Manifold Patents (Class 429/458)
  • Patent number: 8470491
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. An outlet is formed intermediate the first end and the second end. The outlet is adapted to deliver the reactant gas to a plurality of fuel cells of the fuel cell assembly, wherein the hollow insert delivers the reactant gas to the fuel cells in a substantially simultaneous and uniform manner.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel P. Miller, Anthony G. Chinnici, Steven G. Goebel, Daniel J. Darga, Gary M. Robb, Clipson M. Class
  • Publication number: 20130149631
    Abstract: A device for a solid oxide fuel cell or a solid oxide electrolysis cell includes an integral one-piece construction of a current collector and a manifold. The device eliminates the need for a brazing or thermal bonding process for joining the manifold with the current collector, and thus makes it possible to prevent breakdown of the junction formed between the manifold and the current collector, which can lead to gas leakage through the junction, and thus can be used for a long period of time.
    Type: Application
    Filed: August 15, 2012
    Publication date: June 13, 2013
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, Doo-Won Seo, In-Sub Han, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Patent number: 8460838
    Abstract: A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizont
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: June 11, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: James E. Gillett, Paolo R. Zafred, Matthew W. Riggle, Kevin P. Litzinger
  • Patent number: 8450025
    Abstract: A fuel cell system that enables an assisted anode purge upon start-up is provided. The fuel cell system includes a fuel cell stack having a plurality of fuel cells with anodes and cathodes. The fuel cell stack has an anode supply manifold and an anode exhaust manifold in fluid communication with the anodes. The fuel cell system further includes a suction device in fluid communication with at least one of the anode supply manifold and the anode exhaust manifold. The suction device adapted to selectively draw a partial vacuum on the fuel cell stack during a start-up of the fuel cell system. Methods for starting the fuel cell system are also provided.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: May 28, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Joe C. Machuca, Charles Mackintosh, Gary M. Robb, Steven G. Goebel
  • Publication number: 20130115541
    Abstract: A fuel cell is provided with a membrane electrode assembly provided with a frame, both of which are sandwiched between two separators. The fuel cell is configured such that reactive gas is circulated between the frame and the separators. The frame and both separators each have manifold holes, the rims of the manifold holes of frame extend into the manifold holes in the separators, and protrusions cover the inner peripheral surfaces of the manifold holes in at least one of the separators. This structure makes possible the easy and accurate position and integration of the separators and the frame, and fuel cell miniaturization can be achieved because space to position the protrusions is not needed.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 9, 2013
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Takanori Oku, Mitsutaka Abe, Shigetaka Uehara, Yasuhiro Numao
  • Patent number: 8435693
    Abstract: A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Kah-Young Song, Sang-Il Han, Jin-Hwa Lee, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Patent number: 8415062
    Abstract: A fuel cell system includes a fuel cell, a cathode supply passage, a cathode discharging passage, an anode supply passage, an anode discharging passage, a pair of cathode shutoff units, an anode shutoff unit, an anode discharging unit, a discharged gas processing unit, and a control unit. The control unit releases the sealing of the cathode passage by the pair of cathode shutoff units, at the time of start-up of the fuel cell system, and releases the sealing of the anode passage by the anode discharging unit, thereby performing a purge process to allow discharge of the anode gas.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: April 9, 2013
    Assignee: Honda Motor Co., Ltd
    Inventors: Kenichiro Ueda, Junji Uehara, Yuji Matsumoto
  • Patent number: 8415068
    Abstract: A coolant supply passage, a coolant discharge passage, and an air-releasing passage extend through first and second metal plates of a metal separator in a stacking direction of the first and second metal plates. The coolant supply passage and the coolant discharge passage are provided at vertically middle positions of opposite horizontal ends of the separator. A coolant flow field is connected between the coolant supply passage and the coolant discharge passage. The air-releasing passage for releasing air from the coolant flow field is formed above the coolant discharge passage. At least part of the air-releasing passage is positioned above the top of the coolant flow field.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: April 9, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Shuhei Goto
  • Publication number: 20130084511
    Abstract: A solid oxide fuel cell stack is disclosed. The solid oxide fuel cell stack may include a first fuel chamber, flow passage pipes, a unit cell, a second fuel chamber, a first oxidizer chamber, a second oxidizer chamber, and a stabilization chamber. The flow passage pipes are fluidly connected to a bottom end of the first fuel chamber. The unit cell, in which a bottom thereof is shielded, is formed to surround the flow passage pipes and forms the flow passage between the flow passage pipes and the unit cell. The second fuel chamber is fluidly connected to a top end of the unit cell and configured to discharge non-reaction gas from the unit cell. The stabilization chamber is formed between the second fuel chamber and the second oxidizer chamber.
    Type: Application
    Filed: July 17, 2012
    Publication date: April 4, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Duk-Hyoung Yoon, Sang-Jun Kong, Hyun Soh
  • Publication number: 20130078544
    Abstract: A fuel cell system for providing power to and leveraging waste heat from a consumer device, including a fuel cell stack that converts fuel to power at an operational temperature; a fuel source compartment that receives a fuel source that provides fuel to the fuel cell stack; an energy storage device; electrically connected to the fuel cell stack, that heats the fuel cell stack, receives power from the fuel cell stack, provides power to the device, and stores power from the fuel cell stack; and a thermal connection that directs waste heat from the device preferentially from the device to the fuel cell stack.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 28, 2013
    Applicant: ARDICA TECHNOLOGIES, INC.
    Inventor: ARDICA TECHNOLOGIES, INC.
  • Patent number: 8404395
    Abstract: A power generator comprises a hydrogen producing fuel, multiple fuel cells arranged in a ring, and a rotatable ring valve. Each fuel cell has a proton exchange membrane and an opening separating the hydrogen producing fuel from ambient. The rotatable ring valve has multiple openings corresponding to the openings of the fuels cells such that ambient water is controllably prevented from entering the fuel cell by rotation of the ring valve.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 26, 2013
    Assignee: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Publication number: 20130071698
    Abstract: The concepts relate to in-line shunting of fuel cells. In one case, a fuel cell stack can include multiple serially arranged cells. The multiple serially arranged cells can be compressed against one another and can be supplied by a fuel supply manifold that is integral and internal to the fuel cell stack. A power source can be electrically coupled with the fuel cell stack at a bus. A controller can be configured to shunt sub-sets of the fuel cell stack while the fuel cell stack continues to supply power to the bus.
    Type: Application
    Filed: May 22, 2012
    Publication date: March 21, 2013
    Applicant: RELION, INC.
    Inventors: Dinesh S. Yemul, William A. Fuglevand, Lijun Bai, Mark W. Grimes, David R. Lott, Scott A. Spink
  • Patent number: 8394547
    Abstract: A fuel cell assembly is disclosed that utilizes a water transport structure extending from fuel cell plates of the assembly into fuel cell assembly manifolds, wherein the water transport structure facilitates the transport of liquid water from the fuel cell plates thereby minimizing the accumulation of liquid water and ice in the fuel cell stack.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas W. Tighe, Jeffrey A. Rock, Thomas A. Trabold, Steven R. Falta
  • Publication number: 20130059222
    Abstract: A fuel cell stack (10) comprises a plurality of fuel cells each with a chamber (K) for electrolyte with at least one inlet and at least one outlet, and at least one header (30) to supply electrolyte to all the cells in parallel, and means (14) to collect electrolyte that has flowed through the cells. For each cell, the electrolyte outlets (34) feed into an electrolyte flow channel arranged such that in use there is a free surface of electrolyte within the electrolyte flow channel, the electrolyte flow channel being separate from the corresponding electrolyte flow channels for other cells, but such that the free surfaces of all the electrolyte flow channels are at a common pressure. Electrolyte is maintained at a constant depth in this open flow channel by a weir (38), and then flows over the weir to trickle or drip down the outside of the stack.
    Type: Application
    Filed: May 9, 2011
    Publication date: March 7, 2013
    Applicant: AFC ENERGY PLC
    Inventor: Martin Thomas
  • Patent number: 8389181
    Abstract: A fuel cell stack device that can suppress a damage to fuel cells is provided. A fuel cell stack device includes a fuel cell stack in which a plurality of columnar fuel cells are arranged upright, and are electrically connected via a current-collecting member interposed between adjacent fuel cells, fuel cells stack-supporting members disposed so as to hold the fuel cell stack via an end current-controlling member from both end sides, and a manifold that fixes lower ends of the fuel cells, and that supplies a reactant gas to the fuel cells. The fuel cell stack-supporting member has a lower end fixed to the manifold and is an elastically deformable member, and is disposed such that a fixed portion thereof fixed to the manifold is at a same or lower level than a fixed portion of the fuel cells.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: March 5, 2013
    Assignee: Kyocera Corporation
    Inventors: Yoshihide Ooshima, Norimitsu Fukami
  • Patent number: 8367265
    Abstract: A solid oxide fuel cell includes an anode layer, an electrolyte layer over the anode layer, and a cathode layer over the electrolyte layer. At least one of the anode layer and the cathode layer defines a gas manifold. The gas manifold includes a gas inlet, defined by an edge of the anode layer or cathode layer, a gas outlet, defined by the same or a different edge of the anode layer or cathode layer, and a plurality of gas flow channels in fluid communication with the gas inlet and gas outlet. The gas flow channels can have diameters that conduct flow of gas from the gas inlet at substantially equal flow rates among the gas flow channels.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: February 5, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: James A. Salvatore, Vignesh Rajamani, Abhijit Dutta
  • Publication number: 20130017470
    Abstract: A fuel cell system to be mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle. Cooling water is supplied from a cooling water inlet of a stack manifold, flows through a fuel cell stack, and returns to the stack manifold. A groove is formed on the rear surface side of the stack manifold, constituting, together with a terminal, a cooling water channel. The cooling water flows through the cooling water channel, and is discharged to the outside from a cooling water outlet. The cooling water channel is formed extending from the rear side to the front side of the vehicle, and warms an end plate. A pipe length of the cooling water channel to a radiator mounted in a front part of the vehicle is reduced.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yutaka HOTTA, Michitaro ITOGA, Makoto TAKEYAMA
  • Patent number: 8343681
    Abstract: Bipolar plates and a fuel cell stack having the bipolar plates. The fuel cell stack includes membrane electrode assemblies (MEAs), and first and second bipolar plates sequentially stacked between the MEAs. The bipolar plates include: flow channels formed on opposing surfaces thereof; four manifolds connected to the flow channels; and through holes to connect to the manifolds of the bipolar plates adjacent thereto.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jie Peng, Jae-young Shin, Seung-jae Lee, Tae-won Song
  • Patent number: 8338047
    Abstract: The present invention is a solid oxide fuel cell configuration which equalizes gas volume distributed into each power generation cell to stabilize fuel cell output and improve the output efficiency. In the present invention, a flat plate laminating type solid oxide fuel cell has a reactant gas supply manifold extending through a fuel cell stack in the laminating direction, for supplying reactant gas to each of power generation cells through gas passages of separators which are communicated with the manifold. The manifold and the passages of the separators are in communication with each other through a gas-flow throttle mechanisms.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: December 25, 2012
    Assignees: Mitsubishi Materials Corporation, Tha Kansai Electrical Power Co., Inc.
    Inventors: Takafumi Kotani, Naoya Murakami
  • Patent number: 8338049
    Abstract: A microfluidic system through which a solution of at least an oxidable compound is fed to a feed manifold of an energy converting electrochemical device includes a flow connector. The flow connector includes a silicon platform having a bottom side and an opposing top side, and through holes extending therethough. The silicon platform includes first and second channels defined on the bottom side for communicating with the through holes. The second channel forms an inlet for the feed manifold of the energy converting electrochemical device when the bottom side of the silicon platform is coupled to a flat coupling area of the device. A micropump module is coupled to the top side of the silicon platform for communicating with the through holes in the first and second channels. First and second supply cartridges are coupled to the top side of the silicon platform for communicating with the through holes in the first channel.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: December 25, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Giuseppe Emanuele Spoto, Roberta Giuffrida, Salvatore Leonardi, Salvatore Abbisso
  • Publication number: 20120315565
    Abstract: An interconnect for a fuel cell stack includes a first set of gas flow channels in a first portion of the interconnect, and a second set of gas flow channels in second portion of the interconnect.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 13, 2012
    Inventors: Dien Nguyen, Ian Russell, Matthias Gottmann, Deepak Bose, Darren Hickey, Stephen Couse
  • Patent number: 8323843
    Abstract: A fuel cell assembly having a terminal plate that is isolated from fluid flows passing to the fuel cell stack through manifolds is provided. A corrosion resistant member is positioned between the fuel cell stack and the terminal plate and sealingly engages with the manifold. The sealing engagement between the manifold and the corrosion resistant member prevents fluid flowing through the manifold to the fuel cell stack from contacting the terminal plate. Thus, a fuel cell assembly according to the present invention can be operated while preventing a fluid flow through the manifold from contacting the terminal plate.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen Raiser, Ralf Lerch
  • Patent number: 8323846
    Abstract: A fuel cell comprising a membrane-electrode assembly having an anode electrode face; an anode plate adjacent said membrane-electrode assembly electrode face and coupled thereto by a sealing gasket. The sealing gasket, electrode face and anode plate together define a fluid containment volume for delivery of anode fluid to the electrode face. A sheet of porous diffuser material is situated in the fluid containment volume and having at least one plenum defined between at least one lateral edge of the sheet of diffuser material and the sealing gasket. Fluid for delivery to an active surface of the membrane-electrode assembly may be delivered by the plenum and by diffusion through the diffuser material to such an extent that fluid flow channels in the anode plate are not required.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 4, 2012
    Assignee: Intelligent Energy Limited
    Inventor: Paul Alan Benson
  • Publication number: 20120288779
    Abstract: Fuel cell devices and fuel cell systems are provided. In certain embodiments, the fuel cell devices may include one or more active layers containing active cells that are connected electrically in series. In certain embodiments, the fuel cell devices include an elongate ceramic support structure the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis coextensive with the length. In certain embodiments, a reaction zone is positioned along a first portion of the length for heating to a reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating below the reaction temperature. There are one or more gas passages, each having an associated anode or cathode.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8304126
    Abstract: A fuel cell (A1) includes a cell stack (B) and a casing (210) for housing the cell stack (B), and is supplied with two reactant gases flowing separately from each other. The cell stack (B) includes a plurality of solid electrolyte fuel cell units (200) stacked on one another with inter-unit spaces provided therebetween. One of the reactant gases is supplied to the inter-unit spaces and used for power generation. The casing (210) includes a peripheral wall (222) surrounding the cell stack (B). The peripheral wall (222) is provided with at least one gas inlet opening (223) for introducing the one of the reactant gases into the inter-unit spaces and at least one gas outlet opening (224) for discharging the introduced reactant gas, wherein total opening width dimension of the gas inlet opening (223) is greater than total opening width dimension of the gas outlet opening (224).
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 6, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tatsuya Yaguchi, Yasushi Nakajima, Keiko Kushibiki, Shigeo Ibuka, Hirokazu Komatsu
  • Patent number: 8298715
    Abstract: There is realized a structure particularly suitable for inhibiting deformation of separators having a structure where the shapes of projections and recesses are inverted from each other on the front side and the back side of each separator as in a pressed metal separator. Between adjacent separators, there is formed either a power generation region where MEAs and frame members for holding at least a part of the MEAs are inserted or a refrigerant flow region where neither the MEAs nor the frame members are inserted. A deformation inhibiting region for inhibiting deformation of each separator is formed by a projection provided on the separator. Also, a projection for inhibiting the separator from deforming at the deformation inhibiting region or nearby is formed on each frame member. The projection is projected toward the back side of the deformation inhibiting region, where the deformation inhibiting region is a recess on the back side of the separator.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomokazu Hayashi, Yoshinori Yamamoto, Yuichi Yagami, Jiro Aizaki, Junichi Shirahama
  • Patent number: 8298716
    Abstract: In a process of manufacturing a membrane electrode assembly, seal-material flow holes (62a, 62b) in the form of through-holes are formed, separately from manifold holes (16a-16f), in the membrane electrode assembly prior to injection molding. When the membrane electrode assembly is placed in a mold for injection molding, the seal-material flow hole (62a) is located in a cavity (44a). When a seal material is supplied from a supply port (42) formed at a location where the manifold hole (16a) is formed, the seal material that flows toward the upper die (40a) passes the seal-material flow hole (62a) in the cavity (44a), and then flows toward the lower die (40b), so as to reduce the unevenness between the amounts of supply of the seal material to the upper die (40a) and the lower die (40b).
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoharu Sasaoka
  • Patent number: 8293424
    Abstract: The invention relates to a repeating unit for a fuel cell stack comprising a membrane electrode assembly and a flow field designed to supply an active surface of the membrane electrode assembly with gas and comprising at least a gas passage orifice. According to the invention it is contemplated that a gas-tight gas flow barrier is disposed between the active surface and the gas passage orifice so that gas passing through the first gas passage orifice flows around the gas flow barrier, wherein the projection of the gas flow barrier towards the periphery of the active surface is at least half as long as the projection of the gas passage orifice towards the periphery of the active surface.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 23, 2012
    Assignee: STAXERA GmbH
    Inventor: Andreas Reinert
  • Patent number: 8288051
    Abstract: A solid oxide fuel cell includes a separator which has a fuel gas passageway and an oxidant gas passageway thereinside, and a plurality of power generation cells arranged in a parallel connection state on the same plane. Each of the power generation cells has a solid electrolyte layer sandwiched between a fuel electrode layer and an oxidant electrode layer. The oxidant gas passageway may start at an edge portion of the separator, extend to a central portion of the separator at a position enclosed by the power generation cells, be divided at the central portion, and be introduced in a portion facing the respective oxidant electrode layer.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: October 16, 2012
    Assignees: Mitsubishi Materials Corporation, The Kansai Electric Power Co., Inc.
    Inventor: Jun Akikusa
  • Patent number: 8288052
    Abstract: An aspect of the present invention provides a fuel cell that includes, hollow structural bodies each provided with an internal space for reacting a fuel gas and an oxidant gas, each hollow structural body including, a separator having a perimeter wall section that follows along a rim, a cell plate having an electricity-generating cell having its outer perimeter joined to the separator such that a space for a gas to flow through is formed between the separator and the cell plate, a gas supply manifold to supply one of the reactant gases, a gas discharge manifold to discharge the reactant gas, and a gas introducing flow passage to introduce said reactant gas from the gas supply manifold to the perimeter wall section of the separator, wherein the reactant gas introduced into the gas introducing passage flows from the vicinity of the perimeter wall section of the separator to the gas discharge manifold.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: October 16, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Keiko Kushibiki, Fuminori Satou, Naoki Hara, Yasushi Nakajima, Shigeo Ibuka
  • Publication number: 20120237843
    Abstract: An electrochemical reactor, such as a fuel cell stack or an electrolyser, comprises: a stack (22) of electrochemical cells (25), each of which comprises at least one electrode plate (108-1) having one face in electrical contact with an electrolyte; at least one manifold (24) connected to said face of each of the cells in an exchange circuit, for exchanging a gas with the outside of the stack; a sensor (11) sensitive to the composition of said gas in the circuit; and at least one member for monitoring or for controlling an operational condition of this reactor in response to the measurements by said sensor. The stack (22) of cells and the manifold (24) form a one-piece reactor body (15) that comprises at least one chamber (20) integrated into this body in communication with said manifold. The gas composition sensor (11) is mounted in said one-piece body and comprises a sensitive unit (30) exposed directly to the in situ concentration of a component of said gas in said chamber (20).
    Type: Application
    Filed: September 24, 2010
    Publication date: September 20, 2012
    Inventor: Gino Paganelli
  • Patent number: 8268504
    Abstract: A planar fuel cell stack is provided. The planar fuel cell stack comprises an anode interconnect structure comprising a corrugated first internal manifold connected to a first anode flowfield; a cathode interconnect structure comprising a corrugated second internal manifold connected to a first cathode flowfield; and a thermally active, surface insulated metallic seal disposed between the corrugated parts of the anode and cathode interconnects, such that the thermally active metallic seal responds upon the application of heat to provide sealing between the anode interconnect structure and the cathode interconnect structure.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Shu Ching Quek, Andrew Philip Shapiro, Chandra Sekher Yerramalli, Michael Cheadle
  • Patent number: 8268503
    Abstract: In a fuel cell module, a first membrane electrode assembly is sandwiched between a first metal separator and a second metal separator, and a second membrane electrode assembly is sandwiched between the second metal separator and the third metal separator. An oxygen-containing gas distribution section connected to a first oxygen-containing gas flow field is formed between the first metal separator and the second metal separator. The second metal separator has holes connecting the oxygen-containing gas distribution section to a second oxygen-containing gas flow field.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 18, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentaro Ishida, Seiji Sugiura
  • Patent number: 8263284
    Abstract: A fluid cell fluid flow plate comprises: a fluid flow plate, having one face being a fluid flow face for receiving a reactive fluid and the other face being a non-active surface, provided with a first manifold, a second manifold, and a flow channel disposed on the fluid flow face; and a shell passageway piece, configured with parallel-disposed first face and second face that are connected to each other through a connecting face with at least one through hole provided thereon; wherein the flow channel being respectively connected to the first manifold through a first opening and to the second manifold through a second opening; and when the shell passageway piece and the fluid flow plate are combined, the first face contacts the fluid flow face, the second face contacts the non-active surface, and the first manifold communicates with the first opening by the through hole.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 11, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Chang Chen, Huan-Ruei Shiu, Shiqah-Ping Jung, Fanghei Tsau, Wen-Chen Chang
  • Patent number: 8257878
    Abstract: A semi-passive fuel cell system is provided. A stack in which a plurality of unit cells are laterally stacked with one another is provided. Each unit cell includes a membrane-electrode assembly and bipolar plates located on both sides of the membrane-electrode assembly. The membrane-electrode assembly includes an electrolyte membrane, a cathode electrode, and an anode electrode. The cathode and anode electrodes, respectively, are formed on each side of the electrolyte membrane. Also provided are a means for supplying fuel and a means for supplying air. Each of the bipolar plates has air paths formed on a surface facing the cathode electrode and extending from an upper end to a lower end of the bipolar plate. The air supply means includes ducts which are respectively installed on an upper end and a lower end of the stack, and includes a means for blowing air through the ducts.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: September 4, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Youngseung Na, Junwon Suh, Jeong Seob Shin
  • Patent number: 8247134
    Abstract: A fuel cell is provided. The fuel cell includes a medium member. Unit areas are formed at both sides of the medium member. The unit areas include outlets and inlets which allow a fuel to flow. First path members which have first flowpaths for circulating the fuel are disposed at the unit areas. Membrane-electrode assemblies are connected to the respective first path members. Second path members which have second flowpaths for circulating air are connected to the respective membrane-electrode assemblies.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: August 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-Jin An, Hee-Tak Kim, Seung-Shik Shin, Yeong-Chan Eun, Ho-Jin Kweon
  • Patent number: 8247128
    Abstract: A fuel cell includes electrolyte electrode assembly and separators. An annular member and a ring foil are provided between the separators. The annular member is provided around an outer circumferential portion of the electrolyte electrode assembly, and includes grooves for discharging a first exhaust gas FGoff which has been consumed at an anode to the outside of the electrolyte electrode assembly. The ring foil is provided adjacent to a cathode, and extends from a position between an outer end of the electrolyte electrode assembly to a position between the annular member and the separator.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideichi Yamamura, Tadashi Tsunoda
  • Patent number: 8247119
    Abstract: In a fuel cell system, a humidifier is attached to an end plate. A pipe connector of a fluid pipe provided at the end plate such as an oxygen-containing gas inlet manifold and a pipe connector of a fluid pipe of the humidifier such as a humidified air supply pipe are connected through a substantially ring-shaped intermediate pipe. O-rings are attached to annular grooves in the outer circumferential portions of the intermediate pipe. One of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the oxygen-containing gas inlet manifold, and the other of the O-rings tightly contacts the inner circumferential surface of the pipe connector of the humidified air supply pipe.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadashi Nishiyama, Yoshihito Kimura
  • Patent number: 8241816
    Abstract: A separator of a fuel cell stack, which has flat surfaces that face MEAs, includes a cathode-side plate, an anode-side plate and an intermediate plate. The intermediate plate has a plurality of oxidant gas supply channel openings that communicate with an oxidant gas supply manifold and oxidant gas supply holes of the cathode-side plate, and a plurality of oxidant gas exhaust channel openings that communicate with an oxidant gas exhaust manifold and oxidant gas exhaust holes of the anode-side plate. The width and spacing of the oxidant gas exhaust channel openings are set to be larger than those of the oxidant gas supply channel openings.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Sano, Yuichi Yagami, Takashi Kajiwara, Hiromichi Sato, Fumihiko Inui, Yoshifumi Ota, Syo Usami, Shinichi Matsumoto
  • Publication number: 20120202132
    Abstract: A device for minimizing a buoyancy driven convective flow inside a manifold of a fuel cell stack includes a plurality of spaced apart baffle walls. The spaced apart baffle walls are configured to be disposed inside the manifold of the fuel cell stack. The spaced apart baffle walls increase a viscous resistance to the buoyancy driven convective flow inside the manifold.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Todd D. Bogumil, Steven D. Burch, Steven G. Goebel, Eric J. Connor, Glenn W. Skala
  • Patent number: 8227131
    Abstract: A unit for use in a fuel cell stack, the unit comprising a porous metal support with a seal made by local fusion and-having a seal depth that extends from the upper surface of the porous metal support to at least the bottom surface of the porous metal support, and wherein the seal is positioned along the periphery of the porous metal support, the seal being impermeable to gas transported in the plane of the porous metal support.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 24, 2012
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Niels Erikstrup, Niels Christiansen, Haldor F. A. Topsøe
  • Patent number: 8227132
    Abstract: A direct liquid feed fuel cell stack includes a first end plate and a second end plate facing each other, and a plurality of unit cell modules mounted between the first end plate and the second end plate, wherein an electrical circuit that contacts terminals of the unit cell modules is formed on an inner surface of the first end plate.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: July 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-ho Kim, Kyoung Hwan Choi, Hye-Jung Cho
  • Patent number: 8227133
    Abstract: A fuel cell system that can dispose of an odorant through the use of a simple configuration and assure enhanced hydrogen safety. A hydrogenation device is positioned between a fuel tank and a fuel cell. The hydrogenation device incorporates a hydrogenation catalyst for hydrogenating the odorant.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Oshikawa, Hideo Naohara, Yoshifumi Hirao
  • Patent number: 8221936
    Abstract: A fuel cell system is provided which includes a mounting system for a manifold having a mounting plate. The fuel cell system also includes a fuel cell stack with a first end and a second end. The first end of the fuel cell stack includes at least one port in communication with the manifold. A clamping system is disposed on the second end of the fuel cell stack and is operable to engage the mounting plate of the manifold to couple the manifold to the fuel cell stack.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 17, 2012
    Inventors: Michael Duffield, Donald H. Keskula
  • Patent number: 8221933
    Abstract: A semi-passive fuel cell system is provided. A stack in which a plurality of unit cells are laterally stacked with one another is provided. Each unit cell includes a membrane-electrode assembly and bipolar plates located on both sides of the membrane-electrode assembly. The membrane-electrode assembly includes an electrolyte membrane, a cathode electrode, and an anode electrode. The cathode and anode electrodes, respectively, are formed on each side of the electrolyte membrane. Also provided are a means for supplying fuel and a means for supplying air. Each of the bipolar plates has air paths formed on a surface facing the cathode electrode and extending from an upper end to a lower end of the bipolar plate. The air supply means includes ducts which are respectively installed on an upper end and a lower end of the stack, and includes a means for blowing air through the ducts.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: July 17, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Youngseung Na, Junwon Suh, Jeong Seob Shin
  • Patent number: 8221935
    Abstract: A coolant inlet manifold for coolant supply passages is attached to an end plate of a fuel cell stack. Pillars are provided on at least one end of the coolant inlet manifold in a longitudinal direction thereof. The pillars are fitted into through holes formed in the end plate, and are connected to a manifold body and to a connector.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaharu Suzuki, Go Morimoto, Katsuhiko Kohyama, Ayumu Ishizuka
  • Patent number: 8211591
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane and a subgasket. The subgasket maximizing an operating life of the electrolyte membrane, militating against adverse effects of membrane expansion during use of the fuel cell and membrane shearing under unitized electrode assembly compression.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chad A. Dammar, Saurabh Vyas, Ronald L. James, Matthew J. Beutel
  • Patent number: 8211582
    Abstract: A fuel cell system includes a fuel cell body that includes a middle plate and an electricity generating unit that generates electricity by a reaction of air and fuel. The middle plate includes a plurality of unit sections, a supply passage formed inside the middle plate, a supply opening for supplying the fuel to the supply passage, a plurality of inlet openings formed on the unit sections, a discharge passage formed inside the middle plate, a plurality of outlet openings formed on the unit sections, and a discharge opening for discharging the fuel from the discharge passage. The fuel is supplied to the unit sections through the inlet openings, and the fuel discharged from the unit sections being discharged to the discharge passage through the outlet openings. In one embodiment, an opening area of an inlet opening become smaller as the inlet opening is located farther from the supply opening.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: July 3, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Inhyuk Son, Dongmyung Suh
  • Patent number: 8206869
    Abstract: An electrochemical fuel cell stack with integrated anode exhaust valves is disclosed, comprising a plurality of fuel cells, each fuel cell having an anode and at least one anode flow field channel, an anode exhaust manifold fluidly connected to the at least one anode flow field channel of each fuel cell, and a means for minimizing fluid backflow from the anode exhaust manifold into the anode flow field channels of the fuel cells. Methods for purging, and reducing fuel cell voltage variations within, the electrochemical fuel cell stack are also disclosed.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: June 26, 2012
    Assignee: Daimler AG
    Inventors: Emerson R Gallagher, Michael P Sexsmith, Russell H Barton
  • Publication number: 20120148932
    Abstract: Embodiments of the present invention relate to a fluid distribution system. The system may include one or more electrochemical cell layers, a bulk distribution manifold having an inlet, a cell layer feeding manifold in direct fluidic contact with the electrochemical cell layer and a separation layer that separates the bulk distribution manifold from the cell feeding manifold, providing at least two independent paths for fluid to flow from the bulk distribution manifold to the cell feeding manifold.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 14, 2012
    Applicants: Angstrom Power Incorporated
    Inventors: Gerard F. McLean, Joerg Zimmermann, Jeremy Schrooten, Paul Sobejko