Manifold Patents (Class 429/458)
  • Publication number: 20120141904
    Abstract: According to one embodiment of the invention a fuel cell device array monolith comprises at least three planar electrolyte sheets having two sides. The electrolyte sheets are situated adjacent to one another. At least one of the electrolyte sheets is supporting a plurality of anodes situated on one side of the electrolyte sheet; and plurality of cathodes situated on the other side of the electrolyte sheet. The electrolyte sheets are arranged such that the electrolyte sheets with a plurality of cathodes and anodes is situated between the other electrolyte sheets. The at least three electrolyte sheets are joined together by sintered fit, with no metal frames or bipolar plates situated therebetween.
    Type: Application
    Filed: June 24, 2010
    Publication date: June 7, 2012
    Applicant: Corning Incorporated
    Inventors: Michael E. Badding, William Joseph Bouton, Jacqueline Leslie Brown, Lanrik Kester, Scott Christopher Pollard, Patrick David Tepesch
  • Patent number: 8192887
    Abstract: A fuel cell has cell units and a manifold for uniformly supplying an anode fluid to each of the cell units. The manifold has a feed port through which an anode fluid is supplied, a first buffer section in fluid communication with the feed port for receiving the anode fluid and for reducing a flow rate of the anode fluid, a second buffer section in fluid communication with the first buffer section for receiving the anode fluid from the first buffer section at the reduced flow rate and for further reducing the flow rate of the anode fluid, and a block group formed of blocks spaced apart from one another to form flow channels in fluid communication with the second buffer section and through which the anode fluid at the further reduced flow rate flows. An array of fine openings is disposed in fluid communication with the cell units for receiving the anode fluid at the further reduced flow rate flowing through the flow channels so that the anode fluid is uniformly supplied to each of the cell units.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 5, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Toru Ozaki, Fumiharu Iwasaki, Kazutaka Yuzurihara, Takafumi Sarata, Tsuneaki Tamachi, Norimasa Yanase, Noboru Ishisone
  • Publication number: 20120135326
    Abstract: A fuel cell electric generator designed for back-up in the absence of network electricity supply. The generator comprises a fuel cell stack, means for supplying the stack with a first and a second reagent flow comprising, in turn, pressure reducing means, and a manifold body to communicate with the stack said first and second reagent flows and at least a flow of coolant fluid via a respective coolant loop. The manifold body comprises inside chambers for the mixing of said reagent flows with corresponding re-circulated product flows and a coolant fluid expansion chamber within which said pressure reducing means of said first and second reagent flows are positioned at least partially drowned by said coolant. Method for the start-up and shut-down of the generator, and a method for detecting the flooding of a fuel cell and a method for detecting the presence of gas leakages in the generator are also disclosed.
    Type: Application
    Filed: February 11, 2010
    Publication date: May 31, 2012
    Applicant: ELECTRO POWER SYSTEMS S.P.A.
    Inventors: Pierpaolo Cherchi, Luca Mercante, Andrea Musso, Dario Ceffa, Luisa Borello, Giuseppe Gianolio
  • Patent number: 8182956
    Abstract: A fuel cell stack includes a plurality of fuel cells, and a plurality of fuel delivery ports. Each of the plurality of fuel delivery ports is positioned on or in the fuel cell stack to provide fuel to a portion of the plurality fuel cells in each stack.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 22, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Darren Hickey, Matthias Gottmann
  • Publication number: 20120122008
    Abstract: The present invention provides a manifold insert having a plurality of distribution guides which reduce output voltage deviation due to flow instability between unit cells and prevent local flow instability of electrodes by stably distributing the flow of fluid (such as air, hydrogen, and coolant) supplied to a fuel cell stack, thereby maintaining a stable performance of the unit cells, and a fuel cell stack comprising the same.
    Type: Application
    Filed: May 9, 2011
    Publication date: May 17, 2012
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Haeng Jin Ko, Young Bum Kum, Gi Young Nam, Yun Seok Kim
  • Patent number: 8163433
    Abstract: A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: April 24, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Paolo R. Zafred, James E. Gillett
  • Patent number: 8158299
    Abstract: The invention relates to a bipolar plate for a fuel cell stack, which comprises at least a an anode-side sub-plate. An interior of the bipolar plate is enclosed by the sub-plates, with a fluid port area arranged having at least one fluid port, over which a fluid can be conveyed to the fluid channels. The fluid channels are arranged on at least one of the flat sides, as well as a manifold zone, over which the fluid can be distributed to its assigned fluid channels and an accumulation zone, over which the fluid can be carried away from the fluid channels to another fluid port area. At least one of the sub-plates has a uniform arrangement of raised support points in the manifold zone and/or accumulation zone. Apart from the peripherally situated support points, a negative support point of the same type is designed adjacent to each raised support point inside the manifold zone and/or the accumulation zone.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 17, 2012
    Assignee: Daimler AG
    Inventors: Felix Blank, Thomas Kunick, Markus Schudy
  • Patent number: 8153325
    Abstract: A first separator has an outlet side first connection channel connecting a first fuel gas flow field and a fuel gas discharge passage, and a second separator includes an outlet side second connection channel connecting a second fuel gas flow field and the fuel gas discharge passage. The outlet side first connection channel and the outlet side second connection channel include outer passages and outer passages arranged in the same plane formed by facing the first separator and the second separator. The outer passages and the outer passages are formed alternately and independently in the same plane.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaru Oda, Hiroto Chiba, Masahiro Mohri, Chikara Iwasawa, Narutoshi Sugita
  • Publication number: 20120077108
    Abstract: A fuel cell stack structure comprises a first end plate, a second end plate, a plurality of fuel cells stacked between the first end plate and the second end plate, a distributor positioned near the first end plate for distributing at least one fluid toward the stacked fuel cells, a manifold having a fluid channel therein to be in fluid connection with the distributor and with the stacked fuel cells for receiving the fluid from the distributor and supplying the fluid to the stacked fuel cells, and a channel separator disposed inside the manifold in the longitudinal direction of the stacked fuel cells to separate the fluid channel of the fluid to a first space closer to the stacked fuel cells and a second space far from the stacked fuel cells. With this structure, it is possible to improve performance and durability of the fuel cell stack by uniformly supplying a fluid to the stacked fuel cells.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 29, 2012
    Applicant: Hyundai Motor Company
    Inventor: Jongsung Kim
  • Patent number: 8142952
    Abstract: A fuel cell battery (2) has a structure in which a plurality of cells are stacked and in-series connected. The cells include a cell (15), and one or more cells (16) of a cell stack (11). Hydrogen that has entered the fuel cell battery (2) from a channel (12) is supplied to each cell through a supply manifold (13). After the amount of hydrogen needed for power generation is consumed, gas is discharged as a fuel off-gas into a discharge manifold (14), and then flows into the cell (15). This prevents impurities contained in the fuel off-gas from being accumulated in the cells (16), and causes the impurities to be accumulated in the cell (15). Thus, variations in the amount of power generation among the cells can be restrained in a fuel cell battery system that employs a dead-end method.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Ogawa, Kazunori Shibata
  • Patent number: 8133629
    Abstract: Embodiments of the present invention relate to a fluid distribution system. The system may include one or more electrochemical cell layers, a bulk distribution manifold having an inlet, a cell layer feeding manifold in direct fluidic contact with the electrochemical cell layer and a separation layer that separates the bulk distribution manifold from the cell feeding manifold, providing at least two independent paths for fluid to flow from the bulk distribution manifold to the cell feeding manifold.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: March 13, 2012
    Assignee: Société BIC
    Inventors: Gerard F McLean, Joerg Zimmermann, Jeremy Schrooten, Paul Sobejko
  • Patent number: 8129066
    Abstract: This invention provides a fuel battery comprising a solid polymer electrolyte membrane, an anode-side catalyst body and a cathode-side catalyst body disposed respectively on both sides of the solid polymer electrolyte membrane, and a fuel guide part in which the anode-side catalyst body is disposed opposite to the anode-side catalyst body on the opposite side where the anode-side catalyst body faces the solid polymer electrolyte membrane and which guides a fuel which has been externally supplied toward the center of the face of the anode-side catalyst body.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 6, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Toru Ozaki, Fumiharu Iwasaki, Kazutaka Yuzurihara, Tsuneaki Tamachi, Takafumi Sarata, Norimasa Yanase
  • Publication number: 20120034544
    Abstract: A fuel cell arrangement (1) comprising a number of fuel cell stacks (2) formed by planar fuel cells, the stacks being arranged one after the other, each of which being provided with a gas connection for the inlet and exhaust flows of the gas of the anode and the cathode side. The fuel cell stacks (2) are arranged together positioned over a fastening plane element (3) by means of an end piece (5) and the fastening plane element (3) and tie bars (6) connecting them. The gas connection comprises anode and cathode side conduits arranged on the first surface (2.1) of each fuel cell stack. The arrangement comprises at least two consecutive fuel cell stacks (2) the anode and cathode side conduits of which are in connection with a common inlet and collector piece (4.1, 4.2) located between the said two consecutive fuel cell stacks (2) against the said first surfaces.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 9, 2012
    Inventor: Timo Mahlanen
  • Patent number: 8101314
    Abstract: A separator (41) for use in a fuel cell stack has an anode facing plate (44), a cathode facing plate (42), and an intermediate plate (45). The intermediate plate (45) has an air supply through-hole (452a), an air discharge through-hole (452b), a hydrogen supply through-hole (454a), and a hydrogen discharge through-hole (454b). The intermediate plate (45) also has through-holes (452c1, 452d1, 452e1, and 452f1). The air supply through-hole (452a) is in communication with the through-hole (452c1), the air discharge through-hole (452b) with the through-hole (452d1), the hydrogen supply through-hole (454a) with the through-hole (452e1), and the hydrogen discharge through-hole (454b) with the through-hole (452f1), respectively via communication passages (452c2, 452d2, 452e2, and 452f2) formed in the intermediate plate (45).
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: January 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Okabe
  • Patent number: 8097378
    Abstract: A fuel cell system comprises a first fuel cell stack having a first end plate, wherein the first end plate has a first opening, and a fuel cell component having a second opening. An adapter connects the first opening in the first end plate and the second opening in the fuel cell component. The adapter comprises a hollow tube. At least one of the first and second openings is located in a first groove. At least a first portion of the adapter is located in the first groove such that there is a passage from the first opening to the second opening through an interior of the hollow tube.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: January 17, 2012
    Assignee: Bloom Energy Corporation
    Inventor: Matthias Gottmann
  • Patent number: 8076039
    Abstract: In a fuel cell stack, an inlet fuel distributor (15, 31, 31a, 31b) comprises a plurality of fuel distributing passageways (17-23, 40-47, 64) of substantially equal length and equal flow cross section to uniformly distribute fuel cell inlet fuel from a fuel supply conduit (13, 14, 50) to a fuel inlet manifold (28). The conduits may be either channels (40-47; 64) formed within a plate (39) or tubes (17-23). The channels may have single exits (65) or double exits (52, 53) into the fuel inlet manifold.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: December 13, 2011
    Assignee: UTC Power Corporation
    Inventors: John H. Whiton, Yu Wang, Carl A. Reiser, George S. Hirko, Jr.
  • Publication number: 20110300458
    Abstract: A fuel cell assembly includes a fuel cell configuration having a solid electrolyte-based fuel cell with terminal contacts tapping an electrical voltage from the fuel cell configuration between which the fuel cell is disposed. An assembly has an electrically conductive component and another component disposed between a first terminal contact and the electrically conductive component on the side of the first terminal contact away from the fuel cell and has a lower electrical conductivity than that thereof. A supply duct transports a fluid medium connecting the first terminal contact to the electrically conductive component through the other component. The electrically conductive component is connected to the first terminal contact and/or a voltage supply adjusting an electrical potential on the electrically conductive component to an electrical potential on the first terminal contact. There is a maximum potential difference of 3 volts between the electrically conductive component and the first terminal contact.
    Type: Application
    Filed: January 27, 2010
    Publication date: December 8, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Dieter Illner, Josef Lersch, Arno Mattejat, Walter Stuehler, Franco Tardivo, Ottmar Voitlein
  • Patent number: 8071251
    Abstract: The present invention relates to fuel cell modules. The fuel cell module includes a housing that contains a plurality of fuel cell elements called unicells. Each unicell comprises a plurality of microcells. The housing is divided into a plurality of housing sections. A compressible bulkhead disposed between two adjacent housing sections and has a plurality of holes formed therein to allow respective unicells to pass through the bulkhead. A clamp element compresses the bulkhead to form a gas-tight seal between said bulkhead and the unicells.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 6, 2011
    Assignee: Microcell Corporation
    Inventors: Raymond R. Eshraghi, John Peter Cavaroc, Mack Lester Nance, Jr.
  • Patent number: 8062806
    Abstract: The invention relates to a fuel cell consisting of a stack of elementary cells and interconnectors (7) and comprising a single vertical seal (2) which is placed around the stack thus formed. The aforementioned assembly is preferably equipped with a containment tube (1) which is placed around the vertical seal (2). Supply channels (11 and 12) in the interconnectors and lateral inlet and outlet (13 and 14) holes can be used to supply distribution channels (9 and 10) which are positioned against the electrodes of each elementary cell. The invention is suitable for SOFC-type fuel cells.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: November 22, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Luc Bianchi, David Guenadou, Laure Cornilleau, Séchel Methout
  • Patent number: 8062798
    Abstract: A fuel cell generator including a housing defining a plurality of chambers including a generator chamber having first and second generator sections. A plurality of elongated fuel cells extend through the first and second generator sections. An oxidant supply supplies oxidant to at least one of the chambers within the housing in order to provide oxidant to one end of each of the fuel cells. A fuel distribution plenum extends transversely to the elongated fuel cells and is located between the first and second generator sections. The fuel distribution plenum distributes fuel to the first and second generator sections in opposing directions within the generator chamber.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: November 22, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Robert Draper, Paolo R. Zafred, James E. Gillett, Arun K. S. Iyengar, Raymond A. George, Gianfranco DiGiuseppe
  • Publication number: 20110281194
    Abstract: A heat-resistant alloy capable of effectively suppressing diffusion of Cr, as well as an alloy member for a fuel cell, a fuel cell stack device, a fuel cell module and a fuel cell device are provided. A heat-resistant alloy includes a Cr-containing alloy, and a Cr-diffusion suppression layer located on at least a part of a surface of the Cr-containing alloy, the Cr-diffusion suppression layer being made by laminating a first layer that contains a Zn-containing oxide and a second layer that does not contain ZnO but contains an (La, Sr)MnO3-based perovskite oxide in that order, so that it is possible to effectively suppress diffusion of Cr. By using the heat-resistant alloy for an alloy member for a fuel cell, a fuel cell stack device, a fuel cell module and a fuel cell device each having improved reliability can be obtained.
    Type: Application
    Filed: January 25, 2010
    Publication date: November 17, 2011
    Applicant: KYOCERA CORPORATION
    Inventors: Masahiko Higashi, Tetsurou Fujimoto, Norimitsu Fukami, Kenji Shimazu
  • Patent number: 8057955
    Abstract: A caulk is provided for use in a fuel cell system having an externally manifolded fuel cell stack, forming a gas seal between a manifold gasket and the stack face. The caulk is formed of a ceramic material and a binder formed into a paste.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 15, 2011
    Assignee: FuelCell Energy, Inc.
    Inventors: Dana A. Kelley, Chao-Yi Yuh, Mohammad Farooque
  • Patent number: 8057942
    Abstract: A fuel cell system that enables an assisted anode purge upon start-up is provided. The fuel cell system includes a fuel cell stack having a plurality of fuel cells with anodes and cathodes. The fuel cell stack has an anode supply manifold and an anode exhaust manifold in fluid communication with the anodes. The fuel cell system further includes a suction device in fluid communication with at least one of the anode supply manifold and the anode exhaust manifold. The suction device adapted to selectively draw a partial vacuum on the fuel cell stack during a start-up of the fuel cell system. Methods for starting the fuel cell system are also provided.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Joe C. Machuca, Charles Mackintosh, Gary M. Robb, Steven G. Goebel
  • Patent number: 8053125
    Abstract: A first seal member is formed integrally on both surfaces of a first metal plate. The first seal member is integrally formed on a cooling surface of the first metal plate, except a region corresponding to a reaction surface facing an electrode reaction surface, and except regions of inlet buffers and outlet buffers. The first seal member has an expansion. The position of an end surface of the expansion substantially matches the position of a wall surface of the outermost groove of a coolant flow field to prevent the flow of a coolant around the electrode reaction surface.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: November 8, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takaki Nakagawa, Takahiro Yoshida, Hiroyuki Tanaka, Takashi Kosaka
  • Publication number: 20110269052
    Abstract: A fuel cell system is disclosed comprising a plurality of fuel cell modules including a sealed planar fuel cell stack, the stack including internal manifold channels for transport of fuel and air to fuel cells within the stack and transport of tail gas and spent air away from fuel cells within the stack. Each of the fuel cell stacks is mounted on a stack footprint area of a top member of a base manifold. The base manifolds are configured to allow for interconnection of a number of fuel cell stack modules to provide a fuel cell system capable of producing power outputs that otherwise would have required large surface area cells or stack with a large number of cells.
    Type: Application
    Filed: May 27, 2010
    Publication date: November 3, 2011
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Karl J. Haltiner, JR., Charles J. Badura
  • Patent number: 8039170
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) and at least one bipolar plate having an anode-side gas distributor structure for distributing anode reactants, a cathode-side gas distributor structure for distributing cathode reactants, and a guide passage structure for distributing a cooling medium. At least one of the anode-side gas distributor structure and the cathode-side gas distributor structure is divided into at least a first field and a second field, each of the first and second fields having an entry port and an exit port for the reactants. In addition, a method for such a fuel cell includes passing a reactant into an entry port of the first field and out of an exit port of the first field, mixing the reactant with a fresh reactant so as to form a mixture, and passing the mixture into the entry port of the second field.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 18, 2011
    Assignee: Daimler AG
    Inventors: Felix Blank, Cosmas Heller
  • Patent number: 8034506
    Abstract: A fuel gas flow field is formed on a surface of a rectangular first metal separator. The fuel gas flow field includes flow grooves extending in the direction of gravity. An outlet buffer is provided at a lower end of the fuel gas flow field. The outlet buffer includes an inclined surface inclined toward a fuel gas discharge passage. The fuel gas discharge passage is positioned below the outlet buffer. Outlet channel grooves are formed by ridges provided between the fuel gas discharge passage and the outlet buffer. Lower ends of the ridges are arranged in a zigzag pattern.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: October 11, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideaki Kikuchi, Narutoshi Sugita, Norimasa Kawagoe, Masaru Oda, Takashi Kosaka, Takeshi Banba, Yasuhiro Watanabe
  • Patent number: 8026013
    Abstract: A fuel cell unit includes a plurality of angularly spaced fuel cell stacks arranged to form a ring-shaped structure about a central axis, each of the fuel cell stacks having a stacking direction extending parallel to the central axis. The fuel cell unit also includes an annular cathode feed manifold surrounding the fuel cell stacks to deliver a cathode feed flow thereto, a plurality of baffles extending parallel to the central axis, each of the baffles located between an adjacent pair of the fuel cell stacks to direct a cathode feed flow from the annular cathode feed manifold and radially inwardly through the adjacent pair, and an annular cathode exhaust manifold surrounded by the fuel cell stacks to receive a cathode exhaust flow therefrom.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 27, 2011
    Assignee: Modine Manufacturing Company
    Inventors: Jeroen Valensa, Michael J. Reinke, Mark G. Voss
  • Publication number: 20110223513
    Abstract: A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. An outlet is formed intermediate the first end and the second end. The outlet is adapted to deliver the reactant gas to a plurality of fuel cells of the fuel cell assembly, wherein the hollow insert delivers the reactant gas to the fuel cells in a substantially simultaneous and uniform manner.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Daniel P. Miller, Anthony G. Chinnici, Steven G. Goebel, Daniel J. Darga, Gary M. Robb, Clipson M. Class
  • Patent number: 8017279
    Abstract: A fluid flow field plate for use in a fuel cell, the plate comprising a first plurality of channels formed in a first surface thereof and extending across the first surface in a predetermined pattern, the plate having a folded region along a lateral edge, the folded region comprising a plenum and an interface region, the plenum having a longitudinal axis substantially parallel to an edge of the plate, the interface region comprising two adjacent and facing portions of the first surface.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: September 13, 2011
    Assignee: Intelligent Energy Limited
    Inventor: Peter David Hood
  • Patent number: 8012646
    Abstract: The durability of a polymer electrolyte fuel cell is very significantly improved by using a tightening pressure of about 2 to 4 kgf/cm2 of area of electrode; or a tightening pressure of about 4 to 8 kgf/cm2 of contact area between electrode and separator plate; or by selecting a value not exceeding about 1.5 mS/cm2 for the short-circuit conductivity attributed to the DC resistance component in each unit cell; or by selecting a value not exceeding about 3 mA/cm2 for the hydrogen leak current per area of electrode of each MEA. Further, in a method of manufacturing or an inspection method for a polymer electrolyte fuel cell stack, fuel cells having high durability can be efficiently manufactured by removing such MEAs or unit cells using such MEAs or such cell stacks having short-circuit conductivity values and/or hydrogen leak current values exceeding predetermined values, respectively.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: September 6, 2011
    Assignee: Panasonic Corporation
    Inventors: Kazuhito Hatoh, Hiroki Kusakabe, Hideo Ohara, Susumu Kobayashi, Nobuhiro Hase, Shinsuke Takeguchi, Teruhisa Kanbara
  • Patent number: 7998636
    Abstract: A fuel cell stack comprising: a cell stack body having stacked single cells and a manifold for supplying or discharging a fluid to the stacked single cells, the single cell including a membrane electrode assembly and a separator sandwiching the membrane electrode assembly; an end plate stacked onto the cell stack body and having a through-hole along the stacking direction of the cell stack body; and a fluid tube body inserted detachably into the through-hole so as to pass through the end plate, the fluid tube body being connected to the manifold, wherein a part of the outer surface of the fluid tube body opposite to the inner surface of the through-hole is separated from the inner surface of the through-hole.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 16, 2011
    Assignee: Panasonic Corporation
    Inventors: Toshihiro Matsumoto, Yoko Yamamoto, Takashi Morimoto, Mitsuo Yoshimura, Kenji Arai, Yoshiki Nagao
  • Patent number: 7993790
    Abstract: A fuel cell, which can increase a ratio of an area of a power generation region to an area of a fuel cell unit to increase power per unit volume and unit weight of a fuel cell. The fuel cell includes an oxidizer electrode surrounding member provided at four corners of the fuel cell unit to incorporate atmospheric oxygen through an oxidizer intake formed at a gap of the oxidizer electrode surrounding member. The fuel cell further includes a through-hole which serves as a hydrogen gas supply path for each fuel cell unit and fastens the fuel cell units in a stacking direction formed inside the oxidizer electrode surrounding member. By aligning through-holes of end plates, separator, and fuel electrode seals with each other and by allowing a stack fastening component to penetrate through the through-holes, the whole is pressed and urged to be assembled.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuyuki Ueda
  • Publication number: 20110183229
    Abstract: A fuel cell arrangement comprising a number of fuel cell stacks (17, 17?) consisting of planar fuel cells, the stacks being arranged one after the other, each of which being provided with a gas connection for the inlet and outlet flows of the gas of the anode and the cathode side. The fuel cell stacks (17, 17?) are arranged as a tower on a fastening plane element (2, 2?) acting as a load-bearing structure, the tower being supported by means of an end piece (19, 19?) arranged at the end opposite to the fastening plane element (2, 2?) of the tower and by tie bars (11, 11?) connecting the fastening plane element and the end piece. The fastening plane element (2, 2?) is provided with inlet and exhaust flow channels for both anode and cathode side gas, the channels being connected to the common anode and cathode side gas tubes (6, 6?; 7, 7?) of the tower arranged in connection with the tower for arranging the gas connection of the fuel cell stacks.
    Type: Application
    Filed: October 15, 2009
    Publication date: July 28, 2011
    Inventors: Erkko Fontell, Timo Mahlanen, Petri Hossi, Peik Jansson
  • Patent number: 7981560
    Abstract: A MEMS-based fuel cell has a substrate, an electrolyte in contact with the substrate, a cathode in contact with the electrolyte, an anode spaced apart from the cathode and in contact with the electrolyte, and an integral manifold for supplying either a fuel or an oxidant or both together, the integral manifold extending over at least a portion of the electrolyte and over at least one of the anode and cathode. Methods for making and using arrays of the fuel cells are disclosed.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 19, 2011
    Assignee: Eveready Battery Company, Inc.
    Inventors: Daniel A Kearl, David Champion, Gregory S Herman, Richard B. Peterson
  • Patent number: 7972740
    Abstract: To mitigate bubble blockage in water passageways (78, 85), in or near reactant gas flow field plates (74, 81) of fuel cells (38), passageways are configured with (a) cross sections having intersecting polygons or other shapes, obtuse angles including triangles and trapezoids, or (b) hydrophobic surfaces (111), or (c) differing adjacent channels (127, 128), or (d) water permeable layers (93, 115, 116, 119) adjacent to water channels or hydrophobic/hydrophilic layers (114, 120), or (e) diverging channels (152).
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 5, 2011
    Assignee: UTC Power Corporation
    Inventors: Robert M. Darling, Evan C. Rege, Ryan J. Balliet, Jeremy P. Meyers, Craig E. Evans, Thomas D. Jarvi, Sitaram Ramaswamy
  • Patent number: 7972748
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) and at least one bipolar plate having an anode-side gas distributor structure for distributing anode reactants, a cathode-side gas distributor structure for distributing cathode reactants, and a guide passage structure for distributing a cooling medium. At least one of the anode-side gas distributor structure and the cathode-side gas distributor structure is divided into at least a first field and a second field, each of the first and second fields having an entry port and an exit port for the reactants. In addition, a method for such a fuel cell includes passing a reactant into an entry port of the first field and out of an exit port of the first field, mixing the reactant with a fresh reactant so as to form a mixture, and passing the mixture into the entry port of the second field.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: July 5, 2011
    Assignee: Daimler AG
    Inventors: Felix Blank, Cosmas Heller
  • Patent number: 7968244
    Abstract: A fuel supply manifold assembly (20) comprising a manifold (40), one or more supply inlet connections (42), pressure readers (44, 46), a manual turnoff (50), pressure-reducing devices (52,54), a pressure-relieving device (56), a flow-control device (60), and a delivery outlet port (62). The manifold (40) defines a flow path from the supply inlet connection(s) (42) to the delivery outlet port (62). The flow path passes through the pressure readers (44, 46), the manual turnoff (50), pressure-reducing devices (52,54), the pressure-relieving device (56), the flow-control device (60). When installing the fuel supply manifold assembly (20) at a fuel cell site, one inlet connection for each fuel source and one outlet connection is required. No separate connections, tubing, hoses, or other plumbing is required to integrate other the components into the fuel flow path to the anode side of the fuel cell stack.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: June 28, 2011
    Assignee: Parker-Hannifin Corporation
    Inventor: Bryan L. Alfano
  • Patent number: 7964318
    Abstract: There is provided a coolant manifold that is installed to a fuel cell stack so as to distribute coolant through the fuel cell stack, which is constituted by stacking a plurality of unit cells and has more than one communication holes for coolant supply and at least one communication hole for coolant discharge, in which the coolant flows in an order from the communication holes for coolant supply through a plurality of the unit cells to the communication hole for coolant discharge. The coolant manifold includes a manifold body having a manifold chamber that extends along an alignment direction of the communication holes for coolant supply, and an external communication part having an external communication hole for communicating the manifold chamber with external. A center axis of the external communication hole is placed unparallel and non-vertical relative to a center axis of each communication hole for coolant supply.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: June 21, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaharu Suzuki, Hideaki Kikuchi, Katsuhiko Kohyama
  • Patent number: 7960066
    Abstract: There is provided a fuel cell system including a supply port, a supply-side main flow path, a discharge-side main flow path, a plurality of branch flow paths, and a discharge port, wherein with respect to each of the branch flow paths, the magnitudes of flow path resistances of predetermined portions of the flow paths satisfy specified mutual relationships. Thereby, a fuel cell system is provided that can effectively expel impurity gas that resides/accumulates in a power generation cell, even at a small flow rate of low-pressure hydrogen gas.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 14, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toru Nakakubo
  • Patent number: 7951509
    Abstract: A solid oxide fuel cell stack includes a plurality of solid oxide fuel cells, wherein each solid oxide fuel cell comprises an electrolyte located between an anode electrode and a cathode electrode, a plurality of gas separators, and at least one compliant cathode contact material. The contact material may be a metallic felt, foam or mesh, an electrically conductive glass or an electrically conductive ceramic felt located between at least one of the plurality of gas separators and a cathode electrode of an adjacent solid oxide fuel cell.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: May 31, 2011
    Assignee: Bloom Energy Corporation
    Inventors: Mark Cassidy, Stephen Couse
  • Publication number: 20110123892
    Abstract: A solid oxide fuel cell, solid oxide electrolyzer, and associated interconnect structure is disclosed for use in solid oxide electrolytic devices that use chrome-containing components, such as solid oxide fuel cells and solid oxide oxygen-generators. The invention provides a reliable and durable interconnect for both structural and electrical components of such devices. In general, the interconnect structure relies on a dual-layer, high-temperature seal which provides an effective diffusion barrier for both chrome and oxygen. As a result of the described interconnect, corrosion or loss in electrical conductivity in such solid oxide electrolytic devices is avoided. Also, a novel structure for such solid oxide electrolytic devices is disclosed, which provides an economical and high-integrity structure that utilizes the disclosed interconnect structure.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventor: Donald Bennett Hilliard
  • Patent number: 7935452
    Abstract: The present invention relates to fuel cells and components used within a fuel cell. Heat transfer appendages are described that improve fuel cell thermal management. Each heat transfer appendage is arranged on an external portion of a bi-polar plate and permits conductive heat transfer between inner portions of the bi-polar plate and outer portions of the bi-polar plate proximate to the appendage. The heat transfer appendage may be used for heating or cooling inner portions of a fuel cell stack. Improved thermal management provided by cooling the heat transfer appendages also permits new channel field designs that distribute the reactant gases to a membrane electrode assembly. Flow buffers are described that improve delivery of reactant gases and removal of reaction products. Single plate bi-polar plates may also include staggered channel designs that reduce the thickness of the single plate.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 3, 2011
    Assignee: UltraCell Corporation
    Inventor: Ian W. Kaye
  • Patent number: 7923162
    Abstract: A fuel cell assembly in which at least one heat exchanger for conditioning either the anode or cathode reactant gas is integrated with the fuel cell stack and located at the end of the fuel cell stack, to isolate the fuel cell stack from contact with the end plates of the stack. The heat exchanger may preferably be comprised of a stack of plates which may preferably be the same as the plates as the fuel cell stack, with outer and inner end plates to direct the flow of reactant gases, waste gases and coolant to and from the fuel cell stack. The assembly is preferably configured to include reactant conditioning heat exchangers at both ends of the fuel cell stack.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: April 12, 2011
    Assignee: Dana Canada Corporation
    Inventor: Doug Vanderwees
  • Publication number: 20110081592
    Abstract: A modular fuel cell stack assembly comprising a plurality of fuel cell stacks, each of the stacks having a plurality of stack faces and a plurality of stack corners formed between the stack faces, wherein the plurality of stack faces include a cathode inlet face adapted to receive oxidant gas for use in a cathode side of the fuel cell stack, a cathode outlet face adapted to output cathode exhaust from the cathode side, an anode inlet face adapted to receive fuel for use in an anode side of the fuel cell stack and an anode outlet face adapted to output anode exhaust from the anode side, and wherein at least one of the cathode inlet face, cathode outlet face, anode inlet face and anode outlet face is an open face without a manifold, and a containment structure for housing the plurality of fuel cell stacks and for providing fuel and oxidant gas to said fuel cell stacks, the containment structure including at least one sealed chamber for sealingly enclosing and isolating at least one open face.
    Type: Application
    Filed: June 5, 2009
    Publication date: April 7, 2011
    Inventors: Zhiwen Ma, Mohammad Farooque, Ramakrishnan Venkataraman, Michael Cramer, Alan Barlow
  • Publication number: 20110081589
    Abstract: A fuel cell manifold holding pressurized cooling fluid is attached to a plurality of cells. A swirl chamber communicating cooling fluid from the manifold to the cells slows the speed of the cooling fluid and lowers its pressure as it enters a fuel cell cooling path.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventor: Richard N. Fargo
  • Patent number: 7914943
    Abstract: A solid polymer fuel cell comprising a membrane electrode assembly that is in adhesive contact with a first flow field plate around the circumferential edge of the membrane electrode assembly and in non-adhesive contact with a second flow field plate, and an elastomeric manifold seal member that circumscribes at least one manifold opening of the first flow field plate and the second flow field plate. In this configuration, the adhesive substantially seals a first reactant gas while the manifold seal member substantially seals a second reactant gas, thereby improving sealing reliability and simplifying the seal design without overly compressing and damaging the circumferential edge of the membrane electrode assembly.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: March 29, 2011
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Boguslaw Wozniczka, Jake de Vaal, Alfred Wong
  • Patent number: 7914937
    Abstract: A fuel cell includes an electrolyte electrode assembly and separators. The separator has a fuel gas supply passage, a fuel gas distribution passage, an oxygen-containing gas supply passage, and an oxygen-containing gas distribution passage. The fuel gas flows through the fuel gas supply passage into the separator. The fuel gas distribution passage connects the fuel gas channel and the fuel gas supply passage. The oxygen-containing gas flows through the oxygen-containing gas supply passage into the separator. The oxygen-containing gas distribution passage connects the oxygen-containing gas channel and the oxygen-containing gas supply passage.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 29, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadashi Tsunoda, Masahiko Izumi
  • Publication number: 20110059380
    Abstract: A fuel cell stack comprising: a cell stack body having stacked single cells and a manifold for supplying or discharging a fluid to the stacked single cells, the single cell including a membrane electrode assembly and a separator sandwiching the membrane electrode assembly; an end plate stacked onto the cell stack body and having a through-hole along the stacking direction of the cell stack body; and a fluid tube body inserted detachably into the through-hole so as to pass through the end plate, the fluid tube body being connected to the manifold, wherein a part of the outer surface of the fluid tube body opposite to the inner surface of the through-hole is separated from the inner surface of the through-hole.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 10, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Toshihiro Matsumoto, Yoko Yamamoto, Takashi Morimoto, Mitsuo Yoshimura, Kenji Arai, Yoshiki Nagao
  • Patent number: 7901827
    Abstract: A fuel cell apparatus including a reaction unit for performing a chemical reaction, at least one fan for providing an airflow, and an airflow guiding device is provided. The airflow guiding device is connected to the fan and the reaction unit. The airflow guiding device includes an airflow rectification segment and a first airflow separation segment. The airflow rectification segment is connected to the fan and has one flow channel. The first airflow separation segment is connected to the airflow rectification segment and disposed between the airflow rectification segment and the reaction unit. A number of flow channels inside the first airflow separation segment is N1, where N1 is a positive integer and N1>1.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 8, 2011
    Assignee: Young Green Energy Co.
    Inventors: Cheng Wang, Nien-Hui Hsu, Jin-Shu Huang, Ching-Po Lee