Push-pull Patents (Class 327/112)
  • Patent number: 9240778
    Abstract: A system and method of providing an analog make before break circuit includes a first transistor coupled in series with a second transistor, the first transistor being configured for conducting a high portion of an input signal, the second transistor being configured for conducting a low portion of the input signal. A third transistor is configured to interrupt a connection between the input signal and a first transistor input node, the third transistor having a third transistor threshold voltage between of about 90 and about 110 percent of a second transistor threshold voltage. A fourth transistor is configured to interrupt a connection between the input signal and a second transistor input node, the fourth transistor having a fourth transistor threshold voltage of between about 90 and about 110 percent of a first transistor threshold voltage.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: January 19, 2016
    Assignee: SanDisk Technologies Inc.
    Inventors: Henry H. Yuan, Steve X. Chi, Ekram H. Bhuiyan
  • Patent number: 9224498
    Abstract: A shift register unit includes an input module for inputting a second clock signal or a third clock signal, and for inputting a frame starting signal, a first clock signal, a low voltage signal, a reset signal as well as a first signal and a second signal transmitted from a next neighboring shift register unit; a processing module for generating a gate driving signal and allowing a level of at least one of first junctions formed by at least two TFTs to be maintained at low level in a frame interval during which the second clock signal or the third clock signal inputted from the input module is maintained at low level; and an output module for transmitting the gate driving signal generated by the processing module.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: December 29, 2015
    Assignee: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Guangliang Shang, Seung Woo Han
  • Patent number: 9178516
    Abstract: A voltage-level shift apparatus includes a first level shift unit, a second level shift unit, a charging unit, and a discharging unit. The first level shift unit receives a reference voltage and a power voltage to output a level-shifting voltage. The second level shift unit is connected to the first level shift unit and receives the level-shifting voltage. The charging unit receives a control voltage to provide an output voltage. The discharging unit is connected to the charging unit and receives the control voltage and the reference voltage. When the control voltage turns on the charging unit and turns off the discharging unit, the charging unit is charged by the level-shifting voltage. When the control voltage turns off the charging unit and turns on the discharging unit, the discharging unit is discharged from the output voltage.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: November 3, 2015
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Che-Hung Lin, Yueh-Lung Huang, Yen-Hung Chen
  • Patent number: 9172356
    Abstract: A high side gate driver, a switching chip, and a power device, which respectively include a protection device, are provided. The high side gate driver includes a first terminal configured to receive a first low level driving power supply that is provided to turn off the high side normally-on switch; a first switching device connected to the first terminal; and a protection device connected in series between the first switching device and a gate of the high side normally-on switch, the protection device configured to absorb a majority of a voltage applied to a gate of the high side normally-on switch. The power device includes the high side gate driver. In addition, the switching chip includes a high side normally-on switch, an additional normally-on switch, and a low side normally-on switch, which have a same structure.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: October 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-sik Choi, Ho-jung Kim, Jai-kwang Shin, U-in Chung
  • Patent number: 9150010
    Abstract: A system and method for charging heavy capacitive loads may comprise an n-stage stacked charging circuit wherein n is an integer greater than or equal to 2 and wherein the n-stage stacked charging circuit may comprise n?1 capacitors and a voltage supply, each sequentially electrically connected to the capacitive load in an order through a respective first through nth switch during a respective first through nth charging time period; the n?1th capacitors each sequentially electrically connected to the capacitive load in reverse order during a first through n?1th discharging time period through the respective n?1th through first switches. The system and method may comprise an n+1th switch electrically connecting the capacitive load to ground during an nth discharging period. The capacitive load may comprise a piezoelectric element, which may comprise an inkjet printer head inkjet actuator.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: October 6, 2015
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Anindya Bhattacharya, John Melanson
  • Patent number: 9152257
    Abstract: An output driver includes control logic configured to switch on a pull-up circuit and a pull-down circuit to provide an output impedance for a logic low on a transmission line. The output driver includes a variable pull-up resistor. The control logic is configured to switch on the pull-up circuit to a first value of impedance to drive a logic high on the transmission line. The control logic is configured to switch on the pull-up circuit to a second value of impedance and to switch on the pull-down circuit to provide the output impedance to drive a logic low on the transmission line. The system could alternatively be configured for the inverse to switch on a combination of pull-up and pull-down circuits for a logic high, where the pull-down circuit is switched on for a logic low.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 6, 2015
    Assignee: Intel Corporation
    Inventors: James A. McCall, Kuljit S. Bains, Derek M. Conrow, Aaron Martin
  • Patent number: 9148312
    Abstract: An apparatus comprising a circuit configured to determine whether a data sequence comprises a pre-defined data pattern, regulate an output current based on the pre-defined data pattern, and feed the output current to a transmitter configured to transmit a bitstream comprising the data sequence. Also an apparatus for data transmission comprising a transmitter configured to transmit a bitstream comprising a number of consecutive identical digits (CIDs), and a driver coupled to the transmitter and configured to regulate an output current based on the CIDs to stabilize an output voltage, and feed the output current and output voltage to the transmitter.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 29, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventor: Euhan Chong
  • Patent number: 9100009
    Abstract: According to an embodiment, a drive circuit includes a first signal source outputting a signal to control a normally on type transistor to change between an ON state and an OFF state, a second signal source outputting a signal to put the transistor in the OFF state, a gate voltage monitor monitoring a gate voltage of the transistor, and a controller making the second signal source to output a signal for putting the transistor in the OFF state, based on an output signal from the gate voltage monitor.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: August 4, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kentaro Ikeda
  • Patent number: 9090060
    Abstract: A drive circuit for repetitively energising a printhead (10) to eject drops of ink and a method of operating the drive circuit are described. The printhead h multiple nozzle channels each having a respective capacitance. The drive circuit includes a first switching element (S1) connected to couple a drive connection of the printhead to a first connection of a power supply (V1) via a first inductor (L1) to provide a charge path for current to charge the capacitance of at least one nozzle channel to a desired operating voltage. The drive circuit further includes a second switching element (S2) connected to couple a drive connection of the printhead to a second connection of the power supply (V1) via a second inductor (L2) to provide a discharge path for current to discharge the capacitance of said at least one nozzle channel to a desired inter-pulse voltage.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: July 28, 2015
    Assignee: Inca Digital Printers Limited
    Inventor: Hamilton Buchanan Cleare
  • Patent number: 9086714
    Abstract: The present document relates to linear regulators or linear voltage regulators configured to provide a constant output voltage. In particular, the present document relates to driver circuits of low-dropout (LDO) regulators. A driver circuit (300) for driving a pass device (201) of a linear regulator (120) is described. The driver circuit (300) comprises a driver stage (110) adapted to regulate a driver gate (220) for connecting to the gate of the pass device (201); wherein the driver stage (110) comprises a transistor diode (210) having the driver gate (220); and a feedback transistor (305) having a source and a drain coupled to a source and drain of the transistor diode (210); wherein a feedback voltage at the gate of the feedback transistor (305) is regulated based on the output current of the pass device (201).
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 21, 2015
    Assignee: Dialog Semiconductor GmbH
    Inventors: Liu Liu, Stephan Drebinger
  • Patent number: 9083322
    Abstract: An apparatus includes a capacitor, a current generating circuit communicatively coupled to the capacitor, and a current pulse timing circuit communicatively coupled to the current source circuit. The current timing pulse circuit is configured to time durations of a first plurality of current pulses from the current generating circuit for charging the capacitor and a second plurality of current pulses for discharging the capacitor, and step the durations of the current pulses between a minimum duty cycle and a maximum duty cycle. A cycle of providing the first plurality of current pulses and providing the second plurality of current pulses results in generation of a subsonic pseudo-sinusoidal pulse signal at the capacitor.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 14, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventor: William D. Llewellyn
  • Patent number: 9082242
    Abstract: Determining a vehicle health status includes sending a request to a gateway device to initiate a diagnostic test for a vehicle network. The request includes an instruction to measure, for a predefined period of time, a voltage produced by the gateway device. The vehicle health status is further determined by converting the request to a probe signal, and asserting the probe signal at differential bus lines of the vehicle network. The health status is further determined by measuring, for the predefined period of time, a voltage at a high level bus line and a voltage at a low level bus line of the differential bus lines, calculating a difference between the voltage measured at the high level bus line and the voltage measured at the low level bus line, and comparing the difference to a predetermined norm voltage value, the results of which indicate the health status.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: July 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: John J. Cicala, Brett W. Henson
  • Patent number: 9076003
    Abstract: In general, embodiments of the invention include methods and apparatuses for securing otherwise unsecured computer interfaces by performing transparent data encryption and decryption. According to certain transparency aspects, the encryption and decryption functionality of the invention do not require any changes to the software layers such as file systems, device drivers, operating systems, or applications. Embodiments of the invention offload encryption key management to a centralized key management system that can be remotely located from the secured computer. Alternative embodiments perform key management locally.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: July 7, 2015
    Assignee: JANUS TECHNOLOGIES, INC.
    Inventors: Sofin Raskin, Alexander Rezinsky, Joshua Porten, Michael Wang
  • Patent number: 9048824
    Abstract: Described is a chip comprising: a pull-up driver with a first impedance, the pull-up driver coupled to a node; a pull-down driver with a second impedance, the pull-down driver coupled to the node; and an equalizer coupled to the pull-up and pull-down drivers, wherein the equalizer is operable to be trained to deemphasize a signal driven on the node while maintaining the first and second impedances substantially constant.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 2, 2015
    Assignee: Intel Corporation
    Inventors: Hong H. Chan, Jayson D. Strayer, My M. Hua
  • Patent number: 9041436
    Abstract: To reduce power supply noises occurring in a control circuit unit for controlling an output buffer. A semiconductor device includes unit buffers for driving a data output terminal, impedance control circuits for controlling the unit buffers, and a control circuit unit for controlling the impedance control circuits. The impedance control circuits and the control circuit unit operate by mutually-different power supplies, the control circuit unit supplies pull-up data and pull-down data in mutually reverse phase to the impedance control circuits, and the impedance control circuits convert the pull-up data and the pull-down data from reverse phase to in-phase and supply the same to the unit buffers. Thereby, a noise is difficult to occur in a power supply VDD used for the control circuit unit.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: May 26, 2015
    Assignee: PS4 Luxco S.a.r.l.
    Inventors: Shunji Kuwahara, Hiroki Fujisawa
  • Patent number: 9041438
    Abstract: An output buffer comprises a series connection of a first field effect transistor and a second field effect transistor, wherein the first field effect transistor is connected to a first supply potential terminal and the second field effect transistor is connected to a second supply potential terminal. An output terminal is connected to a common connection of the first transistor and the second transistor. The output buffer has a series connection of a resistive element and a capacitive element, wherein the capacitive element is connected to the output terminal, and a control circuit, to which an input signal is provided. The control circuit controls the transistors in such a way that turning off of a transistor is performed immediately, while turning on of a transistor is performed depending on the charging or discharging of the capacitive element, thus achieving a defined slew rate of the output signal at the output terminal.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: May 26, 2015
    Assignee: ams AG
    Inventor: Gonggui Xu
  • Patent number: 9041450
    Abstract: A storage cell having a pulse generator and a storage element is proposed. The storage element input is connected to receive a data input signal. The storage element output is connected to provide a data output signal. The storage element is operable in one of a data retention state and a data transfer state in response to a storage control signal received from the pulse generator. The pulse generator is connected to receive a clock signal with rising and falling clock signal edges and is adapted to provide control pulses in the storage control signal. Each control pulse has a leading edge and a trailing edge. The control pulses have a polarity suited to invoke the data transfer state on their leading edges. The novel feature is that the pulse generator is adapted to initiate a rising-edge control pulse when receiving a rising clock signal edge and to initiate a falling-edge control pulse when receiving a falling clock signal edge.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 26, 2015
    Assignee: Oticon A/S
    Inventor: Jakob Salling
  • Patent number: 9041439
    Abstract: A circuit includes a first power node at a first voltage level, a second power node at a second voltage level, a first voltage driver, a first current driver, and a control unit. The first voltage driver is configured to electrically couple a first output node to the first power node when a first input signal at the first input node is at a first logic state, and electrically couple a first output node to the second power node when the first input signal is at a second logic state. The first current driver is configured to inject or extract a first adjustment current into or out of a first output node. The control unit is configured to generate a measurement result of the first voltage level, and to set the first adjustment current according to the measurement result.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 26, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yu-Nan Shih
  • Patent number: 9041437
    Abstract: A switching device driving apparatus for preventing arm short circuit is provided, including: a first switching device driving unit for receiving a control signal for controlling a first switching device and a second switching device so that they will not turn ON at the same time and outputting an ON/OFF drive signal to the first switching device; and a second switching device driving unit for receiving the control signal and outputting an ON/OFF drive signal to the second switching device, in which the first switching device driving unit outputs a drive signal for increasing the delay of the ON timing of the first switching device with respect to the OFF timing of the second switching device with increase in ambient temperature.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: May 26, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Toru Daigo
  • Patent number: 9030237
    Abstract: A transistor circuit includes at least one transistor, wherein at least part of a connecting portion that connects the transistor (Tr1) and a power supply line (33) is formed from a material of which a channel of the transistor (Tr1) is made. This configuration reduces a circuit area of the transistor circuit.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takuya Hachida, Yasushi Sasaki, Yuhichiroh Murakami, Etsuo Yamamoto
  • Patent number: 9030238
    Abstract: A tunable buffer circuit has a first tunable buffer cell receiving an input signal. A first transmission line is coupled to the first tunable buffer cell. A second tunable buffer cell is coupled to the first transmission line. A center frequency and bandwidth of the second tunable buffer cell is matched to a center frequency and bandwidth of the first tunable buffer cell to achieve low phase noise with low power. Additional transmission lines and tunable buffer cells can be cascaded in the tunable buffer circuit. Each tunable buffer cell has first and second transistors including first and second conduction terminals and control terminal coupled for receiving the input signal. An inductor and tunable capacitor are coupled between the first conduction terminals of the first and second transistor. A digital signal adjusts the tunable buffer cells in response to an RSSI which monitors the output for proper signal strength.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: May 12, 2015
    Assignee: Semtech Corporation
    Inventors: Krishna Shivaram, Craig Hornbuckle
  • Patent number: 9024652
    Abstract: The electronic circuit includes a transistor having a gate terminal, a source terminal and a drain terminal. A resistor has a first terminal connected to the gate terminal and has a second terminal connected to an auxiliary pad. When the electronic circuit is operating in a test phase and is configured for receiving a test signal for performing the test of the transistor, the auxiliary pad is electrically floating. When the electronic circuit is operating in a normal phase and is configured for receiving a supply voltage, the auxiliary pad is electrically connected to a voltage value smaller than the sum of the voltage value of the source terminal with the threshold voltage value of the transistor.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: May 5, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Matteo Amighini, Andrea Botta, Mauro Foppiani, Vanni Poletto
  • Patent number: 9024558
    Abstract: A bridge output circuit includes an output terminal, a high side transistor, a low side transistor, a high side driver for controlling a gate voltage of the high side transistor, a low side driver for controlling a gate voltage of the low side transistor, and a controller for controlling the high side and low side drivers. The low side driver includes a first current source, a second current source, and a first assist circuit. The controller is configured to control the turning-on and turning-off states of the first current source, the second current source and the first assist circuit.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: May 5, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Hisashi Sugie
  • Patent number: 9018973
    Abstract: A device, comprising an output terminal; an output circuit coupled to the output terminal and having an adjustable impedance; and an impedance adjustment circuit adjusting stepwise the adjustable impedance so as to head toward a first reference impedance. The impedance adjustment circuit changes the adjustable impedance by a first amount when the adjustable impedance is within a first range, and changes the adjustable impedance by a second amount when the adjustable impedance is out of the first range. The first amount is smaller than the second amount.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: April 28, 2015
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Nakaba Kaiwa, Yutaka Ikeda
  • Patent number: 9018986
    Abstract: An output buffer is provided. The output buffer is coupled to a first voltage source providing a first supply voltage and used for generating an output signal at an output terminal according to an input signal. The output buffer includes first and second transistors and a self-bias circuit. The first and second transistors are cascaded between the output terminal and a reference voltage. The self-bias circuit is coupled to the output terminal and the control electrode of the first transistor. When the output buffer does not receive the first supply voltage, the self-bias circuit provides a first bias voltage to the control electrode of the first transistor according to the output signal to decrease voltage differences between the control electrode and the input and output electrodes of the first transistor to be lower than a predetermined voltage.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: April 28, 2015
    Assignee: VIA Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9018983
    Abstract: Method and apparatus for electrosurgery including tissue coagulation using very high voltage pulses of electrical energy applied to the electrosurgical probe. This minimizes heating of the surrounding tissue in the probe and is especially suitable for precise and limited coagulation and fulguration without excessive tissue charring or other damage. The power at rated load of the applied pulses to the probe is typically over 300W and the duration of the on time is very short, so each group of pulse bursts is of relatively low duty cycle. An RF generator is also provided for delivering electrical energy to an electrosurgical probe with the proper characteristics, including fast switching times.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 28, 2015
    Assignee: Medtronic Advanced Energy LLC
    Inventor: Alexander B. Vankov
  • Patent number: 9013221
    Abstract: A receiver circuit for a differential input signal, may include a divider bridge having first and second ends, a midpoint therebetween, and intermediate points on either side of the midpoint. The divider bridge is coupled to receive the differential input signal at the first and second ends. A current generator is coupled to the divider bridge and configured to generate compensation currents associated respectively with components of the differential input signal. The divider bridge is configured to receive the compensation currents respectively at the intermediate points, and generate a compensated differential signal between the intermediate points.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Thierry Masson, Sandrine Nicolas, Colette Morche
  • Patent number: 9013212
    Abstract: An output driver circuit includes first, second, third, and fourth transistors having a common current path, wherein a gate of the first transistor receives a first switching signal, a gate of the second transistor receives a first reference voltage, a gate of the third transistor receives a second reference voltage, and a gate of the fourth transistor receives a second switching signal, and wherein a first capacitor is coupled between the gate of the first transistor and the gate of the third transistor, a second capacitor is coupled between the gate of the second transistor and the gate of the fourth transistor, and an output signal is provided at a node coupling the second and third transistors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics International N.V.
    Inventor: Vinod Kumar
  • Patent number: 9007100
    Abstract: A high-side semiconductor-switch driving method includes generating power for controlling a high side semiconductor switch. The high side semiconductor switch has a control terminal and the power allows a current to flow into the control terminal of the high side semiconductor switch to switch the high side semiconductor switch. The voltage at the control terminal of the high side semiconductor switch is quantified. The power dependent on the voltage at the control terminal of the high side semiconductor switch is controlled so that the current provided is increased when the voltage at the control terminal indicates that the current is not sufficient to switch the high side semiconductor switch.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 14, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Asam, Helmut Herrmann
  • Patent number: 9007103
    Abstract: In various embodiments, a switch circuit arrangement may include a switch circuit, a driver circuit and a supply circuit. The driver circuit may be configured to control the switch circuit. The supply circuit may be configured to power the driver circuit. The supply circuit may include a first circuit configured to modify an output impedance of the supply circuit to have a first impedance when the driver circuit controls the switch circuit to be in a conducting state and to have a second impedance when the driver circuit controls the switch circuit to change from a non-conducting state to the conducting state.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 14, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Bernhard Zojer
  • Patent number: 9007104
    Abstract: There is provided an apparatus for output buffering having a half-swing rail-to-rail structure. The apparatus provides output buffering by using a switch structure in order to attain a high slew rate and low power characteristics, thereby reducing current consumption. The provided apparatus for output buffering having a half-swing rail-to-rail structure includes a first output buffer, driven between a first voltage rail and a second voltage rail and outputting a first output signal in response to a first input signal and a second input signal, and a second output buffer, driven between the first and the second voltage rails and a third voltage rail and outputting a second output signal in response to a third input signal and a fourth input signal.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Chang Ho Ahn, Byung Jae Nam, Sang Hyun Park, Jae Hong Ko, Hyun Jin Shin
  • Patent number: 9007099
    Abstract: A semiconductor device with a current sampler and a start-up structure, comprises first, second and third high-voltage transistors, and a resistor, wherein: a drain terminal of the first transistor is respectively connected to a drain terminal of the second transistor, a drain terminal of the third transistor and one end of the resistor; a source terminal of the first transistor is grounded, and a gate terminal of the first transistor is connected to a gate terminal of the second transistor; the other end of the resistor is connected to a gate terminal of the third transistor; wherein the resistor is wound and formed in a common voltage withstand region of the first transistor, the second transistor and the third transistor, or in a voltage withstand region of the first transistor only, or in the voltage withstand region of the third transistor only.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 14, 2015
    Assignee: Suzhou Poweron IC Design Co., Ltd
    Inventors: Yangbo Yi, Haisong Li, Ping Tao, Wengao Chen, Lixin Zhang
  • Patent number: 8994411
    Abstract: In accordance with an embodiment, a driver circuit includes a low-side driver having a first output configured to be coupled to a control node of a first semiconductor switch, and a reference input configured to be coupled to a reference node of the first semiconductor switch. The low-side driver also includes a first capacitor coupled between an output node of the first semiconductor switch and a first node, a first diode coupled between the first node and a first power input of the driver, and a second capacitor coupled between the first power input of the low-side driver and the reference node of the first semiconductor switch.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: March 31, 2015
    Assignee: Infineon Technologies AG
    Inventors: Dieter Draxelmayr, Karl Norling
  • Patent number: 8994414
    Abstract: A voltage controlled switching element gate drive circuit makes it possible to suppress an occurrence of a malfunction, while suppressing surge voltage, surge current, and switching noise, when switching in a voltage controlled switching element. A gate drive circuit that supplies a gate voltage to the gate of a voltage controlled switching element, thus driving the voltage controlled switching element, includes a high potential side switching element and low potential side switching element connected in series, first variable resistors interposed between at least the high potential side switching element and a high potential power supply or the low potential side switching element and a low potential power supply, and a control circuit that adjusts the resistance values of the first variable resistors.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 31, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Satoshi Sugahara
  • Patent number: 8994410
    Abstract: The present invention is directed to prevent occurrence of a problem on a withstand voltage in a circuit group which receives supply of an internal power supply voltage. An error amplifier outputs a control voltage obtained by amplifying a difference voltage between a reference voltage and a divided voltage obtained by dividing an internal power supply voltage to an output node. A drive transistor supplies a drive current according to the control voltage of the output node of the error amplifier from an external power supply line to an internal power supply line. When the divided voltage exceeds a predetermined voltage, a clamp circuit changes the control voltage in the direction of decreasing the drive current.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 31, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshinori Tokioka, Kenji Tokami, Shintaro Mori, Shigeki Nakamura
  • Patent number: 8994415
    Abstract: A clock buffer circuit can include a low voltage drive circuit that receives a clock signal and provides a low voltage drive at a first power supply potential to a load. A boost drive circuit can provide a high voltage drive at a second power supply potential greater than the first power supply potential to the load. The boost drive circuit can provide the high voltage drive in response to a pulse signal generated in response to a transition of a clock input signal. A pulse generator circuit may generate the pulse signal to have a predetermined width to enable the high voltage drive until the load is charged essentially to the first power supply potential.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 31, 2015
    Assignee: SuVolta, Inc.
    Inventor: Richard S. Roy
  • Patent number: 8988118
    Abstract: Disclosed is a high-swing voltage-mode transmitter or line driver. The transmitter can operate over a wide range of supply voltages. Increasing the available output swing merely involves increasing the supply voltage; the circuit adapts to maintain the desired output impedance. This allows for a tradeoff between output amplitude and power consumption. Another advantage of the proposed architecture is that it compensates for process, voltage, and temperature (PVT) and mismatch variations so as to keep rise and fall times matched. This feature reduces common-mode noise and hence EMI in systems in which the transmitter is used.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: March 24, 2015
    Assignee: PMC-Sierra, Inc.
    Inventors: Julien Faucher, Michael Ben Venditti
  • Patent number: 8988100
    Abstract: Described are amplifiers that facilitate high-speed communication with calibrated drive strength and termination impedance. Drivers and termination elements can be divided into a number N of parallel portions, one or more of which can be disabled and updated without interfering with signal (e.g., clock or data) transmission. Some embodiments identify inactive elements by examining incoming signals.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Rambus Inc.
    Inventors: Huy M. Nguyen, Vijay Gadde, Sivakumar Doraiswamy
  • Patent number: 8982657
    Abstract: A semiconductor device includes: a plurality of target lines to be driven; a plurality of target line drivers configured to drive the corresponding target lines in a logic level corresponding to a plurality of target line selection signals; a plurality of booster enable units configured to generate a booster enable signal by sensing whether a group of target lines that is obtained by grouping the target lines by a predetermined number is enabled or not; and a plurality of self-boosters configured to boost corresponding target lines by sensing levels of the corresponding target lines in response to the booster enable signal.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 17, 2015
    Assignee: SK Hynix Inc.
    Inventor: Jeongsu Jung
  • Patent number: 8981817
    Abstract: A circuit having a centralized PT compensation circuit to provide compensation signals to localized I/O blocks on the chip. Process variations and temperature variations tend to be approximately uniform across an integrated circuit chip. Thus, a single, centralized PT compensation circuit may be used instead of one PT compensation circuit per I/O section as with solutions of the past. Further, the PT compensation circuit may generate a digital code indicative of the effects of process and temperature. Further yet, each section of I/O block may have a local voltage compensation circuit to compensate the voltage variation of the I/O block. The voltage compensation circuit utilizes an independent reference voltage. The reference voltage is generated by the PT compensation circuit, which is placed centrally in the IC chip and hence any need to repeat the reference generation for each I/O block is eliminated.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 17, 2015
    Assignees: STMicroelectronics International N.V., STMicroelectronics (Crolles 2) SAS
    Inventors: Vinod Kumar, Pradeep Kumar Badrathwal, Saiyid Mohammad Irshad Rizvi, Paras Garg, Kallol Chatterjee, Pierre Dautriche
  • Patent number: 8981820
    Abstract: Devices and methods are provided in which a driver is supplied via a first current path and a second current path which can comprise a switching element.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Emanuele Bodano, Maria Giovanna Lagioia, Joachim Pichler, Volha Subotskaya
  • Patent number: 8981818
    Abstract: A two-stage post driver circuit includes a controlling circuit, a pull-up unit and a pull-down unit. A first N-type transistor of the pull-down unit and a first P-type transistor of the pull-up unit are both connected to an output pad. The controlling circuit is used for controlling the first N-type transistor and the first P-type transistor. Consequently, when the pull-up unit or the pull-down unit is turned on, the voltage difference between the drain terminal and the source terminal of the first N-type transistor or the first P-type transistor is lower than a voltage stress.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: March 17, 2015
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Wen-Tai Wang, Chao-Yen Huang
  • Patent number: 8975929
    Abstract: A circuit includes a first input transistor and a first voltage divider coupled to a source of the first input transistor and a second input transistor and a second voltage divider coupled to a source of the second input transistor. A first set of series connected transistors include a first transistor with a gate coupled to the first input transistor source and a second transistor with a gate coupled to a tap of the first voltage divider. A second set of series connected transistors include a third transistor with a gate coupled to the second input transistor source and a fourth transistor with a gate coupled to a tap of the second voltage divider. An output is coupled to the sources of the first and second input transistors. The first and second sets are coupled to one of the first input transistor drain or second input transistor drain.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 10, 2015
    Assignee: STMicroelectronics International N.V.
    Inventor: Surendra Kumar
  • Patent number: 8975930
    Abstract: Direct-path current is reduced in a semiconductor device including CMOS circuits. One embodiment of the present invention is a method for driving a semiconductor device that includes a first CMOS circuit between power supply lines, a first transistor between the power supply lines, a second CMOS circuit between the power supply lines, and a second transistor between an output terminal of the first CMOS circuit and an input terminal of the second CMOS circuit. The first transistor and the second transistor each have lower off-state current than a transistor included in the first CMOS circuit. In a period during which the voltage of a first signal input to the first CMOS circuit is changed, a second signal is input to the first transistor and the second transistor to turn off the first transistor and the second transistor.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 8975943
    Abstract: Embodiments of the present invention provide a device for level shifting an input signal. The device includes an output buffer that has: an output node, a p-FET coupled to a high reference voltage, and an n-FET coupled to a low reference voltage. The device also includes two latches. The first latch has a first latch output that drives a gate of the p-FET via an inverting circuit element. The second latch has a second latch output that drives a gate of the n-FET via a non-inverting circuit element. The device also includes a reset signal pulse generator that receives the input signal and generates a reset signal pulse in response to a transition in the input signal. Both of the latches are placed in a reset state by the reset signal pulse.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 10, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventor: Perry Lou
  • Patent number: 8970262
    Abstract: Disclosed is a semiconductor device arrangement including a first semiconductor device having a load path, and a plurality of second transistors, each having a load path between a first and a second load terminal and a control terminal. The second transistors have their load paths connected in series and connected in series to the load path of the first transistor, each of the second transistors has its control terminal connected to the load terminal of one of the other second transistors, and one of the second transistors has its control terminal connected to one of the load terminals of the first semiconductor device.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: March 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Rolf Weis, Franz Hirler, Martin Feldtkeller, Gerald Deboy, Matthias Stecher, Armin Willmeroth
  • Patent number: 8970258
    Abstract: In accordance with embodiments of the present disclosure, systems and methods may include a switch coupled at its gate terminal to an input signal voltage, the input signal voltage for controlling a gate voltage of a gate terminal of a driver device coupled at its non-gate terminals between a rail voltage and an output node. The systems and methods may also include a diode having a first terminal and a second terminal, the diode coupled to a non-gate terminal of the switch such that when the switch is enabled, the first terminal is electrically coupled to the gate terminal of the driver device and the second terminal is electrically coupled to the output node.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Dan Shen, Johann Gaboriau, Lingli Zhang, Christian Larsen
  • Patent number: 8970265
    Abstract: An electronic circuit for driving an electronic switch includes a first voltage terminal coupled to receive a first voltage from a power supply and a second voltage terminal coupled to receive a second voltage from the power supply. A driver circuit is configured to drive the voltage at a control terminal of the electronic switch to an intermediate voltage level in order to turn on the electronic switch during a high or normal voltage condition. A clamp circuit is configured to clamp the voltage at the control terminal of the electronic switch to the second voltage terminal in order to turn on the electronic switch during a low voltage condition, so that the electronic switch can enhance power provided to a load during the low voltage condition. A low voltage detection circuit detects the low voltage condition and provides a signal to activate the clamp circuit.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Allegro Microsystems, LLC
    Inventors: James McIntosh, Christy Looby
  • Patent number: 8963586
    Abstract: A power stage has a differential output stage 2 driven by one or more buffer stages 4. The buffer stages 4 are implemented as high and low side buffers 12,14, each of which is itself a differential buffer implemented using transistors formed in an isolated-well technology such as triple-well CMOS.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Mustafa Acar, Katarzyna Nowak
  • Patent number: 8957708
    Abstract: An output buffer has a first transistor and a voltage mitigation second transistor. The first transistor is configured to generate a voltage value corresponding to the power-supply voltage in response to an input signal. The second transistor is provided between an output line and the first transistor. A gate terminal of the second transistor is applied with a power-supply bias voltage which turns the second transistor on and makes a voltage between gate and source terminals of the second transistor constant in accordance with a power-supply voltage.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: February 17, 2015
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventors: Masahiro Miyazaki, Shuichi Hashidate