With At Least Part Of Active Region On Insulating Substrate (e.g., Lateral Dmos In Oxide Isolated Well) (epo) Patents (Class 257/E29.261)
  • Publication number: 20130207183
    Abstract: A semiconductor device includes a semiconductor substrate, a buried layer, a deep well having a first conductivity type being disposed on the buried layer, a first doped region having the first conductivity type and a well having the second conductivity type being disposed in the deep well, a first heavily doped region having the first conductivity type being disposed in the first doped region, a second heavily doped region having the first conductivity type being disposed in the well, a gate disposed between the first heavily doped region and the second heavily doped region, and a first trench structure and a second trench structure being disposed at the two sides of the gate in the semiconductor substrate. The first trench structure contacts the buried layer, and a depth of the second trench structure is substantially larger than a depth of the buried layer.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Inventor: Ching-Hung Kao
  • Patent number: 8487307
    Abstract: A semiconductor arrangement is disclosed. One embodiment includes a first semiconductor layer including a first and second component zone that form a pn-junction or a Schottky-junction. A second semiconductor layer includes a drift control zone adjacent to the second component zone. A dielectric layer separates the first semiconductor layer from the second semiconductor layer. A rectifying element is coupled between the drift control zone and the second component zone.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 16, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Joachim Weyers, Anton Mauder, Franz Hirler, Paul Kuepper
  • Publication number: 20130161740
    Abstract: A lateral high-voltage transistor comprising a semiconductor layer of a first conductivity type; a source region of a second conductivity type in the semiconductor layer; a drain region of the second conductivity type in the semiconductor layer; a first isolation layer atop the semiconductor layer between the source and the drain regions; a first well region of the second conductivity type surrounding the drain region; a gate positioned atop the first isolation layer adjacent to the source region; a spiral resistive field plate atop the first isolation layer spiraling between the drain region and the gate, wherein the spiral resistive field plate is coupled in series to the source and drain regions; and a buried layer of the first conductivity type in the first well region, wherein the buried layer is buried beneath a top surface of the first well region below the spiral resistive field plate.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventors: Donald R. Disney, Ognjen Milic
  • Patent number: 8431990
    Abstract: A semiconductor device comprises a substrate and a gate which extends on the substrate in a first horizontal direction. A source region is positioned at a first side of the gate and extends in the first direction. A body region of a first conductivity type is under the source region and extends in the first direction. A drain region of a second conductivity type is at a second side of the gate and extends in the first direction. A drift region of the second conductivity type extends between the body region and the drain region in the substrate in a second horizontal direction. A first buried layer is under the drift region in the substrate, the first buried layer extending in the first and second directions. A plurality of second buried layers is between the first buried layer and the drift region in the substrate. The second buried layers extend in the second direction and are spaced apart from each other in the first direction.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nam-Young Lee, Mueng-Ryul Lee
  • Patent number: 8431450
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Publication number: 20130082335
    Abstract: A method to form a LDMOS transistor includes forming a gate/source/body opening and a drain opening in a field oxide on a substrate structure, forming a gate oxide in the gate/source/body opening, and forming a polysilicon layer over the substrate structure. The polysilicon layer is anisotropically etched to form polysilicon spacer gates separated by a space in the gate/source/body opening and a polysilicon drain contact in the drain opening. A body region is formed self-aligned about outer edges of the polysilicon spacer gates, a source region is formed self-aligned about inner edges of the polysilicon spacer gates, and a drain region is formed under the polysilicon drain contact and self-aligned with respect to the polysilicon spacer gates. A drift region forms in the substrate structure between the body region and the drain region, and a channel region forms in the body region between the source region and the drift region.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: MICREL, INC.
    Inventor: David R. Zinn
  • Publication number: 20130075816
    Abstract: Disclosed are an LDMOS device and a method for manufacturing the same capable of decreasing the concentration of a drift region between a source finger tip and a drain, thereby increasing a breakdown voltage. An LDMOS device includes a gate which is formed on a substrate, a source and a drain which are separately arranged on both sides of the substrate with the gate interposed therebetween, a field oxide film which is formed to have a step between the gate and the drain, a drift region which is formed of first condition type impurity ions between the gate and the drain on the substrate, and at least one internal field ring which is formed inside the drift region and formed by selectively ion-implanting second conduction type impurity ions in accordance with the step of the field oxide film.
    Type: Application
    Filed: March 2, 2012
    Publication date: March 28, 2013
    Applicant: DONGBU HITEK CO., LTD.
    Inventors: Jae Hyun YOO, Jong Min Kim
  • Publication number: 20130069156
    Abstract: A semiconductor device formed on a silicon-on-insulator substrate includes a gate electrode, a gate insulation film, a drain diffusion region, a drift region, a body region, a plurality of source diffusion regions, and a plurality of charge collection diffusion regions. The source diffusion regions and charge collection diffusion regions are of mutually opposite conductivity types, and alternate with one another in the direction paralleling the width of the gate electrode. The half-width of each source diffusion region is equal to or less than the length of the gate electrode plus the half-length of the drift region.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: LAPIS Semiconductor Co., Ltd.
    Inventor: Noriyuki MIURA
  • Patent number: 8399925
    Abstract: A termination structure with multiple embedded potential spreading capacitive structures (TSMEC) and method are disclosed for terminating an adjacent trench MOSFET atop a bulk semiconductor layer (BSL) with bottom drain electrode. The BSL has a proximal bulk semiconductor wall (PBSW) supporting drain-source voltage (DSV) and separating TSMEC from trench MOSFET. The TSMEC has oxide-filled large deep trench (OFLDT) bounded by PBSW and a distal bulk semiconductor wall (DBSW). The OFLDT includes a large deep oxide trench into the BSL and embedded capacitive structures (EBCS) located inside the large deep oxide trench and between PBSW and DBSW for spatially spreading the DSV across them. In one embodiment, the EBCS contains interleaved conductive embedded polycrystalline semiconductor regions (EPSR) and oxide columns (OXC) of the OFLDT, a proximal EPSR next to PBSW is connected to an active upper source region and a distal EPSR next to DBSW is connected to the DBSW.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 19, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaobin Wang, Anup Bhalla, Hamza Yilmaz, Daniel Ng
  • Patent number: 8395210
    Abstract: The invention provides a DMOS transistor in which a leakage current is decreased and the source-drain breakdown voltage of the transistor in the off state is enhanced when a body layer is formed by oblique ion implantation. After a photoresist layer 18 is formed, using the photoresist layer 18 and a gate electrode 14 as a mask, first ion implantation is performed toward a first corner portion 14C1 on the inside of the gate electrode 14 in a first direction shown by an arrow A?. A first body layer 17A? is formed by this first ion implantation. The first body layer 17A? is formed so as to extend from the first corner portion 14C1 to under the gate electrode 14, and the P-type impurity concentration of the body layer 17A? in the first corner portion 14C1 is higher than that of a conventional transistor.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 12, 2013
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Yasuhiro Takeda, Seiji Otake, Shuichi Kikuchi
  • Publication number: 20130056824
    Abstract: A semiconductor device and a manufacturing method for the same are provided. The semiconductor device comprises a first doped region, a second doped region, a dielectric structure and a gate structure. The first doped region has a first type conductivity. The second doped region has a second type conductivity opposite to the first type conductivity and is adjacent to the first doped region. The dielectric structure comprises a first dielectric portion and a second dielectric portion separated from each other. The dielectric structure is formed on the first doped region. The gate structure is on a part of the first doped region or second doped region adjacent to the first dielectric portion.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: Macronix International Co., Ltd.
    Inventors: Chien-Wen Chu, Wing-Chor Chan, Shyi-Yuan Wu
  • Publication number: 20130049111
    Abstract: According to one embodiment, in a dielectric isolation substrate, an insulating film having a first thickness is provided on a semiconductor substrate. A semiconductor layer of a first conductivity type having a second thickness is provided on the insulating film. An impurity diffusion layer of a second conductivity type is provided partially in a lower portion of the semiconductor layer and is in contact with the insulating film.
    Type: Application
    Filed: March 2, 2012
    Publication date: February 28, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Ryo WADA, Kaori Yoshioka, Norio Yasuhara, Tomoko Matsudai, Yuichi Goto
  • Publication number: 20130037883
    Abstract: An LDPMOS structure having enhanced breakdown voltage and specific on-resistance is described, as is a method for fabricating the structure. A P-field implanted layer formed in a drift region of the structure and surrounding a tightly doped drain region effectively increases breakdown voltage while maintaining a relatively low specific on-resistance.
    Type: Application
    Filed: October 10, 2012
    Publication date: February 14, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Yin-Fu Huang, Miao-Chun Chung, Shih-Chin Lien
  • Publication number: 20130032880
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate has an upper surface. The high voltage device includes: a second conductive type buried layer, which is formed in the substrate; a first conductive type well, which is formed between the upper surface and the buried layer; and a second conductive type well, which is connected to the first conductive type well and located at different horizontal positions. The second conductive type well includes a well lower surface, which has a first part and a second part, wherein the first part is directly above the buried layer and electrically coupled to the buried layer; and the second part is not located above the buried layer and forms a PN junction with the substrate.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Inventors: Tsung-Yi HUANG, Huan-Ping CHU
  • Patent number: 8368141
    Abstract: A high breakdown voltage semiconductor device, in which a semiconductor layer is formed on a semiconductor substrate across a dielectric layer, includes a drain layer on the semiconductor layer, a buffer layer formed so as to envelop the drain layer, a source layer, separated from the drain layer, and formed so as to surround a periphery thereof, a well layer formed so as to envelop the source layer, and a gate electrode formed across a gate insulating film on the semiconductor layer, wherein the planar shape of the drain layer 113 and buffer layer is a non-continuous or continuous ring.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 5, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Masaharu Yamaji
  • Publication number: 20130015523
    Abstract: Methods of making, structures, devices, and/or applications for lateral double-diffused metal oxide semiconductor (LDMOS) transistors are disclosed. In one embodiment, a method of fabricating an LDMOS transistor with source, drain, and gate regions on a substrate, can include: forming p-type and n-type buried layer (PBL, NBL) regions; growing an epitaxial (N-EPI) layer on the NBL/PBL regions; forming a p-doped deep p-well (DPW) region on the PBL region; forming a well region in the N-EPI layer; forming a doped body region; forming an active area and a field oxide (FOX) region, and forming a drain oxide between the source and drain regions of the LDMOS transistor; forming a gate oxide adjacent to the source and drain regions, and forming a gate on the gate oxide and a portion of the drain oxide; and forming a doped drain region, and first and second doped source regions.
    Type: Application
    Filed: December 21, 2011
    Publication date: January 17, 2013
    Applicant: SILERGY TECHNOLOGY
    Inventor: Budong You
  • Patent number: 8334568
    Abstract: A P type semiconductor substrate includes a P type body region, an N type drift region formed away from the P type body region in a direction parallel to a substrate surface, an N type drain region formed in a region separated by a field oxide film in the N type drift region so as to have a concentration higher than the N type drift region, an N type source region formed in the P type body region so as to have a concentration higher than the N type drift region. A P type buried diffusion region having a concentration higher than the N type drift region is formed of a plurality of parts each of which is connected to a part of the bottom surface of the P type body region and extends parallel to the substrate surface and its tip end reaches the inside of the drift region.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: December 18, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hisao Ichijo, Alberto Adan
  • Publication number: 20120299096
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 29, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ker Hsiao HUO, Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG
  • Patent number: 8319284
    Abstract: A laterally diffused metal-oxide-semiconductor device includes a substrate, a gate dielectric layer, a gate polysilicon layer, a source region, a drain region, a body region, a first drain contact plug, a source polysilicon layer, an insulating layer, and a source metal layer. The source polysilicon layer disposed on the gate dielectric layer above the drain region can serve as a field plate to enhance the breakdown voltage and to increase the drain-to-source capacitance. In addition, the first drain contact plug of the present invention can reduce the drain-to-source on-resistance and the horizontal extension length.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 27, 2012
    Assignee: Sinopower Semiconductor Inc.
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Jia-Fu Lin, Po-Hsien Li
  • Publication number: 20120287715
    Abstract: A non-volatile memory cell and array structure is disclosed situated within a high voltage region of an integrated circuit. The cell utilizes capacitive coupling based on an overlap between a gate and a drift region to impart a programming voltage. Programming is effectuated using a drain extension which can act to inject hot electrons. The cell can be operated as a one-time programmable (OTP) or multiple-time programmable (MTP) device. The fabrication of the cell relies on processing steps associated with high voltage devices, thus avoiding the need for additional masks, manufacturing steps, etc.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Inventor: David K.Y. Liu
  • Patent number: 8304830
    Abstract: An LDPMOS structure having enhanced breakdown voltage and specific on-resistance is described, as is a method for fabricating the structure. A P-field implanted layer formed in a drift region of the structure and surrounding a lightly doped drain region effectively increases breakdown voltage while maintaining a relatively low specific on-resistance.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Yin-Fu Huang, Miao-Chun Chung, Shih-Chin Lien
  • Publication number: 20120273881
    Abstract: A lateral DMOS transistor formed on a silicon-on-insulator (SOI) structure has a higher breakdown voltage that results from a cavity that is formed in the bulk region of the SOI structure. The cavity exposes a portion of the bottom surface of the insulator layer of the SOI structure that lies directly vertically below the drift region of the DMOS transistor.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Inventors: William French, Vladislav Vashchenko, Richard Wendell Foote, JR., Alexei Sadovnikov, Punit Bhola, Peter J. Hopper
  • Patent number: 8293612
    Abstract: A method for manufacturing a lateral double diffused metal oxide semiconductor (LDMOS) device includes forming an oxide layer on a semiconductor substrate, forming first and second trenches by partially etching the oxide layer and the semiconductor substrate, forming a small trench overlapping with the second trench so that the second trench has a stepped structure, and depositing one or more dielectric layers so that the first trench forms a device isolation layer defining a semiconductor device region and the second trench having a stepped structure forms a drain extension device isolation layer. The breakdown voltage of the LDMOS device may be improved while reducing the on-resistance, thereby improving the operational reliability of the device.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: October 23, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Yong Jun Lee
  • Patent number: 8288220
    Abstract: A method of forming a semiconductor device may include forming a terminal region of a first conductivity type within a semiconductor layer of the first conductivity type. A well region of a second conductivity type may be formed within the semiconductor layer wherein the well region is adjacent at least portions of the terminal region within the semiconductor layer, a depth of the well region into the semiconductor layer may be greater than a depth of the terminal region into the semiconductor layer, and the first and second conductivity types may be different. An epitaxial semiconductor layer may be formed on the semiconductor layer, and a terminal contact region of the first conductivity type may be formed in the epitaxial semiconductor layer with the terminal contact region providing electrical contact with the terminal region. In addition, an ohmic contact may be formed on the terminal contact region. Related structures are also discussed.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 16, 2012
    Assignee: Cree, Inc.
    Inventors: Brett Adam Hull, Qingchun Zhang
  • Patent number: 8278712
    Abstract: A cellular transistor includes an N-type heavily doped (N+) buried layer (NBL), an N-well connected to the NBL, an N+ layer connected to the N-well and multiple drains. The N-well is formed after formation of the NBL. The N+ layer is formed after formation of the N-well. The multiple drains are connected to the NBL via the N-well and the N+ layer.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 2, 2012
    Assignee: O2Micro Inc.
    Inventors: Jungcheng Kao, Yanjun Li
  • Patent number: 8278710
    Abstract: An LDMOSFET transistor (100) is provided which includes a substrate (101), an epitaxial drift region (104) in which a drain region (116) is formed, a first well region (107) in which a source region (112) is formed, a gate electrode (120) formed adjacent to the source region (112) to define a first channel region (14), and a grounded substrate injection suppression guard structure that includes a patterned buried layer (102) in ohmic contact with an isolation well region (103) formed in a predetermined upper region of the substrate so as to be spaced apart from the first well region (107) and from the drain region (116), where the buried layer (102) is disposed below the first well region (107) but not below the drain region (116).
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: October 2, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishnu K. Khemka, Stephen J. Cosentino, Tahir A. Khan, Adolfo C. Reyes, Ronghua Zhu
  • Publication number: 20120241861
    Abstract: An ultra-high voltage n-type-metal-oxide-semiconductor (UHV NMOS) device with improved performance and methods of manufacturing the same are provided. The UHV NMOS includes a substrate of P-type material; a first high-voltage N-well (HVNW) region disposed in a portion of the substrate; a source and bulk p-well (PW) adjacent to one side of the first HVNW region, and the source and bulk PW comprising a source and a bulk; a gate extended from the source and bulk PW to a portion of the first HVNW region, and a drain disposed within another portion of the first HVNW region that is opposite to the gate; a P-Top layer disposed within the first HVNW region, the P-Top layer positioned between the drain and the source and bulk PW; and an n-type implant layer formed on the P-Top layer.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 27, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chieh-Chih Chen, Cheng-Chi Lin, Chen-Yuan Lin, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20120241862
    Abstract: The embodiments of the present disclosure disclose a LDMOS device and the method for making the LDMOS device. The LDMOS device comprises at least one capacitive region formed in the drift region. Each capacitive region comprises a polysilicon layer and a thick oxide layer separating the polysilicon layer from the drift region. The LDMOS device in accordance with the embodiments of the present disclosure can improve the breakdown voltage while a low on-resistance is maintained.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Lei Zhang, Yang Xiang
  • Patent number: 8274114
    Abstract: An apparatus is disclosed to increase a breakdown voltage of a semiconductor device. The semiconductor device includes a modified breakdown shallow trench isolation (STI) region to effectively reduce a drain to source resistance when compared to a conventional semiconductor device, thereby increasing the breakdown voltage of the semiconductor device when compared to the conventional semiconductor device. The modified breakdown STI region allows more current to pass from a source region to a drain region of the semiconductor device, thereby further increasing the break down voltage of the semiconductor device from that of the conventional semiconductor device. The semiconductor device may include a modified well region to further reduce the drain to source resistance of the semiconductor device.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 25, 2012
    Assignee: Broadcom Corporation
    Inventor: Akira Ito
  • Publication number: 20120223383
    Abstract: A method for fabrication of a semiconductor device is provided. A first type doped body region is formed in a first type substrate. A first type heavily-doped region is formed in the first type doped body region. A second type well region and second type bar regions are formed in the first type substrate with the second type bar regions between the second type well region and the first type doped body region. The first type doped body region, the second type well region, and each of the second type bar regions are separated from each other by the first type substrate. The second type bar regions are inter-diffused to form a second type continuous region adjoining the second type well region. A second type heavily-doped region is formed in the second type well region.
    Type: Application
    Filed: May 16, 2012
    Publication date: September 6, 2012
    Applicant: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shang-Hui Tu, Hung-Shern Tsai
  • Publication number: 20120211832
    Abstract: A semiconductor device comprises a source region, a drain region, and a drift region between the source and drain regions. A split gate is disposed over a portion of the drift region, and between the source and drain regions. The split gate includes first and second gate electrodes separated by a gate oxide layer. A self-aligned RESURF region is disposed within the drift region between the gate and the drain region. PI gate structures including an upper polysilicon layer are disposed near the drain region, such that the upper polysilicon layer can serve as a hard mask for the formation of the double RESURF structure, thereby allowing for self-alignment of the double RESURF structure.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chien-Wen CHU, Wing-Chor CHAN, Shyi-Yuan WU
  • Patent number: 8232596
    Abstract: A method for fabrication of a semiconductor device is provided. A first type doped body region is formed in a first type substrate. A first type heavily-doped region is formed in the first type doped body region. A second type well region and second type bar regions are formed in the first type substrate with the second type bar regions between the second type well region and the first type doped body region. The first type doped body region, the second type well region, and each of the second type bar regions are separated from each other by the first type substrate. The second type bar regions are inter-diffused to form a second type continuous region adjoining the second type well region. A second type heavily-doped region is formed in the second type well region.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 31, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shang-Hui Tu, Hung-Shern Tsai
  • Patent number: 8227871
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. The semiconductor device includes a substrate having a first conductor-type, a buried layer of a second conductor-type on the substrate, a drain, and a first guard-ring on one side of the drain, a second guard-ring on one side of the first guard-ring, and a third guard-ring on one side of the second guard-ring.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: July 24, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Choul Joo Ko
  • Patent number: 8217452
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: July 10, 2012
    Assignees: Atmel Rousset S.A.S., LAAS-CNRE
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron
  • Publication number: 20120161233
    Abstract: An apparatus is disclosed to increase a reduced a parasitic capacitance of a semiconductor device. The semiconductor device includes a modified gate region to effectively reduce an overlap capacitance and modified well regions to effectively reduce a junction capacitance. The modified gate region includes a doped region and an undoped to decrease an effective area of the overlap capacitance. The modified well regions are separated by a substantially horizontal distance to increase an effective distance of the junction capacitance. This decrease in the effective area of the overlap capacitance and this increase in the effective distance of the junction capacitance reduces the parasitic capacitance of the semiconductor device.
    Type: Application
    Filed: February 2, 2011
    Publication date: June 28, 2012
    Applicant: Broadcom Corporation
    Inventor: Akira ITO
  • Patent number: 8193563
    Abstract: A structure and method of fabricating the structure. The structure including: a dielectric isolation in a semiconductor substrate, the dielectric isolation extending in a direction perpendicular to a top surface of the substrate into the substrate a first distance, the dielectric isolation surrounding a first region and a second region of the substrate, a top surface of the dielectric isolation coplanar with the top surface of the substrate; a dielectric region in the second region of the substrate; the dielectric region extending in the perpendicular direction into the substrate a second distance, the first distance greater than the second distance; and a first device in the first region and a second device in the second region, the first device different from the second device, the dielectric region isolating a first element of the second device from a second element of the second device.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Peter Gambino, Steven Howard Voldman, Michael Joseph Zierak
  • Publication number: 20120126323
    Abstract: A semiconductor device comprises a source region, a drain region, and a drift region between the source and drain regions. A split gate is disposed over a portion of the drift region, and between the source and drain regions. The split gate includes first and second gate electrodes separated by a gate oxide layer. A super-junction structure is disposed within the drift region between the gate and the drain region.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Shyi-Yuan Wu, Wing Chor Chan, Chien-Wen Chu
  • Publication number: 20120112274
    Abstract: According to one embodiment, a semiconductor device, including a semiconductor layer including a first region and a second region isolated from the first region, a source in a surface of the first region, a drain in a surface of the second region, a back-gate in the surface of the first region, an end of a drain side of the back-gate being located closer to the drain side than an end of the drain side of the source, a gate insulator on a surface of the semiconductor layer between the first region and the second region, a gate electrode on the gate insulator, a source electrode being contacted to both the source and the back-gate, and a drain electrode being contacted to the drain area.
    Type: Application
    Filed: March 17, 2011
    Publication date: May 10, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tsubasa YAMADA
  • Patent number: 8174069
    Abstract: A power semiconductor device has a top surface and an opposed bottom surface below a part of which is a thick portion of semiconductor substrate. At least a portion of a drift region of the device has either no or only a thin portion of semiconductor substrate positioned thereunder. The top surface has a high voltage terminal and a low voltage terminal connected thereto to allow a voltage to be applied laterally across the drift region. At least two MOS (metal-oxide-semiconductor) gates are provided on the top surface. The device has at least one relatively highly doped region at its top surface extending between and in contact with said first and second MOS gates. The device has improved protection against triggering of parasitic transistors or latch-up without the on-state voltage drop or switching speed being compromised.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 8, 2012
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Vasantha Pathirana, Tanya Trajkovic, Nishad Udugampola
  • Patent number: 8159029
    Abstract: A semiconductor device includes a semiconductor substrate, a source region and a drain region formed in the substrate, a gate structure formed on the substrate disposed between the source and drain regions, and a first isolation structure formed in the substrate between the gate structure and the drain region, the first isolation structure including projections that are located proximate to an edge of the drain region. Each projection includes a width measured in a first direction along the edge of the drain region and a length measured in a second direction perpendicular to the first direction, and adjacent projections are spaced a distance from each other.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: April 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Puo-Yu Chiang, Jeng Gong, Tsung-Yi Huang, Chun-Lin Tsai, Chien-Chih Chou
  • Patent number: 8138049
    Abstract: Methods of making, structures, devices, and/or applications for lateral double-diffused metal oxide semiconductor (LDMOS) transistors are disclosed. In one embodiment, a method of fabricating an LDMOS transistor with source, drain, and gate regions on a substrate, can include: forming p-type and n-type buried layer (PBL, NBL) regions; growing an epitaxial (N-EPI) layer on the NBL/PBL regions; forming a p-doped deep p-well (DPW) region on the PBL region; forming a well region in the N-EPI layer; forming a doped body region; after the doped body region formation, forming an active area and a field oxide (FOX) region, and forming a drain oxide between the source and drain regions of the LDMOS transistor; after the doped body region formation, forming a gate oxide adjacent to the source and drain regions, and forming a gate on the gate oxide and a portion of the drain oxide; and forming a doped drain region, and first and second doped source regions.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 20, 2012
    Assignee: Silergy Technology
    Inventor: Budong You
  • Patent number: 8134204
    Abstract: A drain extended MOS (DEMOS) transistor with an element of field oxide separating the drain contact from the gate, and a compensation region of opposite polarity in the drain under the gate, is disclosed. The inventive DEMOS may be fabricated in a CMOS IC without adding any process steps. Both n-channel and p-channel versions may be fabricated in CMOS ICs with an n-type buried layer. Furthermore, the inventive transistor may be fabricated in an IC built in an SOI wafer. The width of the compensation region may be varied across multiple instances of the inventive DEMOS transistor to provide a capability for handling multiple signals with different voltage levels in the same IC without adding fabrication steps. The compensation region may be biased by a control voltage to modulate the depletion of the drain extension and provide a capability for handling multiple signal voltage levels in a single transistor.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Hisashi Shichijo
  • Patent number: 8129785
    Abstract: A semiconductor device according to the present invention includes: a semiconductor layer of a first conductivity type; an annular deep trench penetrating the semiconductor layer in the depth direction to surround an element forming region; a drain region of a second conductivity type formed in a surface layer portion of the semiconductor layer in the element forming region; a drift region of the second conductivity type formed in the surface layer portion of the semiconductor layer to come into contact with the drain region in the element forming region; a body region of the first conductivity type formed in the surface layer portion of the semiconductor layer at an interval from the drift region in the element forming region; a source region of the second conductivity type formed in a surface layer portion of the body region; and a first high-concentration buried region, formed in the semiconductor layer between a portion opposed to the source region in the depth direction and the deep trench, having a high
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 6, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Naoki Izumi, Tomoyasu Sada
  • Patent number: 8129784
    Abstract: The invention improves the performance of a semiconductor device. A metal silicide film is formed by a silicide process on a gate electrode and an n+-type source region of an LDMOSFET, and no such metal silicide film is formed on an n?-type offset drain region, an n-type offset drain region, and an n+-type drain region. A side wall spacer comprising a silicon film is formed via an insulating film on the side wall of the gate electrode over the drain side thereof, and a field plate electrode is formed by this side wall spacer. The field plate electrode does not extend above the gate electrode, and a metal silicide film is formed over the entire upper surface of the gate electrode in the silicide process.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Makoto Hatori, Yutaka Hoshino
  • Publication number: 20120049277
    Abstract: A lateral-diffusion metal-oxide-semiconductor device includes a semiconductor substrate having at least a field oxide layer, a gate having a layout pattern of a racetrack shape formed on the substrate, a common source formed in the semiconductor substrate and enclosed by the gate, and a drain surrounding the gate and formed in the semiconductor substrate. The gate covers a portion of the field oxide layer. The common source includes a first doped region having a first conductive type and a plurality of islanding second doped regions having a second conductive type. The drain includes a third doped region having the first conductive type. The third doped region overlaps a portion of the field oxide layer and having an overlapping area between the third doped region and the field oxide layer.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Inventors: Hong-Ze Lin, Bo-Jui Huang, Chin-Lung Chen, Ting-Zhou Yan, Wei-Shan Liao, Han-Min Huang, Chun-Yao Lee, Kun-Yi Chou
  • Patent number: 8125028
    Abstract: Semiconductor devices for high voltage application are presented. A high power semiconductor device includes a first type doped semiconductor substrate and a second type doped epitaxial layer deposited thereon. A first type doped body region is disposed in the second type doped epitaxial layer. A heavily doped drain region is formed in the second type doped epitaxial layer and isolated from the first type doped body region with an isolation region and a channel. A second type deep heavily doped region extends from the heavily doped drain region to the semiconductor substrate. A pair of inversed type heavily doped source regions is disposed in the first type doped body region. A gate electrode is disposed overlying the channel with a dielectric layer interposed therebetween. The high power semiconductor device is isolated from the other semiconductor devices with a first type deep heavily doped region.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 28, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Hung-Shern Tsai, Geeng-Lih Lin, Wen-Jya Liang
  • Patent number: 8125029
    Abstract: A semiconductor diode includes a drift region of a first conductivity type and an anode region of a second conductivity type in the drift region such that the anode region and the drift region form a pn junction therebetween. A first highly doped silicon region of the first conductivity type extends in the drift region, and is laterally spaced from the anode region such that upon biasing the semiconductor power diode in a conducting state, a current flows laterally between the anode region and the first highly doped silicon region through the drift region. A plurality of trenches extends into the drift region perpendicular to the current flow. Each trench includes a dielectric layer lining at least a portion of the trench sidewalls and also includes at least one conductive.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 28, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Christopher Boguslaw Kocon
  • Publication number: 20120043608
    Abstract: An partially depleted Dieler LDMOSFET transistor (100) is provided which includes a substrate (150), a drift region (110) surrounding a drain region (128), a first well region (107) surrounding source region (127), a well buffer region (106) separating the drift region and first well region to at least partly define a first channel region, a gate electrode (118) formed over the first channel region having a source-side gate edge aligned with the first well region (107), an LDD extension region (120) extending from the source region to the channel region, and a dielectric RESURF drain extension structure (161) formed at the drain of the gate electrode (118) using the plurality of STI stripes (114).
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20120037984
    Abstract: A LDMOS structure includes a gate, a source, a drain and a bulk. The gate includes a polycrystalline silicon layer, the source includes a P-implanted layer, the drain includes the P-implanted layer, a P-well layer, and a deep P-well layer. A bulk terminal is connected through the P-implanted layer, the P-well layer, the deep P-well layer, and a P-type buried layer to the bulk. The LDMOS structure is able to be produced without any extra masking step, and it has compact structure, low on-resistance, and is able to withstand high current and high voltage.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 16, 2012
    Inventor: Rongwei Yu
  • Publication number: 20120037989
    Abstract: LDMOS devices having a single-strip contact pad in the source region, and related methods of manufacturing are disclosed. The LDMOS may comprise a first well lightly doped with a first dopant and formed into a portion of a substrate, the first well having a drain region at its surface heavily doped with the first dopant, and a second well lightly doped with a second dopant formed in another portion of the substrate, the second well having a source region at its surface comprising first portions heavily doped with the first dopant directly adjacent second portions heavily doped with the second dopant. Also, the LDMOS device may comprise a field oxide at the upper surface of the substrate between the source and drain regions, and contacting the first well but separated from the second well, and a gate formed partially over the field oxide and partially over the source region.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Hsueh-I Huang, Shuo-Lun Tu, Ming-Tung Lee, Yin-Fu Huang, Shih-Chin Lien, Shyi-Yuan WU