Oxygen Containing Atmosphere Patents (Class 427/539)
  • Publication number: 20110033634
    Abstract: A production method of an optical element, which is utilized in a pickup apparatus using a light source emitting light having wavelength of 380 nm to 420 nm and has a functional layer such as an anti-reflection film 60 formed on a molded portion 50 comprising a resin having an alicyclic structure, comprising steps of forming a first SiO layer 62 in the molded portion 50 by a vapor deposition process using SiO as an evaporation source and introducing O2 gas under a predetermined pressure, forming a second SiO layer 64 on the first SiO layer by a vapor deposition process using SiO as an evaporation source and introducing O2 gas under a pressure lower than the pressure used in forming the first SiO layer 62, and oxidizing the first SiO layer 62 and the second SiO layer 64.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 10, 2011
    Inventor: Jinichi KASUYA
  • Patent number: 7858156
    Abstract: A method for generating spontaneously aligned surface wrinkles utilizes control of local moduli-mismatch and osmotic pressure. The method includes modifying the surface of an elastomeric layer to form a superlayer that is stiffer and/or less absorbent than the elastomeric layer. The elastomeric layer is then swollen with a polymerizable monomer, which causes buckling of the superlayer. The monomer is then polymerized, dimensionally stabilizing the surface buckling. The budded surfaces generated by the method are useful in a wide variety of end-use applications, including microlenses, microlens arrays, compound microlenses, diffraction gratings, photonic crystals, smart adhesives, mechanical strain sensors, microfluidic devices, and cell culture surfaces.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: December 28, 2010
    Assignee: The University of Massachusetts
    Inventors: Alfred J. Crosby, Edwin P. Chan
  • Publication number: 20100298549
    Abstract: An extraction method for a target bio-molecule of a sample solution is described. First, a substrate having a thermally responsive polymer brush immobilized thereon is provided. The thermally responsive polymer brush has a lower critical solution temperature (LCST). Thereafter, while the sample solution flows over the substrate, the temperature of the sample solution or the substrate or both is decreased to less than the LCST, so that the target bio-molecule of the sample solution is captured inside the thermally responsive polymer brush. Afterwards, while the extraction solution flows over the substrate, the temperature of the extraction solution or the substrate or both is increased to more than the LCST, so that the captured target bio-molecule of the sample solution is released out of the thermally responsive polymer brush.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Applicant: National Taiwan University of Science and Technology
    Inventor: Chien-Kuang Chen
  • Publication number: 20100285301
    Abstract: The invention relates to a method for modifying the surface of a membrane by plasma treatment, wherein said method imparts water-repellent and imperviousness properties to said membrane while preserving the steam perviousness and the elastic properties thereof. The method comprises, inter alia, a step of treating the membrane with a plasma of a precursor compound selected from a hydrocarbon gas, a fluorocarbon gas, mixtures thereof, a fluorocarbon liquid, a fluorocarbon solid, wherein the precursor compound is selected in such a way that the F/C ratio is lower than 2, followed by a step of treating the same surface of the substrate from the previous step with a plasma of a fluorocarbon gas selected in such a way that the F/C ratio is at least 2. The invention also relates to the resulting membranes.
    Type: Application
    Filed: November 7, 2008
    Publication date: November 11, 2010
    Inventors: Marie Dieudonné, Natacha De Dominicis, Philippe Sonntag
  • Publication number: 20100284108
    Abstract: A method for producing a magnetic recording medium having a magnetically partitioned magnetic recording pattern, comprising a step of forming a magnetic layer contains 0.5-6 atomic % of an oxide on a non-magnetic substrate; and a step of exposing regions of the magnetic layer, which magnetically partition the magnetic recording pattern, to a reactive plasma or reactive ion. The magnetic layer preferably has a non-granular structure, and in-plane orientated. After the step of exposure of the magnetic layer to a reactive plasma or reactive ion, a surface at least in said regions of magnetic layer having been exposed to the reactive plasma or reactive ion is preferably irradiated with an inert gas. Thus, a magnetic recording medium having a magnetic recording pattern with a high precision, and having high electromagnetic conversion characteristics and high recording density can be produced with an enhanced productivity.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 11, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Masato Fukushima, Akira Sakawaki
  • Patent number: 7824600
    Abstract: The invention relates to a method for raising the surface tension of biaxially-stretched films made of thermoplastic polymers. According to the method, a film is first treated on a surface by means of an atmospheric pressure plasma before being stretched transversally or simultaneously across the width thereof, and the film is additional a subjected to a second treatment by means of a corona or flame after being stretched transversally or simultaneously, the second treatment being done on the same surface which has already been plasma-treated.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Treofan Germany GmbH & Co. KG
    Inventors: Joachim Jung, Thomas Gottfreund
  • Publication number: 20100269617
    Abstract: The invention relates to a method of producing an abradable polymer coating (5), optionally containing at least one solid lubricant, on a surface of teeth (7, 8) of a metal toothed element (1, 2) for setting a tooth flank clearance (4) between the teeth (7, 8) of two meshing toothed elements (7, 8), whereby the abradable polymer coating (5) is applied to at least part of a surface of the teeth (7) of at least one toothed element (7, 8). Prior to applying the polymer coating (5), the surface to be coated is treated in a plasma and the polymer coating (5) is then applied directly to this surface.
    Type: Application
    Filed: December 15, 2008
    Publication date: October 28, 2010
    Applicant: High Tech Coatings GmbH
    Inventor: Guenter Eitzinger
  • Publication number: 20100260944
    Abstract: A method for forming silicon dots which can form silicon dots at a relatively low temperature, with good controllability of the particle diameter of silicon dots depending on the particle diameter of silicon dots to be formed. The method for forming silicon dots comprises producing inductively coupled plasma from a gas for forming silicon dots provided within the plasma producing chamber by applying a high-frequency power to an antenna with reduced inductance placed within the plasma producing chamber to form silicon dots on a substrate S disposed within the chamber in the presence of the inductively coupled plasma. Conditions for a pretreatment of the substrate prior to the formation of silicon dots, the temperature of the substrate in forming silicon dots and the gas pressure in the plasma producing chamber during the formation of silicon dots are controlled depending on the particle diameter of the silicon dots.
    Type: Application
    Filed: October 14, 2008
    Publication date: October 14, 2010
    Inventors: Atsushi Tomyo, Hirokazu Kaki, Eiji Takahashi
  • Patent number: 7811669
    Abstract: There are provided a gas barrier laminated film, which is transparent while possessing excellent gas barrier properties and, at the same time, has excellent impact resistance, and a process for producing the same. The gas barrier laminated film comprises a base material, a vapor deposited film of an inorganic oxide provided on the base material, and a gas barrier coating film provided on the vapor deposited film. The gas barrier laminated film is characterized in that the base material on its side where the vapor deposited film is provided, has been subjected to pretreatment or primer coating treatment, and the gas barrier coating film has been formed by coating a gas barrier coating liquid onto the inorganic oxide film and then heating the coating.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: October 12, 2010
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Hitoshi Fujii, Norio Akita, Ayumi Shibata, Daidou Chiba, Koichi Mikami, Hisashi Sakamoto
  • Publication number: 20100255625
    Abstract: Apparatus and method for atomic layer deposition on a surface of a substrate (6) in a treatment space. A gas supply device (15, 16) is present for providing various gas mixtures to the treatment space (1, 2). The gas supply device (15, 16) is arranged to provide a gas mixture with a precursor material to the treatment space for allowing reactive surface sites to react with precursor material molecules to give a surface covered by a monolayer of precursor molecules attached via the reactive sites to the surface of the substrate. Subsequently, a gas mixture comprising a reactive agent capable to convert the attached precursor molecules to active precursor sites is provided. A plasma generator (10) is present for generating an atmospheric pressure plasma in the gas mixture comprising the reactive agent, the plasma generator being arranged remote from the treatment space (1, 2).
    Type: Application
    Filed: August 20, 2008
    Publication date: October 7, 2010
    Applicant: FUJIFILM MANUFACTURING EUROPE B.V.
    Inventor: Hindrik Willem De Vries
  • Patent number: 7807212
    Abstract: A biomedical material is prepared through a plasma method. The material is a film containing titanium oxide onto polymer sheet. The film is hydrophilic, bacterial inactivated and biocompatible. The present invention can be applied to artificial guiding tube and wound dressing material.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: October 5, 2010
    Assignee: Atomic Energy Council-Institute of Nuclear Energy Research
    Inventors: Te-Hsing Wu, Ko-Shao Chen, Chia-Chieh Chen, Lie-Hang Shen, Yi-Chun Yeh, Nini-Chen Tsai
  • Patent number: 7807219
    Abstract: A process of repairing a plasma etched low-k dielectric material having surface-bound silanol groups includes exposing at least one surface of the dielectric material to (a) a catalyst so as to form hydrogen bonds between the catalyst and the surface-bound silanol groups obtaining a catalytic intermediary that reacts with the silane capping agent so as to form surface-bound silane compounds, or (b) a solution comprising a supercritical solvent, a catalyst, and a silane capping agent so as to form hydrogen bonds between a catalyst and the surface-bound silanol groups obtaining a catalytic intermediary that reacts with the silane capping agent so as to form surface-bound silane compounds. Horizontal networks can be formed between adjacent surface-bound silane compounds.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: October 5, 2010
    Assignee: Lam Research Corporation
    Inventor: James DeYoung
  • Patent number: 7807231
    Abstract: A process for protecting a thermal barrier coating (TBC) on a component used in a high-temperature environment, such as the hot section of a gas turbine engine. The process applies a protective film on the surface of the TBC to resist infiltration of contaminants such as CMAS that can melt and infiltrate the TBC to cause spallation. The process generally entails applying to the TBC surface a metal composition containing at least one metal whose oxide resists infiltration of CMAS into the TBC. The metal composition is applied so as to form a metal film on the TBC surface and optionally to infiltrate porosity within the TBC beneath its surface. The metal composition is then converted to form an oxide film, with at least a portion of the oxide film forming a surface deposit on the TBC surface.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Bangalore Aswatha Nagaraj, Robert Edward Schafrik
  • Patent number: 7803234
    Abstract: The invention provides a method for making surface treated shape memory materials such as from NiTi alloy using plasma immersion ion implantation and deposition and related ion-beam and plasma-based techniques to alter the surface properties of those materials primarily for biomedical applications. The surfaces are treated with nitrogen, oxygen, and carbon, but become bio-inactive after implanted with other elements such as silicon.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: September 28, 2010
    Assignees: Versitech Limited
    Inventors: Kelvin W. K. Yeung, Ray W. Y. Poon, Paul Kim-Ho Chu, Kenneth M. C. Cheung, William W. Lu
  • Publication number: 20100227281
    Abstract: Some embodiments include methods of forming patterns of openings. The methods may include forming spaced features over a substrate. The features may have tops and may have sidewalls extending downwardly from the tops. A first material may be formed along the tops and sidewalls of the features. The first material may be formed by spin-casting a conformal layer of the first material across the features, or by selective deposition along the features relative to the substrate. After the first material is formed, fill material may be provided between the features while leaving regions of the first material exposed. The exposed regions of the first material may then be selectively removed relative to both the fill material and the features to create the pattern of openings.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 9, 2010
    Inventors: Scott Sills, Gurtej S. Sandhu, John Smythe, Ming Zhang
  • Patent number: 7785662
    Abstract: There is provided a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer arranged between the magnetization pinned layer and the magnetization free layer and current paths passing through the insulating layer. The method includes, in producing the spacer layer, depositing a first non-magnetic metal layer forming the current paths, depositing a second metal layer to be converted into the insulating layer on the first non-magnetic metal layer, and performing two stages of oxidation treatments in which a partial pressure of an oxidizing gas in a first oxidation treatment is set to 1/10 or less of a partial pressure of an oxidizing gas in a second oxidation treatment, and the second metal layer being irradiated with an ion beam or a RF plasma of a rare gas in the first oxidation treatment.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7781028
    Abstract: Amorphous metal oxide thin film is produced by removing through oxygen plasma treatment the organic component from an organics/metal oxide composite thin film having thoroughly dispersed therein such organic component at molecular scale. This ensures production of amorphous metal oxide thin film with low density and excellent thickness precision.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 24, 2010
    Assignee: Riken
    Inventors: Toyoki Kunitake, Izumi Ichinose, Shigenori Fujikawa, Jianguo Huang
  • Publication number: 20100208196
    Abstract: Contact lenses which exhibit improved wetability are provided. In one aspect, the surface of the contact lenses may be modified using a hydrophilic layer which imparts improved wetability to the contact lens. The contact lens may be exposed to a first plasma so as to generate free radicals on the contact lens surface. An organic compound may be further reacted with the free radicals on the surface to form an organic coating. The contact lens may be exposed to a under conditions selected to oxidize the organic coating and form the hydrophilic layer. Surface modified contact lenses may exhibit contact angles with respect to water less than about 50° using a broad range of organic compounds, including alcohols, ethers, aldehydes, ketones, esters, organosilicon, organophosphorous, organotitanium, organotin, organogermanium, and organoboron compounds. The improved wetability is also substantially maintained when the lens is subject to wear.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 19, 2010
    Applicant: SYNERGEYES, INC.
    Inventors: Ramazan Benrashid, Ivan Sabath, Jenny Xuan Huynh
  • Publication number: 20100196621
    Abstract: A hybrid coating including a mixture of an organosilane component, a metal alkoxide component and a surfactant component.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: THE BOEING COMPANY
    Inventors: Kjersta L. Larson-Smith, Kay Y. Blohowiak, Jill E. Seebergh, Michael R. Sirkis, Vasan S. Sundaram
  • Publication number: 20100181659
    Abstract: A lead frame and an electronic package having improved adhesion between the lead frame and an encapsulating plastic material is disclosed. The lead frame can be pre plated having an outer layer comprising a precious metal such as palladium or gold to which is adhered a self-assembled monolayer (SAM), such as a SAM derived from an organophosphorus acid. The organophosphorus acid preferably is a mixture in which the organo groups are fluoro substituted hydrocarbons and hydrocarbons containing ethylenically unsaturated groups.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 22, 2010
    Inventors: Eric L. Hanson, Eric L. Bruner, Jeffrey Gotro
  • Publication number: 20100178468
    Abstract: Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.
    Type: Application
    Filed: November 14, 2008
    Publication date: July 15, 2010
    Inventors: Ying-Bing JIANG, Joseph L. Cecchi, C. Jeffrey Brinker
  • Publication number: 20100165504
    Abstract: The present invention aims to provide a method of producing a magnetic recording medium which is a method of producing a magnetic recording medium having a magnetically-separated magnetic recording pattern, the method including: forming a magnetic layer on a non-magnetic substrate; then exposing a surface of the magnetic layer partially to reactive plasma, or a reactive ion generated in the plasma to amorphize the portion of the magnetic layer.
    Type: Application
    Filed: June 17, 2008
    Publication date: July 1, 2010
    Inventors: Masato Fukushima, Akira Sakawaki, Yasumasa Sasaki
  • Publication number: 20100136319
    Abstract: A method for forming a mesoporous silica layer composed of nanometer-sized, mesoporous silica particles on an optical substrate or a dense layer formed thereon, comprising the steps of (1) hydrolyzing and polycondensing alkoxysilane in a solvent containing a catalyst, a cationic surfactant and a nonionic surfactant to prepare composites comprising nanometer-sized, mesoporous silica particles and these surfactants, (2) applying a solution containing the composites to the substrate or the dense layer, (3) drying the solution to remove the solvent, and (4) removing both surfactants by baking the resultant coating at 120-250° C. in an oxygen-containing gas atmosphere, or plasma-treating it using an oxygen-containing gas.
    Type: Application
    Filed: November 2, 2009
    Publication date: June 3, 2010
    Applicants: KEIO UNIVERSITY, HOYA CORPORATION
    Inventors: Hiroaki IMAI, Masato YAMAGUCHI, Kazuhiro YAMADA, Hiroyuki NAKAYAMA
  • Publication number: 20100092803
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of hydrogen molecules, hydrogen atoms, hydrogen ions, hydrogen plasma, hydrogen radicals, deuterium molecules, deuterium atoms, deuterium ions, deuterium plasma and deuterium radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100091412
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of helium ions, helium plasma, helium radicals, neon ions, neon plasma and neon radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100091415
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of nitrogen ions, nitrogen atoms, nitrogen plasma, and nitrogen radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Patent number: 7695759
    Abstract: A bank for defining the regions in which pixels are formed has a stacked structure including: a base layer on the low level which also serves as an interlayer insulating film between the pixel forming regions; a middle bank layer on the middle level which serves to improve the fixation of an organic compound material (i.e., improve the uniformity of the film thickness of a positive hole transporting layer and an electron-transporting light emitting layer) in forming an organic EL layer; and a bank metal layer on the upper level which is made of a conductive material and serves also as a common voltage line (cathode line).
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: April 13, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Minoru Kumagai
  • Publication number: 20100086927
    Abstract: Intermediates and methods for forming activated metal complexes bound to surfaces on oxide layers, immobilizing beads to the modified surface and articles produced thereby are described. Hydroxyl groups on the oxide surfaces are reacted with a metal reagent complex of the formula Y(L-Pol)m, where Y is a transition metal, magnesium or aluminum, L is oxygen, sulfur, selenium or an amine, and “Pol” represents a passivating agent such as a methoxyethanol, a polyethylene glycol, a hydrocarbon, or a fluorocarbon. The resulting modified surface can be further reacted with a passivating agent having a phosphate functional group or a plurality of functional groups that are reactive with or that form complexes with Y.
    Type: Application
    Filed: July 23, 2009
    Publication date: April 8, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Steven M. Menchen, Christina E. Inman, Meng Taing, George A. Fry
  • Publication number: 20100079060
    Abstract: In a method for depositing a barrier coating, a device is provided comprising a first portion and a second portion where a surface of the second portion is in a shadow zone. The device is pretreated wherein the pretreating alters a deposition rate of the barrier coating on a surface exposed to the pretreating. The shadow zone is substantially unexposed to the pretreating. A barrier coating is deposited wherein the barrier coating substantially conforms to a profile of the device. The coating may be a graded-composition barrier coating wherein a composition of the coating varies substantially continuously across a thickness thereof. The first portion may include a flexible, substantially transparent substrate. The second portion may include an electronic device. The barrier coating and first portion may encapsulate the second portion. The method is a single, commercially advantageous, barrier deposition process, enabling increased product throughput and low process tact time.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmet Gun ERLAT, George Theodore DALAKOS, Min YAN, Sheila Neumann TANDON, Brian Joseph SCHERER
  • Publication number: 20090305055
    Abstract: Disclosed herein is a light-transmitting electric conductor including, on a surface of a light-transmitting support, a conductive material in which a multiplicity of carbon nanolinear structures are accumulated in two dimensions while making partial contact with each other, wherein the conductive material is a light-transmitting conductive material composed only of the carbon nanolinear structures, and direct bonds are formed between the surface of the light-transmitting support and the carbon nanolinear structures making contact with the surface, and between the carbon nanolinear structures making contact with each other.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 10, 2009
    Applicant: SONY CORPORATION
    Inventor: Keisuke Shimizu
  • Publication number: 20090263648
    Abstract: A metal oxide film forming method includes mixing an organic metal compound that is a liquid at room temperature and an organic solvent to form a paste, applying the paste onto a substrate, and oxidizing a metal element in the paste while vaporizing organic substances in the paste by irradiating atmospheric pressure plasma to the paste applied onto the substrate to form a metal oxide film. A metal oxide film composed of three layers is formed on a substrate such as a glass substrate. Such a structure can be obtained by repeating the steps of mixing the organic metal compound that is a liquid at room temperature and the organic solvent to form the paste, applying the paste onto the substrate, and oxidizing the metal element while vaporizing the organic substances in the paste. Also contemplated is an optical electronic device using the metal oxide film.
    Type: Application
    Filed: October 18, 2006
    Publication date: October 22, 2009
    Inventors: Mitsuo Saitoh, Tomohiro Okumura, Osamu Morita
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Publication number: 20090147371
    Abstract: A liquid optical lens which changes a focus due to a change in a shape of a translucent elastic membrane according to a change in a fluid pressure of a lens chamber and a manufacturing method thereof are provided. The liquid optical lens forms a dampproof coating membrane on the translucent elastic membrane to prevent a fluid from permeating through the translucent elastic membrane and a swelling phenomenon of the translucent elastic membrane.
    Type: Application
    Filed: March 21, 2008
    Publication date: June 11, 2009
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD
    Inventors: Jeong-yub LEE, Seung-wan LEE, Seung-tae CHOI, Woon-bae KIM, Jae-ho YOU, Che-heung KIM
  • Publication number: 20090093067
    Abstract: An article, process, and method for surface plasmon resonance plates are described. A substrate is covered with a thin metal film onto which a second thin metal film is deposited. The surface of the second thin metal film is converted to the metal oxide which is used to covalently bond organosilanes to the surface. Reactive organosilanes containing terminal bonding groups are arranged in a plurality of spots that are surrounded by inert organosilanes. Biomolecule attachment to the binding group is detected or measured from surface plasmon signals from the first thin metal film.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 9, 2009
    Applicant: LUMERA CORPORATION
    Inventors: Nicholas Adam Wolf, Danliang Jin, Anna Barklund, Raluca Dinu
  • Publication number: 20090081412
    Abstract: A method of forming a thin film comprising the steps of: applying an inorganic salt solution for a thin film on a substrate to obtain a coated inorganic salt solution film; and subjecting the coated inorganic salt solution film to a plasma treatment under atmospheric pressure, wherein the plasma treatment is conducted by supplying a gas under atmospheric pressure or nearly atmospheric pressure between a pair of counter electrodes, and then generating a high frequency electric field between the electrodes so as to excite the gas followed by subjecting the coated inorganic salt solution film to the excited gas.
    Type: Application
    Filed: May 12, 2006
    Publication date: March 26, 2009
    Applicant: KONICA MINOLTA HOLDINGS, INC.
    Inventors: Kazuhiro Fukuda, Koji Ozaki
  • Patent number: 7504126
    Abstract: A plasma display panel is composed of a first substrate and a second substrate facing each other via a discharge space and sealed together. A protective layer on the first substrate is composed principally of magnesium oxide, includes a substance or structure that creates a first energy level in an area of a forbidden band, the area being in a vicinity of a conduction band, and includes a substance or structure that creates a second energy level in another area in the forbidden band, the other area being in a vicinity of a valence band. During driving the second energy level is occupied by electrons, and few electrons exist in the first energy level, or electrons can easily occupy the first energy level due to a minus charge state, and MgO insultaive resistance is not lowered. This maintains wall charge retention and reduces discharge irregularities and firing voltage Vf.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 17, 2009
    Assignee: Panasonic Corporation
    Inventors: Mikihiko Nishitani, Yukihiro Morita, Masatoshi Kitagawa, Masaharu Terauchi
  • Publication number: 20090061170
    Abstract: An anisotropic film is disclosed in which a line-shaped nanostructure is disposed inside a resin film. Also disclosed is a method of producing an anisotropic film that includes: forming a metal nanostructure on a substrate, forming a resin film that embeds the metal nanostructure, and detaching the resin film from the substrate, wherein the step of forming the metal nanostructure on the substrate includes: at least, forming a coating film on the surface of a template provided on the substrate, the coating film including a metal layer formed by electroless plating; and removing a portion or all of the template while retaining a portion or all of the coating film, or removing a portion of the coating film. Also disclosed is an anisotropic film produced using the method of producing an anisotropic film.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Applicants: Tokyo Ohka Kogyo Co., Ltd., Riken
    Inventors: Shigenori Fujikawa, Wakana Kubo, Toyoki Kunitake, Hideo Hada, Sanae Furuya
  • Publication number: 20090061105
    Abstract: The present invention relates to a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer provided between the magnetization pinned layer and the magnetization free layer and current paths penetrating into the insulating layer. A process of forming the spacer layer in the method includes depositing a first metal layer forming the metal paths, depositing a second metal layer on the first metal layer, performing a pretreatment of irradiating the second metal layer with an ion beam or a RF plasma of a rare gas, and converting the second metal layer into the insulating layer by means of supplying an oxidation gas or a nitriding gas.
    Type: Application
    Filed: October 9, 2008
    Publication date: March 5, 2009
    Inventors: Hideaki FUKUZAWA, Katsuhiko Koui, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki
  • Publication number: 20090053425
    Abstract: A method for producing single-dimensioned gold-nano-particle patterns having a single-particle resolution in which the line-width is only limited by the particle size. Initially, a focused electron beam is used to generate a positive charge layer on an SiO2 surface. Biotinated DNA molecules attracted by these positive charges are then used to acquire Au-nano-particles revealing the e-beam exposure patterns. The particles in the single-line patterns become separated in an orderly manner, due to the repulsive force between different Au colloidal particles. Each single-line pattern has potential use in nano-photonics and nano-electronics. In nano-electronics, the line patterns serve as a template for high or low resistance conductive nano-wires. Low resistance wires exhibit linear current-voltage characteristics with an extremely high maximum allowed current density. The high resistance wires display charging effect with clear Coulomb oscillation behavior at low temperatures.
    Type: Application
    Filed: August 21, 2007
    Publication date: February 26, 2009
    Applicant: Academia Sinica
    Inventors: Chii-Dong Chen, Hung-Yi Lin, Li-Chu Tsai
  • Publication number: 20080305364
    Abstract: The present invention is a production method for a magnetic recording media in which at least a magnetic layer, a protective layer, and a lubricant layer are sequentially layered onto a non-magnetic substrate 1, and non-magnetic substrate 1 is surface treated using a gas activated by plasma generated at around atmospheric pressure. As a result of the present invention, it is possible to produce magnetic recording media with good yield that have few errors and superior head floating properties, by effectively removing foreign material and projections present on the surface of the magnetic recording media.
    Type: Application
    Filed: August 17, 2005
    Publication date: December 11, 2008
    Applicant: Showa Denko K.K.
    Inventors: Hiroshi Osawa, Gohei Kurokawa
  • Publication number: 20080292895
    Abstract: The invention relates to polymer foil comprising at least one polymer layer coated with a barrier glass coating of an oxide composition, wherein said oxide composition comprises the element Si in the form of an oxide network, the oxide composition preferably comprises Si and at least one other element X in an oxide network. The oxide network may preferably be applied using plasma. The foil may be a multi-layered foil comprising a plurality of layers, at least one of the layers being a barrier glass coating. The foil has good barrier properties.
    Type: Application
    Filed: November 29, 2006
    Publication date: November 27, 2008
    Applicant: NANON A/S
    Inventors: Maike Benter, Bahram Eshtehardi, Kjeld Schaumburg, Henry Kierkegaard
  • Patent number: 7410675
    Abstract: The invention relates to the use of a polyolefinic film, with at least one layer, which is made from polyolefinic polymers, whereby said polyolefinic film comprises a bonding layer as outer layer. Said bonding layer contains at least 50 wt. % based on the weight of the layer of a maleic anhydride modified polyolefin. The film is used for printing, metallising or coating.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: August 12, 2008
    Assignee: Trespaphan GmbH
    Inventors: Detlef Busch, Joachim Jung
  • Publication number: 20080124485
    Abstract: Method of successively depositing a multi-film is disclosed. An electric charge removing process is performed after a deposition process of the last film of the multi-film or between the two neighboring film deposition processes. The electric charge removing process includes introducing an inert gas into a reaction chamber of the deposition system and pumping out the inert gas from the reaction chamber.
    Type: Application
    Filed: November 27, 2006
    Publication date: May 29, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: CHAO-SHENG CHIANG, PING-WEI LIN, CHIN-WEI YANG
  • Patent number: 7371487
    Abstract: A method of fabricating a black matrix of a color filter is provided. In the method, a black matrix layer formed of a hydrophobic organic material is formed on an upper surface of a transparent substrate. A black matrix is formed by patterning the black matrix layer. Side surfaces of the black matrix are made hydrophilic by irradiating a lower surface of the transparent substrate with ultraviolet rays while heating the black matrix. A black matrix provided by the method is also disclosed.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: May 13, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-deok Bae, In-Sung Song, Chang-seung Lee, Jun-seong Kim, Sung-woong Kim, Wou-sik Kim
  • Publication number: 20080075881
    Abstract: A method of forming a metallic oxide film using atomic layer deposition includes loading a substrate into a reactor, supplying a metallic source gas into the reactor and absorbing the metallic source gas onto the substrate, purging the remaining metallic source gas that does not react, with the substrate, and directly producing plasma of an N-group-containing oxide reactant gas in the reactor.
    Type: Application
    Filed: July 26, 2007
    Publication date: March 27, 2008
    Inventors: Seok-jun Won, Ju-youn Kim, Jung-min Park
  • Patent number: 7341792
    Abstract: A biaxially oriented saturated polyester film made by a biaxial orientation method, includes a heat-seal side formed in at least one of two sides of the film, the heat-seal side being made by applying a low-temperature plasma treatment to a film surface so that the film surface has a composition ratio of the number of oxygen atoms to the number of carbon atoms, the composition ratio being not less than 105% and not more than 115% of a theoretical value and so that the heat-seal side is heat sealable at a heating temperature ranging from 100° C. to 200° C.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: March 11, 2008
    Assignee: AMT Laboratory Corporation
    Inventors: Takeshi Zinbo, Miya Minamigawa
  • Patent number: 7273638
    Abstract: A method of oxidizing a substrate having area of about 30,000 mm2 or more. The surface is preferably comprised of silicon-containing materials, such as silicon, silicon germanium, silicon carbide, silicon nitride, and metal suicides. A mixture of oxygen-bearing gas and diluent gas normally non-reactive to oxygen, such as Ne, Ar, Kr, Xe, and/or Rn are ionized to create a plasma having an electron density of at least about 1e12 cm?3 and containing ambient electrons having an average temperature greater than about 1 eV. The substrate surface is oxidized with energetic particles, comprising primarily atomic oxygen, created in the plasma to form an oxide film of substantially uniform thickness. The oxidation of the substrate takes place at a temperature below about 700° C., e.g., between about room temperature, 20° C., and about 500° C.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: September 25, 2007
    Assignees: International Business Machines Corp., Infineon Technologies, North American Corp.
    Inventors: Michael Belyansky, Oleg Glushenkov, Andreas Knorr
  • Patent number: 7250197
    Abstract: Intraocular lenses or contact lenses 20 are placed on a lower spindle 34 and held there by a vacuum in conduit 34. Noble and reactive gases 56, 58 are introduced and a voltage is applied across upper spindle 32 and lower spindle 34 to plasma treat one surface of the lens. The lens is transferred to the other spindle and the process is repeated.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: July 31, 2007
    Assignee: Bausch & Lomb Incorporated
    Inventors: Sanjay Rastogi, Michael J. Moorehead, William J. Appleton, George L. Grobe, III, Paul Trotto
  • Publication number: 20070166556
    Abstract: In a continuous in-vacuum process for the manufacture of a film metallized with aluminum, the aluminum layer is exposed to a passivating agent, inline, immediately after deposition and prior to rewinding of the film onto a take-up roller. Passivation is carried out by plasma treatment in an oxidizing atmosphere (oxygen, nitrogen or others). The resulting product exhibits no peel-off problems during unwinding of the take-up roller and greatly improved corrosion resistance.
    Type: Application
    Filed: October 25, 2006
    Publication date: July 19, 2007
    Applicant: Sigma Laboratories of Arizona, LLC
    Inventors: Angelo Yializis, Michael G. Mikhael
  • Patent number: 7229675
    Abstract: The invention relates to metallurgy and mechanical engineering, in particular to the development of methods for providing metallic pieces with protective coatings with a view to improving the performance characteristics thereof. In accordance with the inventive method, a multilayer coating is formed by combining and simultaneously or consecutively using of various technologies including ion-plasma evaporation diffusive metallization and controlled atmosphere thermal treatment. The obtained coatings possess superior characteristics with respect to overall properties and are used for gas turbine construction, in particular, for manufacturing gas turbine vanes of aircraft engines.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: June 12, 2007
    Inventors: Anatoly Nikolaevich Paderov, Jury Genrikhovich Vexler