Field-effect Transistor Patents (Class 326/83)
  • Patent number: 8581630
    Abstract: A signal driver circuit having an adjustable output voltage for a high-logic level output signal. The signal driver circuit includes a signal driver configured to output a first logic level signal having a first voltage and output a second logic level signal having a second voltage according to an input signal. A voltage controlled voltage supply coupled to the signal driver provides the first voltage for the first logic level signal. The magnitude of the first voltage provided by the voltage controlled voltage supply is based on a bias voltage. A bias voltage generator can be coupled to the voltage controlled voltage supply to provide the bias voltage.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Seong-Hoon Lee
  • Patent number: 8575963
    Abstract: A buffer system is provided that reduces threshold current using a current source to provide power to one or more stages of the buffer system. The buffer system may also include delay management techniques that balances all of, or part of, a delay that may be imparted to an input signal by the current source. In addition, hysteresis techniques may be used to provide enhanced noise management of the input signal.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 5, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Tyler Daigle
  • Patent number: 8570068
    Abstract: A circuit includes an operational PMOS transistor of a logic gate driver. A control circuit is configured to turn off the operational PMOS transistor during a standby mode. The circuit also includes a sacrificial PMOS transistor coupled to an output node. The operational PMOS transistor is coupled to the output node. The sacrificial PMOS transistor is configured to keep the output node at a logical 1 during the standby mode.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Fu-Lung Hsueh, Ming-Chieh Huang, Bryan Sheffield, Chih-Chang Lin
  • Patent number: 8558576
    Abstract: According to one embodiment, a clamp transistor is inserted in series between a P-channel field effect transistor and an N-channel field effect transistor and an intermediate level between a high potential supplied to a source of the P-channel field effect transistor and a low potential supplied to a source of the N-channel field effect transistor is input into a gate of the clamp transistor to clamp a drain potential of the N-channel field effect transistor.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yuui Shimizu
  • Patent number: 8558577
    Abstract: A signal separation module includes a single-ended bidirectional pin coupled to a processing device, a single-ended unidirectional output pin coupled to a differential signal transceiver, a single-ended unidirectional input pin coupled to the differential signal transceiver, and signal separation logic. The signal separation logic is to detect a current flow condition that indicates the bidirectional pin is asserted by the processing device; assert, as a result of the existence of the current flow condition, the unidirectional output pin and prevent the unidirectional input pin from affecting the bidirectional pin; detect an opposite current flow condition that indicates that the unidirectional input pin is asserted by the differential signal transceiver; and assert, as a result of the existence of the opposite current flow condition, the bidirectional pin and prevent the assertion of the bidirectional pin from affecting the unidirectional output pin.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 15, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Soriano Fosas, Marc Bautista Palacios, Laura Portela Mata
  • Patent number: 8547140
    Abstract: Disclosed is a high-swing voltage-mode transmitter or line driver. The transmitter can operate over a wide range of supply voltages. Increasing the available output swing merely involves increasing the supply voltage; the circuit adapts to maintain the desired output impedance. This allows for a tradeoff between output amplitude and power consumption. Another advantage of the proposed architecture is that it compensates for process, voltage, and temperature (PVT) and mismatch variations so as to keep rise and fall times matched. This feature reduces common-mode noise and hence EMI in systems in which the transmitter is used.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 1, 2013
    Assignee: PMC-Sierra, Inc.
    Inventors: Julien Faucher, Michael Ben Venditti
  • Patent number: 8547134
    Abstract: A system provides for a serial transmitter with multiplexing and driving functionality that is combined into a single stage to increase the overall speed of the serial transmitter. The single stage includes a dynamic impedance that is configured in parallel with a multiplexing driver to reduce the input capacitance and set the correct output impedance. The single stage can be implemented as a stacked or cross-coupled XOR logic circuit or a stacked or cross-coupled multiplexer (“mux”) as the multiplexing driver. In an embodiment where a mux is used as the multiplexing driver, a clock can be injected into the mux driver to overcome inter-symbol interference.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Axel Zafra-Petersson, Johan H. Mansson, Michael R. Elliott, Brad P. Jeffries
  • Patent number: 8542034
    Abstract: As semiconductor devices including semiconductors, logic circuits are given. Logic circuits include dynamic logic circuits and static logic circuits and are formed using transistors and the like. Dynamic logic circuits can store data for a certain period of time. Thus, leakage current from transistors causes more severe problems in dynamic logic circuits than in static logic circuits. A logic circuit includes a first transistor whose off-state current is small and a second transistor whose gate is electrically connected to the first transistor. Electric charge is supplied to a node of the gate of the second transistor through the first transistor. Electric charge is supplied to the node through a first capacitor and a second capacitor. On/off of the second transistor is controlled depending on a state of the electric charge. The first transistor includes an oxide semiconductor in a channel formation region.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kiyoshi Kato
  • Patent number: 8536930
    Abstract: A switching circuit according to one embodiment includes: a switching element that has a first terminal and a second terminal, and is driven by a pulse signal to switch a conduction state between the first and second terminals; a power source section that supplies a voltage to the first terminal; a load circuit that is connected in parallel with the power source section; a passive circuit section that is connected between a connection point between the power source section and the load circuit, and the first terminal, and suppresses a current flowing from the connection point to the switching element at a frequency N times (N is an integer of 1 or more) as high as a clock frequency of the pulse signal; and a resonant circuit section that is connected between the passive circuit section and the connection point, and resonates at the frequency of N times.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 17, 2013
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Toyohashi University of Technology
    Inventors: Satoshi Hatsukawa, Nobuo Shiga, Kazuhiro Fujikawa, Takashi Ohira, Kazuyuki Wada, Tuya Wuren, Kazushi Sawada, Hiroshi Ishioka
  • Patent number: 8536894
    Abstract: In an integrated circuit for an output interface, a comparator is used to compare a reference voltage and a regulated voltage to provide a comparison output. A state machine is coupled to the comparator to increment or decrement a resistance setting output of the state machine responsive to the comparison output. A reference single-ended driver is coupled to receive the resistance setting output from the state machine. An output node of the reference single-ended driver is coupled to a reference node. From the reference node, the reference voltage is input to the comparator as a feedback voltage. Transistors of the reference single-ended driver are set to be in either at least a substantially conductive state or at least a substantially non-conductive state responsive to the resistance setting output to provide an internal source termination resistance as a reference resistance.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 17, 2013
    Assignee: Xilinx, Inc.
    Inventor: Sing-Keng Tan
  • Patent number: 8531205
    Abstract: One embodiment relates to a programmable output buffer which includes first and second programmable variable-impedance single-ended driver circuits and first and second termination circuits. The first termination circuit is coupled to a first output pin which is driven by the first programmable variable-impedance single-ended driver circuit, and the second termination circuit is coupled to a second output pin which is driven by the second programmable variable-impedance single-ended driver circuit. The first and second termination circuits are programmable to either provide parallel termination for a differential signal or drive single-ended signals with the parallel termination turned off. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: September 10, 2013
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Chiakang Sung, Xiaobao Wang, Khai Nguyen, Joseph Huang
  • Patent number: 8525551
    Abstract: As semiconductor devices including semiconductors, logic circuits are given. Logic circuits include dynamic logic circuits and static logic circuits and are formed using transistors and the like. Dynamic logic circuits can store data for a certain period of time. Thus, leakage current from transistors causes more severe problems in dynamic logic circuits than in static logic circuits. A logic circuit includes a first transistor whose off-state current is small and a second transistor whose gate is electrically connected to the first transistor. Electric charge is supplied to a node of the gate of the second transistor through the first transistor. Electric charge is supplied to the node through a plurality of capacitors. On/off of the second transistor is controlled depending on a state of the electric charge. The first transistor includes an oxide semiconductor in a channel formation region.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kiyoshi Kato
  • Patent number: 8513985
    Abstract: A drive circuit for a semiconductor switching element is disclosed. The drive circuit includes a power supply, a capacitor, a connection changeover unit for switching a connection form between the power supply and the capacitor, a resistor connected to a control terminal of the semiconductor switching element, first and second switching elements whose common connection point is connected to the resistor, a positive-side diode whose cathode is connected to the first switching element, a negative-side diode whose anode is connected to the second switching element, and a current conduction control circuit for controlling the connection changeover unit, and the first and second switching elements to form (i) a first path for charging the capacitor, (ii) a second path for charging the control terminal of the semiconductor switching element, and (iii) a third path for discharging the control terminal of the semiconductor switching element.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: August 20, 2013
    Assignee: DENSO CORPORATION
    Inventor: Tomonori Kimura
  • Patent number: 8508259
    Abstract: A method for driving a non-linear load element. On account of the non-linear interrelationship between the voltage and the current at the load element and the related non-linear dependence of the power loss on the quantities “voltage” and “current”, an adjustment of the switching speed only on the basis of the power loss in the switching element cannot be carried out with non-linear load elements without being confronted with undesirable switching losses and related electromagnetic noise fields. Therefore, the load current currently flowing in the load element is picked up in addition to the currently determined power loss in the switching element, and the switching speed of the switching element is controlled in dependence on the determined power loss and on the current picked up. The switching speed can be optimally adjusted when driving the non-linear load elements by means of PWM.
    Type: Grant
    Filed: August 23, 2008
    Date of Patent: August 13, 2013
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Uli Joos, Jochen Zwick, Josef Schnell, Christian Voss
  • Patent number: 8508250
    Abstract: Various embodiments are described herein for an asymmetrical bus keeper circuit that provides asymmetrical drive towards one logic level. The asymmetrical bus keeper circuit comprises a first inverter stage having an input node and an output node, an asymmetrical inverter stage having an input node and an output node and a feedback stage with an input node and an output node. The input node of the asymmetrical inverter stage is connected to the output node of the first inverter stage. The input node of the feedback stage connected to the output node of the asymmetrical inverter stage and the output node of the feedback stage connected to the input node of the first inverter stage. The asymmetrical stage provides asymmetrical drive towards one logic level.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: August 13, 2013
    Assignee: Research In Motion Limited
    Inventor: John Douglas McGinn
  • Patent number: 8502556
    Abstract: A circuit includes a plurality of logic gates and a drive circuit. The plurality of logic gates are coupled between a first supply node and a second supply node. Each logic gate has at least one input and consumes a short circuit current during a logic state transition. The drive circuit is coupled to the inputs of the plurality of logic gates to deliver a copy of an input signal to each logic gate, wherein the input signal copies arrive at the inputs of the logic gates at substantially different times. The circuit may be incorporated in a touch screen panel and a display.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 6, 2013
    Assignees: STMicroelectronics Asia Pacific Pte Ltd, STMicroelectronics Pte Ltd
    Inventors: Yann Desprez-Le-Goarant, Jingfeng Gong
  • Patent number: 8502560
    Abstract: An output circuit which outputs an output signal based on an input signal from an output terminal and brings the output terminal into a high impedance state in response to an impedance control signal. The output circuit includes an output pMOS transistor connected at a source thereof to a first power supply. The output circuit includes an output nMOS transistor connected between a drain of the output pMOS transistor and ground. The output circuit includes an output terminal connected between the drain of the output pMOS transistor and a drain of the output nMOS transistor. The output circuit includes a first level shifter circuit which outputs a first gate control signal from a first gate control terminal to control on/off of the output pMOS transistor. The output circuit includes a second level shifter circuit which outputs a second gate control signal from a second gate control terminal to control on/off of the output nMOS transistor.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Taguchi, Hiroyuki Ideno
  • Patent number: 8502566
    Abstract: A pseudo-differential input receiver is disclosed which is configured to support a wide-range of reference voltage Vref and a wide-range frequency interface with no parallel termination are described herein. The pseudo-differential receiver implementations described herein are very efficient in terms of area, power, and performance. A wide-frequency-range Vref-adjustable input receiver is described herein. The receiver can be configured with a Vref-monitoring PMOS helper FET or an enabled stacked PMOS helper FET to enable the receiver to work at Vref=0V like a conventional CMOS receiver. The receiver can also be configured with a Vref-monitoring NMOS helper FET to enable a Vref-based input receiver to work with programmability on bias currents & trip-point at Vref=(0.5˜0.7)Vdd, depending on the ratio of output driver's impedance and parallel on/off-die termination impedance.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 6, 2013
    Assignee: QUALCOMM, Incorporated
    Inventor: Chang Ki Kwon
  • Publication number: 20130194003
    Abstract: The driver circuit includes a first controlling circuit that outputs, to a gate of the auxiliary pMOS transistor, a first controlling signal that rises in synchronization with a rising of the first pulse signal and falls after a delay from a falling of the first pulse signal. The driver circuit includes a second controlling circuit that outputs, to a gate of the auxiliary nMOS transistor, a second controlling signal that rises in synchronization with a rising of the second pulse signal and falls after a delay from a falling of the second pulse signal.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 1, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toru TAKAYAMA, Hirotoshi Aizawa, Shinya Takeshita
  • Patent number: 8497715
    Abstract: The electrical load driving apparatus includes means for alternately lowering the gate voltages of two current supply transistors connected in parallel to each other at regular time intervals, a current being supplied to an electrical load through drain-source paths of both the current supply transistors, and means for detecting wire breakage in two current supply wires in which the current supply transistors are interposed respectively at portions near the electrical load with respect to the current supply transistors based on the drain-source voltages of the current supply transistors.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: July 30, 2013
    Assignee: Denso Corporation
    Inventor: Mitsuhiro Kanayama
  • Patent number: 8497728
    Abstract: An electronic control apparatus includes a switching element having a control terminal; an ON-drive constant-current circuit for supplying a constant current to the control terminal, thereby charging the control terminal of the switching element with electrical charge; an OFF-drive switching element for discharging electrical charge from the control terminal of the switching element by being turned ON; and a control circuit adapted to control the ON-drive constant-current circuit and the OFF-drive switching element in response to a drive signal being inputted, thereby controlling the voltage of the control terminal of the switching element to drive the switching element. The ON-drive constant-current circuit includes a current control transistor and a current detection element.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 30, 2013
    Assignee: Denso Corporation
    Inventors: Shunichi Mizobe, Tsuneo Maebara, Kazunori Watanabe
  • Patent number: 8493092
    Abstract: A linear equalizer (LEQ) includes a first transconductance device coupled to an input node of the LEQ and a second transconductance device AC coupled to the input node of the LEQ to increase a gain of the LEQ for data signals above a predetermined frequency. The first transconductance device and the second transconductance device are of complimentary types. A bimodal LEQ includes inputs to control operation of the bimodal LEQ in a current mode or a voltage mode. The bimodal LEQ includes first and second transconductance devices. One of the first and second transconductance devices is AC coupled to an input node to increase the gain for data signals above a predetermined frequency.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 23, 2013
    Assignee: Rambus, Inc.
    Inventors: Omid Rajaee, Ting Wu, Kambiz Kaviani, Jason Chia-Jen Wei
  • Patent number: 8487687
    Abstract: An output buffer circuit for avoiding voltage overshoot includes an input stage, an output bias circuit, an output stage, a clamp circuit, and a control unit. The input stage includes a positive input terminal, for receiving an input voltage, and a negative input terminal. The input stage generates a current signal according to the input voltage. The output bias circuit is coupled to the input stage, for generating a dynamic bias according to the current signal. The output stage is coupled to the input stage and the output bias circuit, including an output terminal, reversely coupled to the positive input terminal, and at least one output transistor, coupled to the output bias circuit and the output terminal, for providing a driving current to the output terminal according to the dynamic bias to generate an output voltage.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 16, 2013
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Xie-Ren Hsu, Ji-Ting Chen
  • Patent number: 8487655
    Abstract: A system and apparatus are described for providing greater flexibility and performance in a mixed-signal array through improved and highly configurable routing, control elements and signal processing capabilities.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: July 16, 2013
    Assignee: Cypress Semiconductor Corporation
    Inventors: Harold Kutz, Timothy Williams, Bert Sullam, Warren S. Snyder, James Shutt, Bruce Byrkett, Monte Mar, Eashwar Thiagarajan, Nathan Kohagen, David G. Wright, Mark Hastings, Dennis Seguine
  • Patent number: 8487649
    Abstract: An output circuit includes a first transistor coupled to an external terminal and including a gate terminal that receives a first drive signal. The first transistor drives a potential at the external terminal in accordance with the first drive signal. A first capacitor includes a first end coupled to the gate terminal of the first transistor and a second end coupled to the external terminal. The output circuit also includes a circuit portion coupled to the first transistor. The circuit portion maintains the first transistor in an inactivated state when the gate terminal of the first transistor is in a floating state.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kenichi Konishi, Hiroshi Miyazaki
  • Patent number: 8487652
    Abstract: An integrated circuit includes a programmable logic device, a dedicated device, and an interface circuit between the two. The interface circuit can be easily modified to accommodate the different interface I/O demands of various dedicated devices that may be embedded into the integrated circuit. In one embodiment, the interface circuit may be implemented using a plurality of mask programmable uni-directional interface buffer circuits. The direction of any desired number of the interface buffer circuits can be reversed based on the needs of a desired dedicated device by re-routing the conductors in the interface buffer circuits in a single metal layer of the integrated circuit. In another embodiment, the interface circuit may be implemented using a hardware configurable bi-directional interface buffer circuit.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: July 16, 2013
    Assignee: QuickLogic Corporation
    Inventors: Ket-Chong Yap, Senani Gunaratna, Wilma Waiman Shiao
  • Patent number: 8487654
    Abstract: A voltage mode driver circuit able to achieve a larger voltage output swing than its supply voltage. The voltage mode driver circuit is supplemented by a current source or “current booster.” The circuit includes a first inverter, a second inverter, and a current source. The first inverter receives a first input and output a signal at anode. The second inverter receives another input outputs at the same output node. The current source is serially coupled to the output node via a first switch, the first switch receiving an input at the first input.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: July 16, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Wei Chih Chen
  • Publication number: 20130169312
    Abstract: A circuit includes a plurality of logic gates and a drive circuit. The plurality of logic gates are coupled between a first supply node and a second supply node. Each logic gate has at least one input and consumes a short circuit current during a logic state transition. The drive circuit is coupled to the inputs of the plurality of logic gates to deliver a copy of an input signal to each logic gate, wherein the input signal copies arrive at the inputs of the logic gates at substantially different times. The circuit may be incorporated in a touch screen panel and a display.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicants: STMICROELECTRONICS PTE LTD, STMICROELECTRONICS ASIA PACIFIC PTE LTD
    Inventors: Yann Desprez-Le-Goarant, Jingfeng Gong
  • Patent number: 8476931
    Abstract: A semiconductor device includes a core circuit including an integrated circuit; output drivers, each including sub-drivers to output digital data transferred from the core circuit, as output data; and a selector that selects a sub-driver to be driven from among the plurality of sub-drivers. Each of the sub-drivers includes: an output transistor connected between a first power supply and an output wiring line to allow the output data to rise or fall according to the digital data; and a switching transistor and a slew-rate control transistor which are connected in series between a gate of the output transistor and a second power supply. The switching transistor turns on or off the output transistor according to the digital data. A gate potential adjusted to determine a slew rate for rise or fall of the output data is selectively provided by the selector to each slew-rate control transistor.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Fumiyoshi Matsuoka
  • Patent number: 8471596
    Abstract: With an offset circuit including transistors of the same conductivity type, offset of an input signal is performed. Then, the input signal after the offset is supplied to a logic circuit including transistors of the same conductivity type as that of the offset circuit, thereby H and L levels of the input signal can be shifted at the same time. Further, since the offset circuit and the logic circuit are formed using the transistors of the same conductivity type, a display device can be manufactured at a low cost.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: June 25, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Atsushi Umezaki
  • Patent number: 8466709
    Abstract: Described are integrated-circuit die with differential receivers, the inputs of which are coupled to external signal pads. Termination legs coupled to the signal pads support multiple termination topologies. These termination legs can support adjustable impedances, capacitances, or both, which may be controlled using an integrated memory.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: June 18, 2013
    Assignee: Rambus Inc.
    Inventor: Huy Nguyen
  • Patent number: 8461872
    Abstract: First and second devices may simultaneously communicate bidirectionally with each other using only a single pair of LVDS signal paths. Each device includes an input circuit and a differential output driver connected to the single pair of LVDS signal paths. An input to the input circuit is also connected to the input of the driver. The input circuit may also receive an offset voltage. In response to its inputs, the input circuit in each device can use comparators, gates and a multiplexer to determine the logic state being transmitted over the pair of LVDS signal paths from the other device. This advantageously reduces the number of required interconnects between the first and second devices by one half.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: June 11, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Lee D. Whetsel
  • Patent number: 8456219
    Abstract: A PWM mode for turning on and off two output transistors by an output of a high impedance circuit and a constant voltage mode for controlling voltages at two output terminals by an output of an op amp are provided. Then, the two modes are switched by a switching signal.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Tsutomu Murata
  • Patent number: 8451031
    Abstract: Apparatus and methods are provided for generating output signals representative of bits of serial data. A transmitter includes driver circuitry configured to generate an output signal at an output node and an allocation control module coupled to the driver circuitry. The driver circuitry includes a plurality of driver legs configured to generate the output signal based on a plurality of data bits. The allocation control module is configured to allocate a respective subset of the plurality of driver legs to a respective data bit of a plurality of data bits, wherein the each subset generates a component of the output signal that is influenced by its respective data bit.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: May 28, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Charles Wang, Randall Shaw
  • Patent number: 8451025
    Abstract: An advanced repeater with duty cycle adjustment. In accordance with a first embodiment of the present invention, an advanced repeater includes an output stage for driving an output signal line responsive to an input signal and a plurality of active devices for selectably adjusting a duty cycle of the signal. The advanced repeater may further include circuitry for producing a delayed version of the signal.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: May 28, 2013
    Inventor: Scott Pitkethly
  • Publication number: 20130127496
    Abstract: Methods and circuits related to a driving circuit with zero current shutdown are disclosed. In one embodiment, a driving circuit with zero current shutdown can include: a linear regulating circuit that receives an input voltage source, and outputs an output voltage; a start-up circuit having a threshold voltage, the start-up circuit receiving an external enable signal; a first power switch receiving both the output voltage of the linear regulating circuit and the external enable signal, and that generates an internal enable signal, the internal enable signal being configured to drive a logic circuit; when the external enable signal is lower than a threshold voltage, the driving circuit is not effective; when the external enable signal is higher than the threshold voltage, the start-up circuit outputs a first current; and where the output voltage at the first output terminal is generated by the linear regulating circuit based on the first current.
    Type: Application
    Filed: January 23, 2013
    Publication date: May 23, 2013
    Applicant: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD
    Inventor: Silergy Semiconductor Technology (Hangzhou) LTD
  • Patent number: 8446168
    Abstract: A transmitter configured for pre-emphasis is described. The transmitter includes a voltage-driven single-ended-termination driver circuitry. The voltage-driven single-ended-termination driver circuitry includes a first termination point and a second termination point. The transmitter also includes a pre-emphasis encoder circuitry. The pre-emphasis encoder circuitry receives a pre-emphasis signal. The transmitter may reduce signal loss in transmission lines by detecting a transition in a data stream, adjusting a source determination resistance and obtaining a gain from the adjusted source determination resistance.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 21, 2013
    Assignee: QUALCOMM, Incorporated
    Inventor: Fares K. Maarouf
  • Patent number: 8446167
    Abstract: A system for controlling the termination impedance of memory device data bus terminals is fabricated on the same die as the memory device. The system includes a termination resistor connected to each data bus terminal, which is connected in parallel with several transistors that are selectively turned on to adjust the termination impedance. The transistors are controlled by a circuit that determines the resistance of the termination resistor and turns on the correct number of transistor to properly set the termination impedance. In one example, the resistance of the termination resistor is determined by directly measuring a resistor of the same type as the termination resistor. In another example, the resistance of the termination resistor is determined indirectly by measuring parameters that affect the resistance of the termination resistor. In either case, the system can maintain the termination impedance of the data bus terminals constant despite changes in the termination resistor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 21, 2013
    Assignee: Micron Technology, Inc.
    Inventor: David Kao
  • Patent number: 8441281
    Abstract: A differential buffer circuit having increased output voltage swing includes a differential input stage including at least first and second transistors, the first and second transistors being operative to receive first and second signals, respectively. The buffer circuit further includes a bias stage connected between the differential input stage and a first voltage source. The bias stage is operative to generate a quiescent current as a function of a third signal supplied to the bias stage. A load circuit is connected between a second voltage source and the differential input stage, first and second differential outputs of the buffer circuit being generated at a junction between the load circuit and the differential input stage. The load circuit includes first and second switching elements coupled with the first and second transistors, respectively.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 14, 2013
    Assignee: LSI Corporation
    Inventors: Makeshwar Kothandaraman, Pankaj Kumar, Paul K. Hartley, John Christopher Kriz
  • Patent number: 8441870
    Abstract: A data strobe signal output driver includes a trigger block, a predriver block, and a main driver block. The trigger block is configured to receive a first signal, a second signal, a first clock and a second clock, and to output a predrive signal based thereon. The predriver block is configured to receive the predrive signal, a driver off signal and a termination enable signal, and to output a first main drive signal and a second main drive signal based thereon. The main driver block is configured to output a data strobe signal based on the first and second main drive signals.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 14, 2013
    Assignee: SK Hynic Inc.
    Inventor: Mi Hye Kim
  • Patent number: 8436658
    Abstract: A method and apparatus are provided that allow exploitation of the common mode characteristics of a differential transmission network to provide an additional data signal. Signal represents either a binary signal or a multi-valued signal to allow signaling of one or more bits of information. The signaling occurs through the variation of the common mode voltage in transmitters and is detected using differential receiver. One embodiment is presented that achieves signaling of an extended run length data sequence to allow continued transmitter/receiver synchronization throughout the transmission of the sequence. In an alternate embodiment, a separate data path is provided to signal the extended run length sequence when a common mode signaling path is not available.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 7, 2013
    Assignee: Xilinx, Inc.
    Inventor: William C. Black
  • Patent number: 8432185
    Abstract: Receiver circuits for differential and single-ended signals are disclosed. A receiver may include a differential amplifier configured to receive a first signal of a differential pair at a first input and a second signal of the differential pair at a second input when operating in differential mode, and a single-ended signal at the first input and a reference signal at a third input when operating in single-ended mode. The receiver may also include an inverter coupled to the differential amplifier. The inverter may be configured to provide a first beta ratio in differential mode and a second beta ratio in single-ended mode. Several receivers may be used, for example, to process a differential clock signal and one or more single-ended data signals referenced to the clock signal and/or differential data signals referenced to a single-ended clock signal. The rise/fall delays of each signal through each respective receiver may be independently adjusted.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 30, 2013
    Assignee: Apple Inc.
    Inventors: Gregory S. Scott, Vincent R. von Kaenel
  • Patent number: 8432385
    Abstract: In a display device including a substrate, a pixel portion, and a driver circuit having first to ninth transistors and first and second inverters, the various transistors are configured such that one of a source and a drain of the fifth transistor is electrically connected to a gate of the first transistor. In embodiments, the electrical connection may be a direct connection. Additionally, a switch may be provided that is directly connected to an output terminal of the second inverter.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: April 30, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mitsuaki Osame, Aya Anzai
  • Patent number: 8421496
    Abstract: A digital logic circuit and a manufacture method of the digital logic circuit thereof are provided. The digital logic circuit includes a voltage rail, a ground rail, and a plurality of logic circuit rails, wherein each of the logic circuit rails is electrically connected to the voltage rail and the ground rail. The logic circuit rail includes a logic unit and an auxiliary unit electrically connected to the voltage rail and the ground rail. The logic unit includes a logic voltage end electrically connected to the voltage rail and a logic ground end electrically connected to the ground rail. The auxiliary unit includes an auxiliary voltage end electrically connected to the voltage rail and an auxiliary ground end electrically connected to the ground rail. At least one of the width ratio between the auxiliary voltage end and the logic voltage end and the width ratio between the auxiliary ground end and the logic ground end is greater than 1.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 16, 2013
    Assignee: Raydium Semiconductor Corporation
    Inventors: Ching-Jung Yang, Tsung-Ju Yu
  • Patent number: 8421501
    Abstract: Circuitry, operating in a high voltage domain, including a high and low voltage inputs, and including a plurality of devices designed to operate optimally powered in a native voltage domain that is lower voltage than said high voltage domain and some devices arranged in two sets. The circuitry including a further input for receiving the high native voltage level. Each set having at least one device, a first set being arranged to receive an intermediate low reference voltage level as a low voltage level signal and the high voltage level as a high voltage level signal and the second set being arranged to receive the high native voltage level as a high voltage level signal and the low voltage level as a low voltage level signal. The intermediate low reference voltage level includes a voltage level generated by subtracting the high native voltage level from the high voltage level.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: April 16, 2013
    Assignee: ARM Limited
    Inventors: Mikael Rien, Jean-Claude Duby, Damien Guyonnet, Thierry Padilla
  • Patent number: 8421727
    Abstract: A transmitter circuit includes a driver circuit including a non-inverting output terminal and an inverting output terminal for outputting a signal current, which has a loop direction that changes based upon an input signal, to the non-inverting output terminal and the inverting output terminal and an output-waveform control circuit for detecting a waveform edge of the input signal and responding by increasing the signal current temporarily. The output-waveform control circuit includes a first inverter circuit receiving a non-inverted input signal, a first capacitor including one end connected to an output terminal of the first inverter circuit and another end connected to the inverting output terminal, a second inverter circuit receiving an inverted input signal, and a second capacitor including one end connected to an output terminal of the second inverter circuit and another end connected to the non-inverting output terminal.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 16, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Akio Hosokawa, Kouichi Nishimura
  • Patent number: 8415989
    Abstract: A switching device has a main IGFET having a Schottky barrier diode D3 for blocking an inverse current built therein, a protective switch means, and a protective switch control means. The protective switch means is connected in between a drain electrode D and a gate electrode G of the main IGFET. The protective switch control means turns on the protective switch means when an inverse voltage is impressed to the main IGFET. Thereby, the main IGFET is protected from the inverse voltage.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: April 9, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Akihiro Shinoda, Masato Hara
  • Patent number: 8416009
    Abstract: Solutions for optimizing a bulk bias across a substrate of an ETSOI device are disclosed. In one embodiment, an apparatus for optimizing a bulk bias across a substrate of an ETSOI device is disclosed, including: a sensing circuit for sensing at least one predetermined circuit parameter; a charging circuit for applying a bias voltage to the substrate of the ETSOI device; and a processing circuit connected to the sensing circuit and the charging circuit, the processing circuit configured to receive an output of the sensing circuit, and adjust the bias voltage applied to substrate of the ETSOI device in response to determining whether the bias voltage deviates from a target amount.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hayden C. Cranford, Jr., Terence B. Hook
  • Patent number: 8415980
    Abstract: In embodiments of a serializing transmitter, the serializing transmitter includes one or more multiplexing drive units that each generate a series of output pulses derived from input data signals and multi-phase clock signals. Each of the multiplexing drive units includes a pulse-controlled push-pull output driver that has first and second inputs, and an output coupled to an output of the multiplexing drive unit. Each of the multiplexing drive units also includes a first M:1 (where M is two or more) pulse-generating multiplexer having an output coupled to the first input of the pulse-controlled push-pull output driver, and generating a first series of intermediate pulses at the output; and a second M:1 pulse-generating multiplexer having an output coupled to the second input of the pulse-controlled push-pull output driver, and generating a second series of intermediate pulses at the output.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Microsoft Corporation
    Inventor: Alan S. Fiedler
  • Patent number: 8415982
    Abstract: A semiconductor integrated circuit device includes: a first inverter constituted by a first transistor configured to charge a charge point based on an input signal, and a second transistor configured to discharge a discharge point based on the input signal; a P-type third transistor and an N-type fourth transistor with drain-source paths provided in parallel between the charge point and the discharge point; and a second inverter configured to invert a potential of the charge point or the discharge point and supply the inverted potential to gates of the third and fourth transistors, and obtain a delay signal of the input signal from the charge point or the discharge point. The semiconductor integrated circuit device secures a sufficient delay time with a small area.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: April 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Chenkong Teh, Hiroyuki Hara