Inorganic Matrix In Void-containing Component Patents (Class 428/312.2)
  • Patent number: 8361663
    Abstract: The porous carbon structure according to one embodiment of the present invention includes mesopores, and at least two kinds of macropores having different average pore diameters. The porous carbon structure includes inter-connected pores and thereby increases specific surface area and improves electronic conductivity.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 29, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soon-Ki Kang, Geun-Seok Chai, Myoung-Ki Min, Chan Kwak, Alexey Alexandrovichserov
  • Patent number: 8357454
    Abstract: A ceramic thermal barrier coating (TBC) (18) having first and second layers (20, 22), the second layer (22) having a lower thermal conductivity than the first layer for a given density. The second layer may be formed of a material with anisotropic crystal lattice structure. Voids (24) in at least the first layer (20) make the first layer less dense than the second layer. Grooves (28) are formed in the TBC (18) for thermal strain relief. The grooves may align with fluid streamlines over the TBC. Multiple layers (84, 86, 88) may have respective sets of grooves (90), Preferred failure planes parallel to the coating surface (30) may be formed at different depths (A1, A2, A3) in the thickness of the TBC to stimulate generation of a fresh surface when a portion of the coating fails by spalling. A dense top layer (92) may provide environmental and erosion resistance.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Anand A. Kulkarni, David J. Mitchell, Ramesh Subramanian, Andrew J. Burns
  • Publication number: 20130015001
    Abstract: Embodiments of the invention relate to a polycrystalline diamond compact. In an embodiment, the polycrystalline diamond compact includes a substrate and a polycrystalline diamond table including a first polycrystalline diamond layer bonded to the substrate and at least a second polycrystalline diamond layer. At least an un-leached portion of the polycrystalline diamond table includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less. The second polycrystalline diamond layer exhibits a second average diamond grain size that is less than a first average diamond grain size of the first polycrystalline diamond layer and/or the first polycrystalline diamond layer includes a tungsten-containing material therein.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 17, 2013
    Applicant: US SYNTHETIC CORPORATION
    Inventor: US SYNTHETIC CORPORATION
  • Patent number: 8349444
    Abstract: A utility material can include microparticles, an organic binder and an inorganic binder. The microparticles can be present in an amount from about 25 wt % to about 60 wt %, based on wet formulation. The inorganic binder can optionally include sodium silicate. The organic binder can optionally include a vinyl acetate. The utility material can be formed into a variety of different products or building materials, such as wallboard, shear panels. In addition, the building material may be particularly used to attenuate sound.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: January 8, 2013
    Assignee: Ashtech Industries, LLC
    Inventors: Michael D. Kipp, Michael D. Ridges, William T. McCarvill, Dilworth L. Pugh
  • Publication number: 20130004309
    Abstract: A material contains open pores in which the channels and pores that are internally coated with at least one layer of phosphorus-containing alumina. Such material is formed by infiltrating a porous material one or more times with a non-colloidal, low-viscosity liquid coating precursor, drying, and curing the coating precursor to form a phosphorus-containing alumina layer within pores of the material.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: Applied Thin Films, Inc.
    Inventors: Sankar Sambasivan, Vikram Sharad Kaul, Francis Richard Chapman
  • Patent number: 8309197
    Abstract: Devices, systems and methods for fabricating improved ceramic composite turbine shrouds with abradable seals are disclosed. A high temperature seal with an abradable coating is provided. The seal comprises a three-dimensional, high-density woven composite base structure recessed below the abradable coating, with loops incorporated in and protruding from the base structure. The abradable coating is integrally attached to the base structure via the loops. Additionally, a graded density seal is provided with a three-dimensional, low-density woven composite structure. The low-density structure is abradable. A three-dimensional, high-density woven composite base structure is recessed below the low-density structure, with the low-density structure integrally attached to the base structure via weaving.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: November 13, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Janet Davis, David Marshall, Olivier Sudre
  • Patent number: 8304502
    Abstract: Disclosed is a copolymer coordination compound including two or more kinds of complexes, and a method of preparing the same. Herein, each of the complexes includes an organic ligand and a metal ion, and the two or more kinds of complexes are arranged in a line in a regular or irregular order, and are coordinated to each other. Also, the disclosed copolymer coordination compound functions as a gelator in a solvent, and is formed into a gel.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: November 6, 2012
    Assignee: LG Chem, Ltd.
    Inventor: Sung Ho Yoon
  • Patent number: 8287982
    Abstract: The invention provides a knitted spacer fabric having a tightly knitted bottom layer, a more loosely knitted upper layer and pile yarns extending across the space between the lower and upper faces. Settable material, is introduced into the space between the upper and lower faces and can be caused to set by the addition of a liquid. Until set, the fabric is flexible and can be shaped but after the material in space has set, the fabric is rigid and can be used as a structural element in a wide range of situations.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: October 16, 2012
    Assignee: Concrete Canvas Limited
    Inventors: Peter Brewin, William Crawford
  • Publication number: 20120234695
    Abstract: A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 20, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Richard T. Mayes, Sheng Dai
  • Publication number: 20120211212
    Abstract: A heat sink using porous graphite having graphite particle-stacked porous graphite is provided. The heat sink may provide good heat conductivity and improve strength of carbon foam. Also, a manufacturing method of porous graphite is provided.
    Type: Application
    Filed: June 7, 2011
    Publication date: August 23, 2012
    Applicant: SHUOEN TECH CO., LTD.
    Inventors: Hsu-Tien HU, Jiun-Hsu Hsiao
  • Publication number: 20120207975
    Abstract: A building panel, a shingle and a flooring tile are all provided including a reticulated foam body having a weather resistant coating made from a material selected from a group consisting of a polymer, a ceramic glaze and mixtures thereof. In addition, a method of producing these products is also provided.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 16, 2012
    Applicant: THE UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventors: Rodney Andrews, Mark Meier, Thomas A. Golubic, Paul E. Yeary
  • Publication number: 20120201860
    Abstract: Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
    Type: Application
    Filed: May 11, 2010
    Publication date: August 9, 2012
    Inventors: Alan W. Weimer, Xinhua Liang, Jianhua Li, John L. Falconer, Miao Yu
  • Publication number: 20120186884
    Abstract: Polycrystalline compacts include a hard polycrystalline material comprising first and second regions. The first region comprises a first plurality of grains of hard material having a first average grain size, and a second plurality of grains of hard material having a second average grain size smaller than the first average grain size. The first region comprises catalyst material disposed in interstitial spaces between inter-bonded grains of hard material. Such interstitial spaces between grains of the hard material in the second region are at least substantially free of catalyst material. In some embodiments, the first region comprises a plurality of nanograins of the hard material. Cutting elements and earth-boring tools include such polycrystalline compacts.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Anthony A. DiGiovanni
  • Patent number: 8211539
    Abstract: A hydrogen separator comprising a porous substrate composed mainly of a ceramic having a large number of pores connecting from one surface of the substrate to other surface, and a hydrogen-separating layer made of a hydrogen permselective metal formed on the porous substrate via an intermediate layer made of an electron-conductive ceramic. The hydrogen separator hardly generates defects such as peeling, cracks or the like in the hydrogen-separating layer and is suitable for use even when the hydrogen separator is exposed to a heat cycle, used under high temperature conditions or/and used for long-term.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 3, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenichi Noda, Osamu Sakai
  • Publication number: 20120094096
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of chromium nitride layers and a plurality of copper-titanium alloy layers formed on the combining layer. The combining layer is a chromium layer. Each chromium nitride layer interleaves with one copper-titanium alloy layer. A method for making the coated article is also described.
    Type: Application
    Filed: July 25, 2011
    Publication date: April 19, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD .
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, CONG LI
  • Patent number: 8158247
    Abstract: Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 17, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Anthony K. Burrell, Thomas Mark McCleskey, Quanxi Jia, Eve Bauer, Alexander H. Mueller
  • Publication number: 20120077006
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Application
    Filed: March 18, 2011
    Publication date: March 29, 2012
    Inventors: Marcus A. WORSLEY, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, JR.
  • Publication number: 20120077109
    Abstract: The present invention relates to a ceramic porous substrate, a reinforced composite electrolyte membrane using the same, and a membrane-electrode assembly having the same. The ceramic porous substrate comprises: a porous polymer base; and void structures formed on the surface of the porous polymer base by linking the space of the inorganic nanoparticles using a polymer binder or a silane-based inorganic binder. The ceramic porous substrate has improved mechanical properties compared to the porous polymer substrate alone, and the void structures thereof can be controlled in various ways.
    Type: Application
    Filed: June 26, 2009
    Publication date: March 29, 2012
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Young Taik Hong, Jong Ho Choi, Kyung Seok Yoon, Sang Young Lee
  • Patent number: 8129016
    Abstract: A substrate supporting member includes: a plate-shaped ceramic body having a surface serving as a substrate supporting surface; a plate-shaped composite material body which is joined to a surface of the ceramic body opposite to the substrate supporting surface with a joint material interposed therebetween and the plate-shaped composite material body made of porous ceramic with pores filled with metal, the composite material body having a porosity of more than 0% and not more than 5%; and a metallic plate which is joined to a surface of the composite material body opposite to the surface joined to the ceramic body with a joint material interposed therebetween.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: March 6, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Kawajiri, Yasufumi Aihara, Tomoyuki Fujii
  • Patent number: 8119234
    Abstract: An aluminum titanate-based ceramic is provided having an anisotropic microstructure which includes the reaction products of a plurality of ceramic-forming precursors. The batch contains at least one precursor in fibrous form. The inorganic ceramic has low thermal expansion. Porous ceramic bodies and the method of manufacture are also provided.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 21, 2012
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose, James William Zimmermann
  • Publication number: 20120040139
    Abstract: The present invention relates to novel materials intended for being contacted with liquid silicon and having a multilayer architecture, the intermediate layer of which is formed by a silicon carbide matrix containing at least one carbon nodule. The invention also relates to the method for preparing said materials.
    Type: Application
    Filed: September 3, 2009
    Publication date: February 16, 2012
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Jean-Paul Garandet, Denis Camel, Beatrice Drevet, Nicolas Eustathopoulos, Rana Israel
  • Patent number: 8114509
    Abstract: A gas permeable membrane for the optical measurement of the partial pressure and/or the concentration of a gas species, the membrane comprises a porous light-transmissible membrane matrix containing a metal oxide, wherein the membrane matrix is at least partially charged with at least one gas-selective compound whose optical characteristics change upon an interaction with a corresponding gas species.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: February 14, 2012
    Assignees: Eidgenossische Technische Hochschule Zurich, Universidad De Granada
    Inventors: Ursula Spichiger-Keller, Stephan Spichiger, Jorge Fernando Fernandez-Sanchez
  • Patent number: 8114511
    Abstract: A composite porous membrane comprises a porous matrix and a polymer. The porous matrix contains a fiber woven fabric, a fiber nonwoven fabric, a porous metal material, or a porous inorganic material, and the polymer forms a three-dimensional network structure in the porous matrix. The composite porous membrane may be obtained by impregnating the porous matrix with a solution of the polymer, and by solidifying while stretching the polymer. Preferred examples of the porous matrix include glass fiber nonwoven fabrics, and preferred examples of the polymer include polybenzimidazoles.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 14, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hiroshi Akita
  • Patent number: 8110283
    Abstract: An article includes a membrane having pores and that is air permeable. A nanoparticle precursor is dispersed throughout the pores, and the nanoparticle precursor is responsive to a stimulus to form a catalytically active nanoparticle. An associated method is also provided.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 7, 2012
    Assignee: General Electric Company
    Inventors: Vishal Bansal, Benjamin Hale Winkler, Hieu Minh Duong, Tamaki Ryo
  • Patent number: 8101268
    Abstract: A method of fabricating a bone substitute material comprises the steps of providing a foam material (3) having an open cell structure, distorting the shape of the foam material (3) and holding the material in a distorted shape, coating the walls of the cells of the foam material with a ceramic slip (5), removing the foam material, and sintering the ceramic slip to form a bone substitute material that is approximately a positive image of the distorted foam material (3). In another method, a granular bone material is formed from a multiplicity of pieces of foam that are not distorted.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: January 24, 2012
    Assignee: University of Bath
    Inventors: Anthony William Miles, Irene Gladys Turner, Jonathan Paul Gittings
  • Patent number: 8097337
    Abstract: The present invention may provide a structure capable of obtaining a higher difference in refractive indices between that of a transparent material and that of a cavity, than in the past, and a manufacturing method thereof, and the present invention provides a structure having a transparent material and an internal cavity which is formed by irradiating said transparent material with a pulse laser beam having a pulse width of 10×10?12 seconds or less, and wherein refractive index of said transparent material at d line is nd?1.3.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: January 17, 2012
    Assignees: Ohara Inc., National University Corporation Hokkaido University
    Inventors: Tomohiro Hashimoto, Hiroaki Misawa
  • Patent number: 8097338
    Abstract: An in-mold label comprising an olefinic resin substrate layer (A) having a wetting index (?) of from 34 to 74 mN/m and a heat-sealable resin layer (B) with an antistatic layer having a wetting index (?) of from 30 to 54 mN/m, wherein the absolute value of the initial frictional charge voltage of the substrate layer (A) relative to a sheet offset printing blanket is from 0 kV to 15 kV. This label has good workability in printing, cutting and blanking even in a low-humidity environment.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: January 17, 2012
    Assignee: Yupo Corporation
    Inventors: Mitsuhiro Ashikaga, Naohide Ando, Yasuo Iwasa
  • Publication number: 20110318566
    Abstract: A structural insulated panel for use in a mine safe room, which includes a carbon foam core having a high ratio of compressive strength to density, desirable fire retardant properties, and resistance to environmental stress.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 29, 2011
    Inventors: Douglas J. Miller, Richard L. Shao, Mark Segger, Yevegiy P. Griffin
  • Patent number: 8057890
    Abstract: The surface of an aluminum alloy shaped product is covered with ultrafine recesses by being dipped in an eroding aqueous solution, or has formed thereon a metal oxide layer covered with the openings of ultrafine pores by anodizing. On the resin side, there is prepared a polyamide resin compounded with an impact resistance modifier, a mixture of an aliphatic polyamide and an aromatic polyamide, or a mixture of aromatic polyamides. The aluminum alloy shaped product is inserted into an injection mold, and a polyamide-type resin composition is injected onto the surface of the aluminum alloy shaped product, to manufacture an integrated composite.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 15, 2011
    Assignee: Taisei Plas Co., Ltd.
    Inventors: Makoto Iwahashi, Michiyuki Nakase, Masanori Naritomi, Naoki Andoh
  • Patent number: 8043694
    Abstract: Porous ceramic part comprising a porous ceramic foam having a total porosity of between 50 and 92% and an intergranular porosity of at least 5%, walls of at least some of the cells of the ceramic foam being at least partly covered with an impregnation material. The invention relates in particular to a recrystallized silicon carbide foam impregnated with silicon.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 25, 2011
    Assignee: Saint Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Christian Claude His, Franceline Villermaux, Nicolas Raffin, Michel Dussaulx
  • Patent number: 8034459
    Abstract: The present disclosure relates to a coating and a method of applying such coating that may include nanocrystals of a transition metal compound embedded in an amorphous phase or layered structure of transition metal compounds with an amorphous phase. The transition metal compound may be selected from the group consisting of metal nitrides, metal carbides, metal silicides and combinations thereof. The amorphous matrix may include a ceramic.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: October 11, 2011
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Edward Langa, James H. Arps, Christopher Rincon
  • Publication number: 20110214921
    Abstract: A polycrystalline diamond (PCD) material and method for making the PCD material are provided. The PCD so produced comprises a skeletal diamond structure formed of intergrown diamond grains and defines interstitial regions between the diamond grains. The skeletal diamond structure contains metal carbide structures or particles that are occluded from the interstitial regions by diamond.
    Type: Application
    Filed: August 21, 2009
    Publication date: September 8, 2011
    Inventor: Kaveshini Naidoo
  • Patent number: 7998569
    Abstract: A refractory metal composite article includes a refractory metal ceramic section and a refractory metal ceramic coating disposed directly adjacent to the refractory metal ceramic section. The refractory metal ceramic section and the refractory metal ceramic coating form a composite porous matrix. Each of the refractory metal ceramic section and the refractory metal ceramic coating includes at least one of a refractory metal carbide, a refractory metal silicide, or a refractory metal boride. A solid filler is disposed within pores of the composite porous matrix, and the solid filler is selected from a polymer material, a ceramic material, a metallic material, a glass material, and a glass ceramic material.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 16, 2011
    Assignee: United Technologies Corporation
    Inventor: Wayde R. Schmidt
  • Patent number: 7998571
    Abstract: A cementitious composite article incorporating a powder coating on at least one surface is provided. The composite article includes a surface treatment adapted to facilitate application of the powder coating onto the article. The surface treatment can include modifications to surface porosity, surface, and/or application of a sealer to the surface so as to make the cementitious surface more conducive to powder coating. One method of manufacturing the cementitious composite article includes first applying a sealer coating to a surface of a fiber cement substrate, partially curing the substrate to a gel-like state, applying a powder coating to the article, processing the article to a curing device in which the powder coating and sealer coating are co-cured to form a hardened film.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: August 16, 2011
    Assignee: James Hardie Technology Limited
    Inventors: David Lyons, Theresa Sukkar
  • Patent number: 7998568
    Abstract: The invention relates to a bioceramic coated apparatus and method of forming the same. The apparatus may be a medical implant such as, for example, an orthopedic implant or a dental implant. The bioceramic coating is designed to increase tissue and/or bone growth upon implantation of the apparatus. The apparatus has a valve metal substrate having a nanoporous valve metal oxide surface layer. The nanoporous surface layer contains a plurality of nanopores. The nanopores have adsorbed phosphate ions on at least their interior surfaces. A bioceramic coating is formed on the nanoporous surface and anchored into the nanopores. Optionally, the nanopores are formed into a tapered shape in order to increase adhesion to the bioceramic coating.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 16, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Krishnan Selva Raja, Manoranjan Misra, Archana Kar
  • Patent number: 7993740
    Abstract: A honeycomb structure includes a plurality of honeycomb fired bodies and an adhesive layer. The plurality of honeycomb fired body has a longitudinal direction and a plurality of cell walls extending along the longitudinal direction to define a plurality of cells. The adhesive layer is provided between the plurality of honeycomb fired bodies to connect the honeycomb fired bodies. Pore diameters of pores in the adhesive layer are about 300 ?m or less. A ratio of a total area of pores having a pore diameter of at least about 50 ?m and at most about 300 ?m and an aspect ratio of at least about 1 and at most about 1.5 in a cross-section perpendicular to the longitudinal direction to a total area of pores having a pore diameter of at least about 50 ?m and at most about 300 ?m is about 90% or more.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: August 9, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Masatoshi Okuda
  • Publication number: 20110135908
    Abstract: A method of forming a graphitic carbon body employs compression and resistance heating of a stock blend of a carbon material and a binder material. During molding of the body, resistance heating is accompanied by application of mechanical pressure to increase the density and carbonization of the resulting preform body. The preform can then be subjected to a graphitization temperature to form a graphite article.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Chong Chen, Philip D. Coleman, Charles Irsak, Greg E. Murray, James Joseph Pavlisin, Paul Stephen Sirocky
  • Patent number: 7947365
    Abstract: An electroconductive porous film high in the porosity and strong in the mechanical strength is provided. A mesoporous thin film of the invention, in which a crosslinking structure having a metal phosphate (M—POx) skeleton is arranged so as to surround periodically arranged pores, is formed by use of a process that includes: a step of preparing a precursor solution containing phosphoric acid and a surfactant; a step of supplying the precursor solution to a substrate to form a precursor thin film; a step of bringing vapor containing a metal into contact with the precursor thin film obtained in the forming the thin film; a step of reacting the vapor containing a metal and phosphoric acid to form a self-organized thin film; and a step of removing the surfactant from the self-organized thin film.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 24, 2011
    Assignees: Rohm Co., Ltd., Osaka University
    Inventors: Norikazu Nishiyama, Masaki Takaoka, Akira Kamisawa
  • Patent number: 7931960
    Abstract: The present invention relates to shaped bodies containing a metal-organic framework material (MOF) as well as a process for the preparation thereof and their use especially as catalyst or storage medium.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: April 26, 2011
    Assignees: BASF Aktiengesellschaft, The Regents of the University of Michigan
    Inventors: Michael Hesse, Ulrich Mueller, Omar Yaghi
  • Publication number: 20110091713
    Abstract: A composite panel, which includes a heat spreading layer and a carbon foam core having desirable fire retardant properties, and resistance to environmental stress. The composite panel can also include a first layer and a second layer bound to a first surface and second surface of the carbon foam core. Applications of the panel include structural and fire retardant elements of residential and commercial buildings, aircraft and watercraft.
    Type: Application
    Filed: November 30, 2006
    Publication date: April 21, 2011
    Inventors: Douglas J. Miller, Mark Segger, Yevgeniy Pavlovich Griffin
  • Publication number: 20110083908
    Abstract: Diamond bonded constructions comprise a diamond body attached to a substrate, wherein the body includes a first diamond bonded volume, and a second diamond bonded volume attached thereto. The second volume may be provided in the form of a powder or a presintered mass prior to attachment, and the first volume may be provided in the form of presintered pieces when combined with the second volume. The first volume diamond volume content is greater than about 94 percent, and is the same or greater than that of the second volume. The first volume is sintered during a first HPHT process, and the second volume is sintered and/or attached to the first volume during a second HPHT process. The first HPHT pressure is greater than the second HPHT pressure. The substrate is not an infiltration substrate used to form the first diamond volume. The diamond body may be thermally stable.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Yuelin Shen, Youhe Zhang
  • Patent number: 7923105
    Abstract: A hydrogen separator comprising a porous substrate composed mainly of a ceramic having a large number of pores connecting from one surface of the substrate to other surface, and a hydrogen-separating layer made of a hydrogen permselective metal formed on the porous substrate via an intermediate layer made of an electron-conductive ceramic. The hydrogen separator hardly generates defects such as peeling, cracks or the like in the hydrogen-separating layer and is suitable for use even when the hydrogen separator is exposed to a heat cycle, used under high temperature conditions or/and used for long-term.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: April 12, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Ken-ichi Noda, Osamu Sakai
  • Publication number: 20110076480
    Abstract: A coated article suitable for use at elevated temperature includes a metal substrate and a coating on the substrate. The coating includes a corrosion resistant particulate component having an average coefficient of thermal expansion (CTE) greater than alumina at 1200° F. (649° C.) dispersed in a binder matrix. An aspect ratio of at least a portion of the corrosion resistant particulate component is greater than about 2:1. The binder matrix includes a silicon-containing material and/or a phosphate-containing material.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Andrew Jay Skoog, Brian Thomas Hazel, Jane Ann Murphy
  • Patent number: 7914875
    Abstract: Hybrid membrane structures that include: an inorganic porous support that includes first and second ends, and a plurality of inner channels having surfaces defined by porous walls and extending through the support from the first to the second ends; optionally, one or more porous inorganic intermediate layers coating the inner channel surfaces; and a polymeric amine-containing membrane.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 29, 2011
    Assignee: Corning Incorporated
    Inventors: Dayue D Jiang, Wei Liu
  • Patent number: 7914915
    Abstract: A highly charged ion modified device is provided that includes a first metal layer or layers deposited on a substrate and an insulator layer, deposited on the first metal layer, including a plurality of holes therein produced by irradiation thereof with highly charged ions. The metal of a further metal layer, deposited on the insulator layer, fills the plurality of holes in the insulator layer.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 29, 2011
    Assignee: The United States of America as represented by the Secretary of the Commerce, The National Institutes of Standards and Technology
    Inventors: Joshua M. Pomeroy, Holger Grube, Andrew Perrella, Fern Slew, legal representative
  • Publication number: 20110031034
    Abstract: Polycrystalline compacts include hard polycrystalline materials comprising in situ nucleated smaller grains of hard material interspersed and inter-bonded with larger grains of hard material. The average size of the larger grains may be at least about 250 times greater than the average size of the in situ nucleated smaller grains. Methods of forming polycrystalline compacts include nucleating and catalyzing the formation of smaller grains of hard material in the presence of larger grains of hard material, and catalyzing the formation of inter-granular bonds between the grains of hard material. For example, nucleation particles may be mixed with larger diamond grains, a carbon source, and a catalyst. The mixture may be subjected to high temperature and high pressure to form in smaller diamond grains using the nucleation particles, the carbon source, and the catalyst, and to catalyze formation of diamond-to-diamond bonds between the smaller and larger diamond grains.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Anthony A. DiGiovanni, Danny E. Scott
  • Publication number: 20110024201
    Abstract: A polycrystalline diamond (PCD) composite compact element 100 comprising a substrate 130, a PCD structure 120 bonded to the substrate 130, and a bond material in the form of a bond layer 140 bonding the PCD structure 120 to the substrate 130; the PCD structure 120 being thermally stable and having a mean Young's modulus of at least about 800 GPa, the PCD structure 120 having an interstitial mean free path of at least about 0.05 microns and at most about 1.5 microns; the standard deviation of the mean free path being at least about 0.05 microns and at most about 1.5 microns. Embodiments of the PCD composite compact element may be for a tool for cutting, milling, grinding, drilling, earth boring, rock drilling or other abrasive applications, such as the cutting and machining of metal.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 3, 2011
    Inventors: Danny Eugene Scott, Kurtis Karl Schmitz, Clement David Van Der Riet, Antionette Can
  • Publication number: 20110017519
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, polycrystalline diamond compact (“PDC”) includes a PCD table having a maximum thickness. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. The PDC includes a substrate having an interfacial surface that is bonded to the PCD table. The interfacial surface exhibits a substantially planar topography. Other embodiments are directed to methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: January 21, 2010
    Publication date: January 27, 2011
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Publication number: 20110017921
    Abstract: The present invention relates to a transmission electron microscope grid including graphene sheet-carbon nanotube film composite. The graphene sheet-carbon nanotube film composite structure includes at least one carbon nanotube film structure and at least one graphene sheet. The carbon nanotube film structure includes at least one pore. The pore is covered by the graphene sheet.
    Type: Application
    Filed: November 12, 2009
    Publication date: January 27, 2011
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Kai-Li Jiang, Li-Na Zhang, Hao-Xu Zhang, Shou-Shan Fan
  • Patent number: 7875342
    Abstract: The invention relates to porous ceramic composites incorporating biodegradable polymers for use as a bone substitute in the fields of orthopedics and dentistry or as a scaffold for tissue engineering applications. The porous ceramic composite implant for connective tissue replacement comprises a porous ceramic matrix having a biodegradable polymer provided on internal and external surfaces of the ceramic matrix. The biodegradable polymer allows for the passage and/or delivery of a variety of agents throughout the porous ceramic matrix and improves mechanical properties of the implant in vivo.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: January 25, 2011
    Inventors: Timothy J. N. Smith, Hendry Jason, M. Pugh Sydney, Smith Reginald