A thermal hardenable resin seals at least the semiconductor element, and a metal plate is electrically connected to the metal core layer.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Asano, Yasuo Akutsu, Masahide Harada, Kaoru Uchiyama, Shinichi Fujiwara, Isamu Yoshida
  • Publication number: 20100052096
    Abstract: A stacked-chip device includes a first inductive chip having a first function, a second inductive chip having a second function different from the first function, which is stacked on the first inductive chip, and a third inductive chip having the second function, which is stacked on the second inductive chip. Each of the first, second and third inductive chips has transmitting inductors which transmit data and receiving inductors which receive data. The transmitting inductors and the receiving inductors are disposed in line symmetry to an axis of symmetry. The axes of symmetry of the first, second and third inductive chips are overlapped. Each of the second and third inductive chips is disposed in upside-down or back to front to the first inductive chip.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 4, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yukihiro Urakawa
  • Patent number: 7671389
    Abstract: An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Young-Seop Rah, Han-Byung Park
  • Patent number: 7671459
    Abstract: Stacked microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a stacked microelectronic device assembly can include a first known good packaged microelectronic device including a first interposer substrate. A first die and a first through-casing interconnects are electrically coupled to the first interposer substrate. A first casing at least partially encapsulates the first device such that a portion of each first interconnect is accessible at a top portion of the first casing. A second known good packaged microelectronic device is coupled to the first device in a stacked configuration. The second device can include a second interposer substrate having a plurality of second interposer pads and a second die electrically coupled to the second interposer substrate. The exposed portions of the first interconnects are electrically coupled to corresponding second interposer pads.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 2, 2010
    Assignee: Micron Technologies, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 7652381
    Abstract: Structures employed by a plurality of packages, printed circuit boards, connectors and interposers to create signal paths which reduce the deleterious signal quality issues associated with the use of through-holes. Disclosed structures can coexist with through-hole implementations.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: January 26, 2010
    Assignee: Interconnect Portfolio LLC
    Inventors: Kevin P. Grundy, Joseph C. Fjelstad, Gary Yasumura, William F. Wiedemann, Para K. Segaram
  • Patent number: 7652361
    Abstract: A semiconductor device has a substrate. A semiconductor die is coupled to a first surface of the substrate. An encapsulate is placed over the semiconductor die. A first plurality of lands is formed on the first surface of the substrate around the encapsulate. A second plurality of lands is formed on a second surface of the substrate. A first group of the second plurality of lands has a pitch and a second group of the second plurality of lands has a pitch of a different length.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: January 26, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Akito Yoshida, Mahmoud Dreiza, James Turner
  • Patent number: 7608481
    Abstract: A method for producing a semiconductor package including a main semiconductor chip having a semiconductor circuit formed on one surface thereof, at least one subsidiary semiconductor chip stacked on the other surface of the main semiconductor chip, and an encapsulation resin covering the subsidiary semiconductor chip.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: October 27, 2009
    Assignee: Disco Corporation
    Inventor: Takatoshi Masuda
  • Patent number: 7595222
    Abstract: The semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof. The first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region. The first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, a side surface of the second semiconductor chip and the main surface of the second semiconductor chip.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: September 29, 2009
    Assignee: Panasonic Corporation
    Inventors: Nozomi Shimoishizaka, Toshiyuki Fukuda
  • Patent number: 7595550
    Abstract: A form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design that is disposed about the form. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 29, 2009
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr.
  • Patent number: 7569920
    Abstract: An electronic component includes a vertical semiconductor power transistor and a further semiconductor device arranged on the transistor to form a stack. The first vertical semiconductor power transistor has a semiconductor body having a first side and a second side and device structures, at least one first electrode positioned on the first side and at least one second electrode positioned on the second side. The semiconductor body further has at least one electrically conductive via. The via extends from the first side to the second side of the semiconductor body and is galvanically isolated from the device structures of the semiconductor body and from the first electrode and the second electrode.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: August 4, 2009
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Klaus Schiess
  • Patent number: 7462930
    Abstract: Provided are a stack chip and a stack chip package having the stack chip. Internal circuits of two semiconductor chips are electrically connected to each other through an input/output buffer connected to an external connection terminal. The semiconductor chip has chip pads, input/output buffers and internal circuits connected through circuit wirings. The semiconductor chip also has connection pads connected to the circuit wirings connecting the input/output buffers to the internal circuits. The semiconductor chips include a first chip and a second chip. The connection pads of the first chip are electrically connected to the connection pads of the second chip through electrical connection means. Input signals input through the external connection terminals are input to the internal circuits of the first chip or the second chip via the chip pads and the input/output buffers of the first chip, and the connection pads of the first chip and the second chip.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 9, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Joo Lee, Dong-Ho Lee
  • Patent number: 7459774
    Abstract: In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with such voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete gap fill.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Chai Kwon, Kang-Wook Lee, Keum-Hee Ma, Seong-II Han
  • Patent number: 7385299
    Abstract: A stackable integrated circuit package system is provided forming a first integrated circuit die having an interconnect provided thereon, forming an external interconnect, having an upper tip and a lower tip, from a lead frame, mounting the first integrated circuit die on the external interconnect with the interconnect on the lower tip and below the upper tip, and encapsulating around the interconnect with an exposed surface.
    Type: Grant
    Filed: February 25, 2006
    Date of Patent: June 10, 2008
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Heap Hoe Kuan, Dioscoro A. Merilo, Antonio B. Dimaano, Jr.
  • Patent number: 7378726
    Abstract: A system may include a first integrated circuit package including a first integrated circuit die and a first integrated circuit package substrate defining a first plurality of openings, a second integrated circuit package including a second integrated circuit die and a second integrated circuit package substrate defining a second plurality of openings, and a third substrate comprising a plurality of conductive projections. Each of the plurality of conductive projections may be disposed within a respective one of the first plurality of openings and a respective one of the second plurality of openings.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: May 27, 2008
    Assignee: Intel Corporation
    Inventors: Nelson V. Punzalan, Lee Sang Ho
  • Patent number: 7375418
    Abstract: The present invention provides a system and method for selectively stacking and interconnecting leaded packaged integrated circuit devices with connections between the feet of leads of an upper IC element and the upper shoulder of leads of a lower IC element while traces that implement stacking-related intra-stack connections between the constituent ICs are implemented in interposers or carrier structures oriented along the leaded sides of the stack and which extend beyond the perimeter of the feet of the leads of the constituent ICs or beyond the connective pads of the interposer. This leaves open to air flow, most of the transit section of the lower lead for cooling, but provides a less complex board structure for implementation of intra-stack connections.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: May 20, 2008
    Assignee: Entorian Technologies, LP
    Inventor: Julian Partridge
  • Patent number: 7355273
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy